Substitution Theorem

Proposition 2.7 Let ϕ_1 and ϕ_2 be equivalent formulas, and $\psi[\phi_1]_p$ be a formula in which ϕ_1 occurs as a subformula at position p.

Then $\psi[\phi_1]_p$ is equivalent to $\psi[\phi_2]_p$.

Proof. The proof proceeds by induction over the formula structure of ψ .

Each of the formulas \bot , \top , and P for $P \in \Sigma$ contains only one subformula, namely itself. Hence, if $\psi = \psi[\phi_1]_{\epsilon}$ equals \bot , \top , or P, then $\psi[\phi_1]_{\epsilon} = \phi_1$, $\psi[\phi_2]_{\epsilon} = \phi_2$, and we are done by assumption.

If $\psi = \psi_1 \wedge \psi_2$, then either $p = \epsilon$ (this case is treated as above), or ϕ_1 is a subformula of ψ_1 or ψ_2 at position 1p' or 2p', respectively. Without loss of generality, assume that ϕ_1 is a subformula of ψ_1 , so $\psi = \psi_1[\phi_1]_{p'} \wedge \psi_2$. By the induction hypothesis, $\psi_1[\phi_1]_{p'}$ and $\psi_1[\phi_2]_{p'}$ are equivalent. Hence, for any valuation \mathcal{A} , $\mathcal{A}(\psi[\phi_1]_{1p'}) = \mathcal{A}(\psi_1[\phi_1]_{p'} \wedge \psi_2) = \min(\{\mathcal{A}(\psi_1[\phi_1]_{p'}), \mathcal{A}(\psi_2)\}) = \min(\{\mathcal{A}(\psi_1[\phi_2]_{p'}), \mathcal{A}(\psi_2)\}) = \mathcal{A}(\psi_1[\phi_2]_{p'} \wedge \psi_2) = \mathcal{A}(\psi[\phi_2]_{1p'})$. The other boolean connectives are handled analogously.

Equivalences

Proposition 2.8 The following equivalences are valid for all formulas ϕ, ψ, χ :

$(\phi \land \phi) \leftrightarrow \phi$	$Idempotency \land$
$(\phi \lor \phi) \leftrightarrow \phi$	$Idempotency \vee \\$
$(\phi \wedge \psi) \leftrightarrow (\psi \wedge \phi)$	$Commutativity \land$
$(\phi \lor \psi) \leftrightarrow (\psi \lor \phi)$	$Commutativity \lor$
$(\phi \land (\psi \land \chi)) \leftrightarrow ((\phi \land \psi) \land \chi)$	$Associativity \land$
$(\phi \lor (\psi \lor \chi)) \leftrightarrow ((\phi \lor \psi) \lor \chi)$	$Associativity \lor$
$(\phi \land (\psi \lor \chi)) \leftrightarrow (\phi \land \psi) \lor (\phi \land \chi)$	$Distributivity \land \lor$
$(\phi \lor (\psi \land \chi)) \leftrightarrow (\phi \lor \psi) \land (\phi \lor \chi)$	$Distributivity \lor \land$

$(\phi \land \phi) \leftrightarrow \phi$	Absorption \land
$(\phi \lor \phi) \leftrightarrow \phi$	Absorption \vee
$(\phi \land (\phi \lor \psi)) \leftrightarrow \phi$	Absorption $\land \lor$
$(\phi \lor (\phi \land \psi)) \leftrightarrow \phi$	Absorption $\vee \wedge$
$(\phi \land \neg \phi) \leftrightarrow \bot$	Introduction \perp
$(\phi \lor \neg \phi) \leftrightarrow \top$	Introduction \top

$\neg(\phi \lor \psi) \leftrightarrow (\neg\phi \land \neg\psi)$	De Morgan ¬∨
$\neg(\phi \land \psi) \leftrightarrow (\neg\phi \lor \neg\psi)$	De Morgan $\neg \land$
$\neg\top \leftrightarrow \bot$	Propagate $\neg \top$
$\neg\bot \leftrightarrow \top$	Propagate $\neg \bot$

$(\phi \land \top) \leftrightarrow \phi$	Absorption $\top \land$
$(\phi \lor \bot) \leftrightarrow \phi$	Absorption $\bot \lor$
$(\phi \to \bot) \leftrightarrow \neg \phi$	Eliminate $\perp \rightarrow$
$(\phi \leftrightarrow \bot) \leftrightarrow \neg \phi$	Eliminate $\bot \leftrightarrow$
$(\phi \leftrightarrow \top) \leftrightarrow \phi$	Eliminate $\top \leftrightarrow$
$(\phi \lor \top) \leftrightarrow \top$	Propagate \top
$(\phi \wedge \bot) \leftrightarrow \bot$	Propagate \perp

$$(\phi \to \psi) \leftrightarrow (\neg \phi \lor \psi) \qquad \text{Eliminate} \to \\ (\phi \leftrightarrow \psi) \leftrightarrow (\phi \to \psi) \land (\psi \to \phi) \qquad \text{Eliminate1} \leftrightarrow \\ (\phi \leftrightarrow \psi) \leftrightarrow (\phi \land \psi) \lor (\neg \phi \land \neg \psi) \qquad \text{Eliminate2} \leftrightarrow$$

For simplification purposes the equivalences are typically applied as left to right rules.

2.4 Normal Forms

We define *conjunctions* of formulas as follows:

$$\bigwedge_{i=1}^{0} \phi_i = \top.$$

$$\bigwedge_{i=1}^1 \phi_i = \phi_1.$$

$$\bigwedge_{i=1}^{n+1} \phi_i = \bigwedge_{i=1}^n \phi_i \wedge \phi_{n+1}.$$

and analogously disjunctions:

$$\bigvee_{i=1}^{0} \phi_i = \bot.$$

$$\bigvee_{i=1}^1 \phi_i = \phi_1.$$

$$\bigvee_{i=1}^{n+1} \phi_i = \bigvee_{i=1}^n \phi_i \vee \phi_{n+1}.$$

Literals and Clauses

A literal is either a propositional variable P or a negated propositional variable $\neg P$.

A clause is a (possibly empty) disjunction of literals.

CNF and **DNF**

A formula is in *conjunctive normal form* (CNF, clause normal form), if it is a conjunction of disjunctions of literals (or in other words, a conjunction of clauses).

A formula is in disjunctive normal form (DNF), if it is a disjunction of conjunctions of literals.

Warning: definitions in the literature differ:

```
are complementary literals permitted?
are duplicated literals permitted?
are empty disjunctions/conjunctions permitted?
```

Checking the validity of CNF formulas or the unsatisfiability of DNF formulas is easy:

A formula in CNF is valid, if and only if each of its disjunctions contains a pair of complementary literals P and $\neg P$.

Conversely, a formula in DNF is unsatisfiable, if and only if each of its conjunctions contains a pair of complementary literals P and $\neg P$.

On the other hand, checking the unsatisfiability of CNF formulas or the validity of DNF formulas is known to be coNP-complete.

Conversion to CNF/DNF

Proposition 2.9 For every formula there is an equivalent formula in CNF (and also an equivalent formula in DNF).

Proof. We consider the case of CNF and propose a naive algorithm.

Apply the following rules as long as possible (modulo associativity and commutativity of \wedge and \vee):

Step 1: Eliminate equivalences:

$$(\phi \leftrightarrow \psi) \Rightarrow_{\text{ECNF}} (\phi \to \psi) \land (\psi \to \phi)$$

Step 2: Eliminate implications:

$$(\phi \to \psi) \Rightarrow_{\text{ECNF}} (\neg \phi \lor \psi)$$

Step 3: Push negations downward:

$$\neg(\phi \lor \psi) \Rightarrow_{\text{ECNF}} (\neg \phi \land \neg \psi)$$
$$\neg(\phi \land \psi) \Rightarrow_{\text{ECNF}} (\neg \phi \lor \neg \psi)$$

Step 4: Eliminate multiple negations:

$$\neg \neg \phi \Rightarrow_{\text{ECNF}} \phi$$

Step 5: Push disjunctions downward:

$$(\phi \land \psi) \lor \chi \Rightarrow_{\text{ECNF}} (\phi \lor \chi) \land (\psi \lor \chi)$$

Step 6: Eliminate \top and \bot :

$$\begin{array}{ll} (\phi \wedge \top) \; \Rightarrow_{\mathrm{ECNF}} \; \phi \\ (\phi \wedge \bot) \; \Rightarrow_{\mathrm{ECNF}} \; \bot \\ (\phi \vee \top) \; \Rightarrow_{\mathrm{ECNF}} \; \top \\ (\phi \vee \bot) \; \Rightarrow_{\mathrm{ECNF}} \; \phi \\ \neg \bot \; \Rightarrow_{\mathrm{ECNF}} \; \top \\ \neg \top \; \Rightarrow_{\mathrm{ECNF}} \; \bot \end{array}$$

Proving termination is easy for steps 2, 4, and 6; steps 1, 3, and 5 are a bit more complicated.

For step 1, we can prove termination in the following way: We define a function μ from formulas to positive integers such that $\mu(\bot) = \mu(\top) = \mu(P) = 1$, $\mu(\neg \phi) = \mu(\phi)$, $\mu(\phi \land \psi) = \mu(\phi \lor \psi) = \mu(\phi \to \psi) = \mu(\phi) + \mu(\psi)$, and $\mu(\phi \leftrightarrow \psi) = 2\mu(\phi) + 2\mu(\psi) + 1$. Observe that μ is constructed in such a way that $\mu(\phi_1) > \mu(\phi_2)$ implies $\mu(\psi[\phi_1]_p) > \mu(\psi[\phi_2]_p)$ for all formulas ϕ_1 , ϕ_2 , and ψ and positions p. Using this property, we can show that whenever a formula χ' is the result of applying the rule of step 1 to a formula χ , then $\mu(\chi) > \mu(\chi')$. Since μ takes only positive integer values, step 1 must terminate.

Termination of steps 3 and 5 is proved similarly. For step 3, we use a function μ from formulas to positive integers such that $\mu(\bot) = \mu(\top) = \mu(P) = 1$, $\mu(\neg \phi) = 2\mu(\phi)$, $\mu(\phi \land \psi) = \mu(\phi \lor \psi) = \mu(\phi \to \psi) = \mu(\phi \leftrightarrow \psi) = \mu(\phi) + \mu(\psi) + 1$. Whenever a formula χ' is the result of applying a rule of step 3 to a formula χ , then $\mu(\chi) > \mu(\chi')$. Since μ takes only positive integer values, step 3 must terminate.

For step 5, we use a function μ from formulas to positive integers such that $\mu(\perp) = \mu(\top) = \mu(P) = 1$, $\mu(\neg \phi) = \mu(\phi) + 1$, $\mu(\phi \land \psi) = \mu(\phi \rightarrow \psi) = \mu(\phi \leftrightarrow \psi) = \mu(\phi) + \mu(\psi) + 1$, and $\mu(\phi \lor \psi) = 2\mu(\phi)\mu(\psi)$. Again, if a formula χ' is the result of applying

a rule of step 5 to a formula χ , then $\mu(\chi) > \mu(\chi')$. Since μ takes only positive integer values, step 5 terminates, too.

The resulting formula is equivalent to the original one and in CNF.

The conversion of a formula to DNF works in the same way, except that conjunctions have to be pushed downward in step 5.

Complexity

Conversion to CNF (or DNF) may produce a formula whose size is exponential in the size of the original one.

Satisfiability-preserving Transformations

The goal

"find a formula ψ in CNF such that $\phi \models \psi$ "

is unpractical.

But if we relax the requirement to

"find a formula ψ in CNF such that $\phi \models \bot \Leftrightarrow \psi \models \bot$ "

we can get an efficient transformation.

Idea: A formula $\psi[\phi]_p$ is satisfiable if and only if $\psi[P]_p \wedge (P \leftrightarrow \phi)$ is satisfiable where P is a new propositional variable that does not occur in ψ and works as an abbreviation for ϕ .

We can use this rule recursively for all subformulas in the original formula (this introduces a linear number of new propositional variables).

Conversion of the resulting formula to CNF increases the size only by an additional factor (each formula $P \leftrightarrow \phi$ gives rise to at most one application of the distributivity law).

Optimized Transformations

A further improvement is possible by taking the polarity of the subformula into account.

For example if $\psi[\phi_1 \leftrightarrow \phi_2]_p$ and $pol(\psi, p) = -1$ then for CNF transformation do $\psi[(\phi_1 \land \phi_2) \lor (\neg \phi_1 \land \neg \phi_2)]_p$.

Proposition 2.10 Let P be a propositional variable not occurring in $\psi[\phi]_p$.

If $pol(\psi, p) = 1$, then $\psi[\phi]_p$ is satisfiable if and only if $\psi[P]_p \wedge (P \to \phi)$ is satisfiable.

If $pol(\psi, p) = -1$, then $\psi[\phi]_p$ is satisfiable if and only if $\psi[P]_p \wedge (\phi \to P)$ is satisfiable.

If $\operatorname{pol}(\psi, p) = 0$, then $\psi[\phi]_p$ is satisfiable if and only if $\psi[P]_p \wedge (P \leftrightarrow \phi)$ is satisfiable.

Proof. Exercise.

The number of eventually generated clauses is a good indicator for useful CNF transformations:

ψ	$ u(\psi)$	$ar{ u}(\psi)$
$\phi_1 \wedge \phi_2$	$\nu(\phi_1) + \nu(\phi_2)$	$ar{ u}(\phi_1)ar{ u}(\phi_2)$
$\phi_1 \vee \phi_2$	$\nu(\phi_1)\nu(\phi_2)$	$\bar{ u}(\phi_1) + \bar{ u}(\phi_2)$
$\phi_1 \to \phi_2$	$ar{ u}(\phi_1) u(\phi_2)$	$ u(\phi_1) + \bar{\nu}(\phi_2) $
$\phi_1 \leftrightarrow \phi_2$	$\nu(\phi_1)\bar{\nu}(\phi_2) + \bar{\nu}(\phi_1)\nu(\phi_2)$	$\nu(\phi_1)\nu(\phi_2) + \bar{\nu}(\phi_1)\bar{\nu}(\phi_2)$
$\neg \phi_1$	$ar{ u}(\phi_1)$	$ u(\phi_1)$
P, \top, \bot	1	1

Optimized CNF

Step 1: Exhaustively apply modulo C of \leftrightarrow , AC of \land , \lor :

$$(\phi \wedge \top) \Rightarrow_{OCNF} \phi$$

$$(\phi \lor \bot) \Rightarrow_{OCNF} \phi$$

$$(\phi \leftrightarrow \bot) \Rightarrow_{\text{OCNF}} \neg \phi$$

$$(\phi \leftrightarrow \top) \Rightarrow_{\text{OCNF}} \phi$$

$$(\phi \lor \top) \Rightarrow_{OCNF} \top$$

$$(\phi \wedge \bot) \Rightarrow_{OCNF} \bot$$

$$(\phi \land \phi) \Rightarrow_{\text{OCNF}} \phi$$

$$(\phi \lor \phi) \Rightarrow_{\text{OCNF}} \phi$$

$$(\phi \land (\phi \lor \psi)) \Rightarrow_{\text{OCNF}} \phi$$

$$(\phi \lor (\phi \land \psi)) \Rightarrow_{\text{OCNF}} \phi$$

$$(\phi \land \neg \phi) \Rightarrow_{\text{OCNF}} \bot$$

$$(\phi \lor \neg \phi) \Rightarrow_{\text{OCNF}} \bot$$

$$\neg \top \Rightarrow_{\text{OCNF}} \bot$$

$$\neg \bot \Rightarrow_{\text{OCNF}} \bot$$

$$\begin{array}{ll} (\phi \to \bot) & \Rightarrow_{\rm OCNF} & \neg \phi \\ (\phi \to \top) & \Rightarrow_{\rm OCNF} & \top \\ (\bot \to \phi) & \Rightarrow_{\rm OCNF} & \top \\ (\top \to \phi) & \Rightarrow_{\rm OCNF} & \phi \end{array}$$

Step 2: Introduce top-down fresh variables for beneficial subformulas:

$$\psi[\phi]_p \Rightarrow_{\text{OCNF}} \psi[P]_p \wedge \operatorname{def}(\psi, p)$$

where P is new to $\psi[\phi]_p$, $\operatorname{def}(\psi, p)$ is defined polarity dependent according to Proposition 2.10 and $\nu(\psi[\phi]_p) > \nu(\psi[P]_p \wedge \operatorname{def}(\psi, p))$.

Remark: Although computing ν is not practical in general, the test $\nu(\psi[\phi]_p) > \nu(\psi[P]_p \land \text{def}(\psi, p))$ can be computed in constant time.

Step 3: Eliminate equivalences polarity dependent:

$$\psi[\phi\leftrightarrow\psi]_p\ \Rightarrow_{\rm OCNF}\ \psi[(\phi\to\psi)\wedge(\psi\to\phi)]_p$$
 if ${\rm pol}(\psi,p)=1$ or ${\rm pol}(\psi,p)=0$

$$\psi[\phi\leftrightarrow\psi]_p\ \Rightarrow_{\rm OCNF}\ \psi[(\phi\wedge\psi)\vee(\neg\psi\wedge\neg\phi)]_p$$
 if ${\rm pol}(\psi,p)=-1$

Step 4: Apply steps 2, 3, 4, 5 of \Rightarrow_{ECNF}

Remark: The $\Rightarrow_{\text{OCNF}}$ algorithm is already close to a state of the art algorithm. Missing are further redundancy tests and simplification mechanisms we will discuss later on in this section.