Step 4: Apply steps 2, 3, 4, 5 of $\Rightarrow_{\text{ECNF}}$

Remark: The $\Rightarrow_{\text{OCNF}}$ algorithm is already close to a state of the art algorithm. Missing are further redundancy tests and simplification mechanisms we will discuss later on in this section.

2.5 Superposition for $\text{PROP}(\Sigma)$

Superposition for $\text{PROP}(\Sigma)$ is:

- resolution (Robinson 1965) +
- ordering restrictions (Bachmair & Ganzinger 1990) +
- abstract redundancy criterion (B&G 1990) +
- partial model construction (B & G 1990) +
- partial-model based inference restriction (Weidenbach)

Resolution for $\text{PROP}(\Sigma)$

A calculus is a set of inference and reduction rules for a given logic (here $\text{PROP}(\Sigma)$).

We only consider calculi operating on a set of clauses N. Inference rules add new clauses to N whereas reduction rules remove clauses from N or replace clauses by “simpler” ones.

We are only interested in unsatisfiability, i.e., the considered calculi test whether a clause set N is unsatisfiable. So, in order to check validity of a formula ϕ we check unsatisfiability of the clauses generated from $\neg\phi$.

For clauses we switch between the notation as a disjunction, e.g., $P \lor Q \lor P \lor \neg R$, and the notation as a multiset, e.g., $\{P, Q, P, \neg R\}$. This makes no difference as we consider \lor in the context of clauses always modulo AC. Note that \bot, the empty disjunction, corresponds to \emptyset, the empty multiset.

For literals we write L, possibly with subscript. If $L = P$ then $\bar{L} = \neg P$ and if $L = \neg P$ then $\bar{L} = P$, so the bar flips the negation of a literal.

Clauses are typically denoted by letters C, D, possibly with subscript.

The resolution calculus consists of the inference rules resolution and factoring:

\[
\begin{array}{c}
\text{Resolution} \\
\frac{C_1 \lor P \quad C_2 \lor \neg P}{C_1 \lor C_2}
\end{array}
\quad
\begin{array}{c}
\text{Factoring} \\
\frac{C \lor L \lor L}{C \lor L}
\end{array}
\]
where \(C_1, C_2, C \) always stand for clauses, all inference/reduction rules are applied with respect to AC of \(\lor \). Given a clause set \(N \) the schema above the inference bar is mapped to \(N \) and the resulting clauses below the bar are then added to \(N \).

and the reduction rules subsumption and tautology deletion:

\[
\begin{array}{ccc}
\text{Subsumption} & \text{Tautology Deletion} \\
R & \frac{C_1 \quad C_2}{C_1} & \frac{C \lor P \lor \neg P}{\mathcal{R}}
\end{array}
\]

where for subsumption we assume \(C_1 \subseteq C_2 \). Given a clause set \(N \) the schema above the reduction bar is mapped to \(N \) and the resulting clauses below the bar replace the clauses above the bar in \(N \).

Clauses that can be removed are called redundant.

So, if we consider clause sets \(N \) as states, \(\uplus \) is disjoint union, we get the rules

\[
\begin{align*}
\text{Resolution} & \quad (N \uplus \{C_1 \lor P, C_2 \lor \neg P\}) \quad \Rightarrow \quad (N \cup \{C_1 \lor P, C_2 \lor \neg P\} \cup \{C_1 \lor C_2\}) \\
\text{Factoring} & \quad (N \uplus \{C \lor L \lor L\}) \quad \Rightarrow \quad (N \cup \{C \lor L \lor L\} \cup \{C \lor L\}) \\
\text{Subsumption} & \quad (N \uplus \{C_1, C_2\}) \quad \Rightarrow \quad (N \cup \{C_1\}) \\
\text{Tautology Deletion} & \quad (N \uplus \{C \lor P \lor \neg P\}) \quad \Rightarrow \quad (N)
\end{align*}
\]

provided \(C_1 \subseteq C_2 \)

We need more structure than just \((N) \) in order to define a useful rewrite system. We fix this later on.

Theorem 2.11 The resolution calculus is sound and complete:

\(N \) is unsatisfiable iff \(N \Rightarrow^* \{\bot\} \)

Proof. Will be a consequence of soundness and completeness of superposition. \(\square \)
Ordering restrictions

Let \prec be a total ordering on Σ.

We lift \prec to a total ordering on literals by $\prec \subseteq \prec_L$ and $P \prec_L \neg P$ and $\neg P \prec_L Q$ for all $P \prec Q$.

We further lift \prec_L to a total ordering on clauses \prec_C by considering the multiset extension of \prec_L for clauses.

Eventually, we overload \prec with \prec_L and \prec_C.

We define $N^{\prec C} = \{ D \in N \mid D \prec C \}$.

Eventually we will restrict inferences to maximal literals with respect to \prec.

Abstract Redundancy

A clause C is redundant with respect to a clause set N if $N^{\prec C} \models C$.

Tautologies are redundant. Subsumed clauses are redundant if \subseteq is strict.

Remark: Note that for finite N, $N^{\prec C} \models C$ can be decided for $PROP(\Sigma)$ but is as hard as testing unsatisfiability for a clause set N.

Partial Model Construction

Given a clause set N and an ordering \prec we can construct a (partial) model N_I for N as follows:

$N_C := \bigcup_{D \prec C} \delta_D$

$\delta_D := \begin{cases} \{P\} & \text{if } D = D' \lor P \text{ and } P \text{ maximal and } N_D \not= D \\ \emptyset & \text{otherwise} \end{cases}$

$N_I := \bigcup_{C \in N} \delta_C$
Superposition

The superposition calculus consists of the inference rules superposition left and factoring:

Superposition Left

\[(N \uplus \{C_1 \lor P, C_2 \lor \neg P\}) \implies (N \cup \{C_1 \lor P, C_2 \lor \neg P\} \cup \{C_1 \lor \neg P\})\]

where \(P\) is strictly maximal in \(C_1 \lor P\) and \(\neg P\) is maximal in \(C_2 \lor \neg P\)

Factoring

\[(N \uplus \{C \lor P \lor P\}) \implies (N \cup \{C \lor P \lor P\} \cup \{C \lor P\})\]

where \(P\) is maximal in \(C \lor P \lor P\)

examples for specific redundancy rules are

Subsumption

\[(N \uplus \{C_1, C_2\}) \implies (N \cup \{C_1\})\]

provided \(C_1 \subseteq C_2\)

Tautology

\[(N \uplus \{C \lor P \lor \neg P\}) \implies (N)\]

Deletion

\[(N \uplus \{C \lor P \lor \neg P\}) \implies (N)\]

Subsumption

\[(N \uplus \{C_1 \lor L, C_2 \lor \neg L\}) \implies (N \cup \{C_1 \lor L, C_2\})\]

where \(C_1 \subseteq C_2\)

Theorem 2.12 If from a clause set \(N\) all possible superposition inferences are redundant and \(\bot \notin N\) then \(N\) is satisfiable and \(N_T \models N\).