Step 4: Apply steps 2, 3, 4, 5 of $\Rightarrow_{\text{ECNF}}$

Remark: The $\Rightarrow_{\text{OCNF}}$ algorithm is already close to a state of the art algorithm. Missing are further redundancy tests and simplification mechanisms we will discuss later on in this section.

2.5 Superposition for $PROP(\Sigma)$

Superposition for $PROP(\Sigma)$ is:

- resolution (Robinson 1965) +
- ordering restrictions (Bachmair & Ganzinger 1990) +
- abstract redundancy critrion (B&G 1990) +
- partial model construction (B & G 1990) +
- partial-model based inference restriction (Weidenbach)

Resolution for $PROP(\Sigma)$

A calculus is a set of inference and reduction rules for a given logic (here $PROP(\Sigma)$).

We only consider calculi operating on a set of clauses N. Inference rules add new clauses to N whereas reduction rules remove clauses from N or replace clauses by "simpler" ones.

We are only interested in unsatisfiability, i.e., the considered calculi test whether a clause set N is unsatisfiable. So, in order to check validity of a formula ϕ we check unsatisfiability of the clauses generated from $\neg \phi$.

For clauses we switch between the notation as a disjunction, e.g., $P \lor Q \lor P \lor \neg R$, and the notation as a multiset, e.g., $\{P, Q, P, \neg R\}$. This makes no difference as we consider \lor in the context of clauses always modulo AC. Note that \bot , the empty disjunction, corresponds to \emptyset , the empty multiset.

For literals we write L, possibly with subscript. If L = P then $\overline{L} = \neg P$ and if $L = \neg P$ then $\overline{L} = P$, so the bar flips the negation of a literal.

Clauses are typically denoted by letters C, D, possibly with subscript.

The resolution calculus consists of the inference rules resolution and factoring:

$$\mathcal{I} \underbrace{\begin{array}{c} \text{Resolution} \\ \mathcal{I} \underbrace{\begin{array}{c} C_1 \lor P & C_2 \lor \neg P \\ \hline C_1 \lor C_2 \end{array}}_{C_1 \lor C_2} \quad \mathcal{I} \underbrace{\begin{array}{c} C \lor L \lor L \\ \hline C \lor L \end{array}}_{C \lor L}$$

where C_1 , C_2 , C always stand for clauses, all inference/reduction rules are applied with respect to AC of \lor . Given a clause set N the schema above the inference bar is mapped to N and the resulting clauses below the bar are then *added* to N.

and the reduction rules subsumption and tautology deletion:

Subsumption Tautology Deletion

$$\mathcal{R} \underbrace{\begin{array}{c} C_1 & C_2 \\ \hline C_1 \end{array}}_{C_1} \qquad \mathcal{R} \underbrace{\begin{array}{c} C \lor P \lor \neg P \end{array}}_{C}$$

where for subsumption we assume $C_1 \subseteq C_2$. Given a clause set N the schema above the reduction bar is mapped to N and the resulting clauses below the bar replace the clauses above the bar in N.

Clauses that can be removed are called *redundant*.

So, if we consider clause sets N as states, \forall is disjoint union, we get the rules

Resolution $(N \uplus \{C_1 \lor P, C_2 \lor \neg P\}) \Rightarrow (N \cup \{C_1 \lor P, C_2 \lor \neg P\} \cup \{C_1 \lor C_2\})$

Factoring $(N \uplus \{C \lor L \lor L\}) \Rightarrow (N \cup \{C \lor L \lor L\} \cup \{C \lor L\})$

Subsumption $(N \uplus \{C_1, C_2\}) \Rightarrow (N \cup \{C_1\})$

provided $C_1 \subseteq C_2$

Tautology $(N \uplus \{C \lor P \lor \neg P\}) \Rightarrow (N)$ Deletion

We need more structure than just (N) in order to define a useful rewrite system. We fix this later on.

Theorem 2.11 The resolution calculus is sound and complete: N is unsatisfiable iff $N \Rightarrow^{*} \{\bot\}$

Proof. Will be a consequence of soundness and completeness of superposition. \Box

Ordering restrictions

Let \prec be a total ordering on Σ .

We lift \prec to a total ordering on literals by $\prec \subseteq \prec_L$ and $P \prec_L \neg P$ and $\neg P \prec_L Q$ for all $P \prec Q$.

We further lift \prec_L to a total ordering on clauses \prec_C by considering the multiset extension of \prec_L for clauses.

Eventually, we overload \prec with \prec_L and \prec_C .

We define $N^{\prec C} = \{ D \in N \mid D \prec C \}.$

Eventually we will restrict inferences to maximal literals with respect to \prec .

Abstract Redundancy

A clause C is redundant with respect to a clause set N if $N^{\prec C} \models C$.

Tautologies are redundant. Subsumed clauses are redundant if \subseteq is strict.

Remark: Note that for finite $N, N^{\prec C} \models C$ can be decided for $PROP(\Sigma)$ but is as hard as testing unsatisfiability for a clause set N.

Partial Model Construction

Given a clause set N and an ordering \prec we can construct a (partial) model $N_{\mathcal{I}}$ for N as follows:

 $N_C := \bigcup_{D \prec C} \delta_D$

 $\delta_D := \begin{cases} \{P\} & \text{if } D = D' \lor P \text{ and } P \text{ maximal and } N_D \not\models D \\ \emptyset & \text{otherwise} \end{cases}$

 $N_{\mathcal{I}} := \bigcup_{C \in N} \delta_C$

Superposition

The superposition calculus consists of the inference rules superposition left and factoring:

Superposition Left $C_2 \lor \neg P \rbrace \Rightarrow (N \cup \{C_1 \lor P, C_2 \lor \neg P\} \cup \{C_1 \lor P, C_2 \lor P\} \cup \{C_1 \lor P\} \lor P\} \cup \{C_1 \lor P\} \lor \{C_1 \lor P\} \lor \{C_1 \lor P\} \lor P\} \cup \{C_1 \lor P\} \lor \{C_1 \lor P\} \lor P\} \lor \{C_1 \lor P\} \lor \{C_1 \lor P\} \lor P\} \lor \{C_1 \lor P\} \lor P\} \lor \{C_1 \lor P\} \lor \{C_1$

where P is strictly maximal in $C_1 \vee P$ and $\neg P$ is maximal in $C_2 \vee \neg P$

Factoring $(N \uplus \{C \lor P \lor P\}) \Rightarrow (N \cup \{C \lor P \lor P\} \cup \{C \lor P\})$

where P is maximal in $C \lor P \lor P$

examples for specific redundancy rules are

Subsumption $(N \uplus \{C_1, C_2\}) \Rightarrow (N \cup \{C_1\})$

provided $C_1 \subset C_2$

 $\begin{array}{lll} \textbf{Tautology} & & (N \uplus \{ C \lor P \lor \neg P \}) & \Rightarrow & (N) \\ \textbf{Deletion} & & \end{array}$

Subsumption Resolution $(N \uplus \{C_1 \lor L, C_2 \lor \overline{L}\}) \Rightarrow (N \cup \{C_1 \lor L, C_2\})$ where $C_1 \subseteq C_2$

Theorem 2.12 If from a clause set N all possible superposition inferences are redundant and $\perp \notin N$ then N is satisfiable and $N_{\mathcal{I}} \models N$.