Substitution Theorem

Proposition 2.7 Let ϕ_{1} and ϕ_{2} be equivalent formulas, and $\psi\left[\phi_{1}\right]_{p}$ be a formula in which ϕ_{1} occurs as a subformula at position p.

Then $\psi\left[\phi_{1}\right]_{p}$ is equivalent to $\psi\left[\phi_{2}\right]_{p}$.

Proof. The proof proceeds by induction over the formula structure of ψ.
Each of the formulas \perp, \top, and P for $P \in \Sigma$ contains only one subformula, namely itself. Hence, if $\psi=\psi\left[\phi_{1}\right]_{\epsilon}$ equals \perp, \top, or P, then $\psi\left[\phi_{1}\right]_{\epsilon}=\phi_{1}, \psi\left[\phi_{2}\right]_{\epsilon}=\phi_{2}$, and we are done by assumption.

If $\psi=\psi_{1} \wedge \psi_{2}$, then either $p=\epsilon$ (this case is treated as above), or ϕ_{1} is a subformula of ψ_{1} or ψ_{2} at position $1 p^{\prime}$ or $2 p^{\prime}$, respectively. Without loss of generality, assume that ϕ_{1} is a subformula of ψ_{1}, so $\psi=\psi_{1}\left[\phi_{1}\right]_{p^{\prime}} \wedge \psi_{2}$. By the induction hypothesis, $\psi_{1}\left[\phi_{1}\right]_{p^{\prime}}$ and $\psi_{1}\left[\phi_{2}\right]_{p^{\prime}}$ are equivalent. Hence, for any valuation $\mathcal{A}, \mathcal{A}\left(\psi\left[\phi_{1}\right]_{p^{\prime}}\right)=\mathcal{A}\left(\psi_{1}\left[\phi_{1}\right]_{p^{\prime}} \wedge\right.$ $\left.\psi_{2}\right)=\min \left(\left\{\mathcal{A}\left(\psi_{1}\left[\phi_{1}\right]_{p^{\prime}}\right), \mathcal{A}\left(\psi_{2}\right)\right\}\right)=\min \left(\left\{\mathcal{A}\left(\psi_{1}\left[\phi_{2}\right]_{p^{\prime}}\right), \mathcal{A}\left(\psi_{2}\right)\right\}\right)=\mathcal{A}\left(\psi_{1}\left[\phi_{2}\right]_{p^{\prime}} \wedge \psi_{2}\right)=$ $\mathcal{A}\left(\psi\left[\phi_{2}\right]_{1^{\prime}}\right)$. The other boolean connectives are handled analogously.

Equivalences

Proposition 2.8 The following equivalences are valid for all formulas ϕ, ψ, χ :

$(\phi \wedge \phi) \leftrightarrow \phi$	Idempotency \wedge
$(\phi \vee \phi) \leftrightarrow \phi$	Idempotency \vee
$(\phi \wedge \psi) \leftrightarrow(\psi \wedge \phi)$	Commutativity \wedge
$(\phi \vee \psi) \leftrightarrow(\psi \vee \phi)$	Commutativity \vee
$(\phi \wedge(\psi \wedge \chi)) \leftrightarrow((\phi \wedge \psi) \wedge \chi)$	Associativity \wedge
$(\phi \vee(\psi \vee \chi)) \leftrightarrow((\phi \vee \psi) \vee \chi)$	Associativity \vee
$(\phi \wedge(\psi \vee \chi)) \leftrightarrow(\phi \wedge \psi) \vee(\phi \wedge \chi)$	Distributivity $\wedge \vee$
$(\phi \vee(\psi \wedge \chi)) \leftrightarrow(\phi \vee \psi) \wedge(\phi \vee \chi)$	Distributivity $\vee \wedge$
$(\phi \wedge \phi) \leftrightarrow \phi$	Absorption \wedge
$(\phi \vee \phi) \leftrightarrow \phi$	Absorption \vee
$(\phi \wedge(\phi \vee \psi)) \leftrightarrow \phi$	Absorption $\wedge \vee$
$(\phi \vee(\phi \wedge \psi)) \leftrightarrow \phi$	Absorption $\vee \wedge$
$(\phi \wedge \neg \phi) \leftrightarrow \perp$	Introduction \perp
$(\phi \vee \neg \phi) \leftrightarrow \top$	Introduction \top
$\neg(\phi \vee \psi) \leftrightarrow(\neg \phi \wedge \neg \psi)$	De Morgan $\neg \vee$
$\neg(\phi \wedge \psi) \leftrightarrow(\neg \phi \vee \neg \psi)$	De Morgan $\neg \wedge$
$\neg \top \leftrightarrow \perp$	Propagate $\neg \top$
$\neg \perp \leftrightarrow \top$	Propagate $\neg \perp$

$(\phi \wedge \top) \leftrightarrow \phi$	Absorption T^
$(\phi \vee \perp) \leftrightarrow \phi$	Absorption $\perp \vee$
$(\phi \rightarrow \perp) \leftrightarrow \neg \phi$	Eliminate $\perp \rightarrow$
$(\phi \leftrightarrow \perp) \leftrightarrow \neg \phi$	Eliminate $\perp \leftrightarrow$
$(\phi \leftrightarrow T) \leftrightarrow \phi$	Eliminate $T \leftrightarrow$
$(\phi \vee \top) \leftrightarrow \top$	Propagate T
$(\phi \wedge \perp) \leftrightarrow \perp$	Propagate \perp

$(\phi \rightarrow \psi) \leftrightarrow(\neg \phi \vee \psi)$	Eliminate \rightarrow
$(\phi \leftrightarrow \psi) \leftrightarrow(\phi \rightarrow \psi) \wedge(\psi \rightarrow \phi)$	Eliminate1 \leftrightarrow
$(\phi \leftrightarrow \psi) \leftrightarrow(\phi \wedge \psi) \vee(\neg \phi \wedge \neg \psi)$	Eliminate $2 \leftrightarrow$

For simplification purposes the equivalences are typically applied as left to right rules.

2.4 Normal Forms

We define conjunctions of formulas as follows:

$$
\begin{aligned}
& \bigwedge_{i=1}^{0} \phi_{i}=\top . \\
& \bigwedge_{i=1}^{1} \phi_{i}=\phi_{1} . \\
& \bigwedge_{i=1}^{n+1} \phi_{i}=\bigwedge_{i=1}^{n} \phi_{i} \wedge \phi_{n+1} .
\end{aligned}
$$

and analogously disjunctions:

$$
\begin{aligned}
\bigvee_{i=1}^{0} \phi_{i} & =\perp . \\
\bigvee_{i=1}^{1} \phi_{i} & =\phi_{1} . \\
\bigvee_{i=1}^{n+1} \phi_{i} & =\bigvee_{i=1}^{n} \phi_{i} \vee \phi_{n+1} .
\end{aligned}
$$

Literals and Clauses

A literal is either a propositional variable P or a negated propositional variable $\neg P$.
A clause is a (possibly empty) disjunction of literals.

CNF and DNF

A formula is in conjunctive normal form (CNF, clause normal form), if it is a conjunction of disjunctions of literals (or in other words, a conjunction of clauses).

A formula is in disjunctive normal form (DNF), if it is a disjunction of conjunctions of literals.

Warning: definitions in the literature differ:
are complementary literals permitted?
are duplicated literals permitted?
are empty disjunctions/conjunctions permitted?
Checking the validity of CNF formulas or the unsatisfiability of DNF formulas is easy:
A formula in CNF is valid, if and only if each of its disjunctions contains a pair of complementary literals P and $\neg P$.

Conversely, a formula in DNF is unsatisfiable, if and only if each of its conjunctions contains a pair of complementary literals P and $\neg P$.

On the other hand, checking the unsatisfiability of CNF formulas or the validity of DNF formulas is known to be coNP-complete.

Conversion to CNF/DNF

Proposition 2.9 For every formula there is an equivalent formula in CNF (and also an equivalent formula in $D N F$).

Proof. We consider the case of CNF and propose a naive algorithm.
Apply the following rules as long as possible (modulo associativity and commutativity of \wedge and \vee):

Step 1: Eliminate equivalences:

$$
(\phi \leftrightarrow \psi) \Rightarrow_{\mathrm{ECNF}} \quad(\phi \rightarrow \psi) \wedge(\psi \rightarrow \phi)
$$

Step 2: Eliminate implications:

$$
(\phi \rightarrow \psi) \Rightarrow_{\mathrm{ECNF}} \quad(\neg \phi \vee \psi)
$$

Step 3: Push negations downward:

$$
\begin{aligned}
& \neg(\phi \vee \psi) \Rightarrow_{\mathrm{ECNF}}(\neg \phi \wedge \neg \psi) \\
& \neg(\phi \wedge \psi) \Rightarrow_{\mathrm{ECNF}}(\neg \phi \vee \neg \psi)
\end{aligned}
$$

Step 4: Eliminate multiple negations:

$$
\neg \neg \phi \Rightarrow_{\mathrm{ECNF}} \phi
$$

Step 5: Push disjunctions downward:

$$
(\phi \wedge \psi) \vee \chi \Rightarrow_{\mathrm{ECNF}}(\phi \vee \chi) \wedge(\psi \vee \chi)
$$

Step 6: Eliminate T and \perp :

$$
\begin{array}{r}
(\phi \wedge \top) \Rightarrow_{\mathrm{ECNF}} \phi \\
(\phi \wedge \perp) \Rightarrow_{\mathrm{ECNF}} \perp \\
(\phi \vee \top) \Rightarrow_{\mathrm{ECNF}} \top \\
(\phi \vee \perp) \Rightarrow_{\mathrm{ECNF}} \phi \\
\neg \perp \Rightarrow_{\mathrm{ECNF}} \top \\
\neg \top \Rightarrow_{\mathrm{ECNF}} \perp
\end{array}
$$

Proving termination is easy for steps 2,4 , and 6 ; steps 1 , 3 , and 5 are a bit more complicated.

For step 1, we can prove termination in the following way: We define a function μ from formulas to positive integers such that $\mu(\perp)=\mu(T)=\mu(P)=1, \mu(\neg \phi)=\mu(\phi)$, $\mu(\phi \wedge \psi)=\mu(\phi \vee \psi)=\mu(\phi \rightarrow \psi)=\mu(\phi)+\mu(\psi)$, and $\mu(\phi \leftrightarrow \psi)=2 \mu(\phi)+2 \mu(\psi)+1$. Observe that μ is constructed in such a way that $\mu\left(\phi_{1}\right)>\mu\left(\phi_{2}\right)$ implies $\mu\left(\psi\left[\phi_{1}\right]_{p}\right)>$ $\mu\left(\psi\left[\phi_{2}\right]_{p}\right)$ for all formulas ϕ_{1}, ϕ_{2}, and ψ and positions p. Using this property, we can show that whenever a formula χ^{\prime} is the result of applying the rule of step 1 to a formula χ, then $\mu(\chi)>\mu\left(\chi^{\prime}\right)$. Since μ takes only positive integer values, step 1 must terminate.

Termination of steps 3 and 5 is proved similarly. For step 3, we use a function μ from formulas to positive integers such that $\mu(\perp)=\mu(T)=\mu(P)=1, \mu(\neg \phi)=2 \mu(\phi)$, $\mu(\phi \wedge \psi)=\mu(\phi \vee \psi)=\mu(\phi \rightarrow \psi)=\mu(\phi \leftrightarrow \psi)=\mu(\phi)+\mu(\psi)+1$. Whenever a formula χ^{\prime} is the result of applying a rule of step 3 to a formula χ, then $\mu(\chi)>\mu\left(\chi^{\prime}\right)$. Since μ takes only positive integer values, step 3 must terminate.

For step 5 , we use a function μ from formulas to positive integers such that $\mu(\perp)=$ $\mu(T)=\mu(P)=1, \mu(\neg \phi)=\mu(\phi)+1, \mu(\phi \wedge \psi)=\mu(\phi \rightarrow \psi)=\mu(\phi \leftrightarrow \psi)=\mu(\phi)+$ $\mu(\psi)+1$, and $\mu(\phi \vee \psi)=2 \mu(\phi) \mu(\psi)$. Again, if a formula χ^{\prime} is the result of applying
a rule of step 5 to a formula χ, then $\mu(\chi)>\mu\left(\chi^{\prime}\right)$. Since μ takes only positive integer values, step 5 terminates, too.

The resulting formula is equivalent to the original one and in CNF.
The conversion of a formula to DNF works in the same way, except that conjunctions have to be pushed downward in step 5 .

Complexity

Conversion to CNF (or DNF) may produce a formula whose size is exponential in the size of the original one.

Satisfiability-preserving Transformations

The goal
"find a formula ψ in CNF such that $\phi \# \psi$ "
is unpractical.
But if we relax the requirement to
"find a formula ψ in CNF such that $\phi \models \perp \Leftrightarrow \psi \models \perp$ "
we can get an efficient transformation.
Idea: A formula $\psi[\phi]_{p}$ is satisfiable if and only if $\psi[P]_{p} \wedge(P \leftrightarrow \phi)$ is satisfiable where P is a new propositional variable that does not occur in ψ and works as an abbreviation for ϕ.

We can use this rule recursively for all subformulas in the original formula (this introduces a linear number of new propositional variables).

Conversion of the resulting formula to CNF increases the size only by an additional factor (each formula $P \leftrightarrow \phi$ gives rise to at most one application of the distributivity law).

Optimized Transformations

A further improvement is possible by taking the polarity of the subformula into account.

For example if $\psi\left[\phi_{1} \leftrightarrow \phi_{2}\right]_{p}$ and $\operatorname{pol}(\psi, p)=-1$ then for CNF transformation do $\psi\left[\left(\phi_{1} \wedge\right.\right.$ $\left.\left.\phi_{2}\right) \vee\left(\neg \phi_{1} \wedge \neg \phi_{2}\right)\right]_{p}$.

Proposition 2.10 Let P be a propositional variable not occurring in $\psi[\phi]_{p}$.
If $\operatorname{pol}(\psi, p)=1$, then $\psi[\phi]_{p}$ is satisfiable if and only if $\psi[P]_{p} \wedge(P \rightarrow \phi)$ is satisfiable. If $\operatorname{pol}(\psi, p)=-1$, then $\psi[\phi]_{p}$ is satisfiable if and only if $\psi[P]_{p} \wedge(\phi \rightarrow P)$ is satisfiable. If $\operatorname{pol}(\psi, p)=0$, then $\psi[\phi]_{p}$ is satisfiable if and only if $\psi[P]_{p} \wedge(P \leftrightarrow \phi)$ is satisfiable.

Proof. Exercise.

The number of eventually generated clauses is a good indicator for useful CNF transformations:

ψ	$\nu(\psi)$	$\bar{\nu}(\psi)$
$\phi_{1} \wedge \phi_{2}$	$\nu\left(\phi_{1}\right)+\nu\left(\phi_{2}\right)$	$\bar{\nu}\left(\phi_{1}\right) \bar{\nu}\left(\phi_{2}\right)$
$\phi_{1} \vee \phi_{2}$	$\nu\left(\phi_{1}\right) \nu\left(\phi_{2}\right)$	$\bar{\nu}\left(\phi_{1}\right)+\bar{\nu}\left(\phi_{2}\right)$
$\phi_{1} \rightarrow \phi_{2}$	$\bar{\nu}\left(\phi_{1}\right) \nu\left(\phi_{2}\right)$	$\nu\left(\phi_{1}\right)+\bar{\nu}\left(\phi_{2}\right)$
$\phi_{1} \leftrightarrow \phi_{2}$	$\nu\left(\phi_{1}\right) \bar{\nu}\left(\phi_{2}\right)+\bar{\nu}\left(\phi_{1}\right) \nu\left(\phi_{2}\right)$	$\nu\left(\phi_{1}\right) \nu\left(\phi_{2}\right)+\bar{\nu}\left(\phi_{1}\right) \bar{\nu}\left(\phi_{2}\right)$
$\neg \phi_{1}$	$\bar{\nu}\left(\phi_{1}\right)$	$\nu\left(\phi_{1}\right)$
P, \top, \perp	1	1

Optimized CNF

Step 1: Exhaustively apply modulo C of $\leftrightarrow, \mathrm{AC}$ of \wedge, \vee :

$$
\begin{aligned}
&(\phi \wedge \top) \Rightarrow_{\mathrm{OCNF}} \phi \\
&(\phi \vee \perp) \Rightarrow_{\mathrm{OCNF}} \phi \\
&(\phi \leftrightarrow \perp) \Rightarrow_{\mathrm{OCNF}} \neg \phi \\
&(\phi \leftrightarrow \top) \Rightarrow_{\mathrm{OCNF}} \phi \\
&(\phi \vee \top) \Rightarrow_{\mathrm{OCNF}} \top \\
&(\phi \wedge \perp) \Rightarrow_{\mathrm{OCNF}} \perp
\end{aligned}
$$

$$
\begin{aligned}
&(\phi \wedge \phi) \Rightarrow_{\mathrm{OCNF}} \quad \phi \\
&(\phi \vee \phi) \Rightarrow_{\mathrm{OCNF}} \quad \phi \\
&(\phi \wedge(\phi \vee \psi)) \Rightarrow_{\mathrm{OCNF}} \\
&(\phi \vee(\phi \wedge \psi)) \Rightarrow_{\mathrm{OCNF}} \quad \phi \\
&(\phi \wedge \neg \phi) \Rightarrow_{\mathrm{OCNF}} \\
&(\phi \vee \neg \phi) \Rightarrow_{\mathrm{OCNF}} \\
&(\phi \\
& \neg \top \Rightarrow_{\mathrm{OCNF}} \perp \\
& \neg \perp \Rightarrow{ }_{\mathrm{OCNF}} \top \\
&(\phi \rightarrow \perp) \Rightarrow_{\mathrm{OCNF}} \neg \phi \\
&(\phi \rightarrow \top) \Rightarrow_{\mathrm{OCNF}} \top \\
&(\perp \rightarrow \phi) \Rightarrow_{\mathrm{OCNF}} \top \\
&(\top \rightarrow \phi) \Rightarrow_{\mathrm{OCNF}} \phi
\end{aligned}
$$

Step 2: Introduce top-down fresh variables for beneficial subformulas:

$$
\psi[\phi]_{p} \Rightarrow \mathrm{OCNF} \psi[P]_{p} \wedge \operatorname{def}(\psi, p)
$$

where P is new to $\psi[\phi]_{p}, \operatorname{def}(\psi, p)$ is defined polarity dependent according to Proposition 2.10 and $\nu\left(\psi[\phi]_{p}\right)>\nu\left(\psi[P]_{p} \wedge \operatorname{def}(\psi, p)\right)$.

Remark: Although computing ν is not practical in general, the test $\nu\left(\psi[\phi]_{p}\right)>\nu\left(\psi[P]_{p} \wedge\right.$ $\operatorname{def}(\psi, p))$ can be computed in constant time.

Step 3: Eliminate equivalences polarity dependent:

$$
\psi[\phi \leftrightarrow \psi]_{p} \Rightarrow_{\mathrm{OCNF}} \psi[(\phi \rightarrow \psi) \wedge(\psi \rightarrow \phi)]_{p}
$$

if $\operatorname{pol}(\psi, p)=1$ or $\operatorname{pol}(\psi, p)=0$

$$
\psi[\phi \leftrightarrow \psi]_{p} \Rightarrow_{\mathrm{OCNF}} \psi[(\phi \wedge \psi) \vee(\neg \psi \wedge \neg \phi)]_{p}
$$

if $\operatorname{pol}(\psi, p)=-1$

Step 4: Apply steps $2,3,4,5$ of $\Rightarrow_{\mathrm{ECNF}}$

Remark: The $\Rightarrow_{\text {OCNF }}$ algorithm is already close to a state of the art algorithm. Missing are further redundancy tests and simplification mechanisms we will discuss later on in this section.

