Ordering restrictions

Let < be a total ordering on 3.

We lift < to a total ordering on literals by <C<y and P <; =P and —-P < @ for all
P=<Q.

We further lift <, to a total ordering on clauses < by considering the multiset extension
of <1, for clauses.

Eventually, we overload < with < and <¢.
We define N*¢ ={D e N|D < C}.

Eventually we will restrict inferences to maximal literals with respect to <.

Abstract Redundancy

A clause C' is redundant with respect to a clause set N if N=¢ |= C.
Tautologies are redundant. Subsumed clauses are redundant if C is strict.

Remark: Note that for finite N, N*¢ |= C' can be decided for PROP(X) but is as hard

as testing unsatisfiability for a clause set V.

Partial Model Construction

Given a clause set N and an ordering < we can construct a (partial) model Nz for N
as follows:

N¢ = UD-<C op

P {P} if D= D'V P, P strictly maximal and Np = D
D=1 0 otherwise

Nz = UCeN oc

Clauses C' with dc # () are called productive. Some properties of the partial model
construction.

Proposition 2.12 1. For every D with (C'V —~P) < D we have dp # {P}.
2. If(SCI{P} then NCU5C):C

3. If No |= D then for all C' with C < C'" we have N |= D and in particular
Nz = D.

32

Notation: N, N_<C, NI: NC

Please properly distinguish:
e N is a set of clauses intepreted as the conjunction of all clauses.
o N=Cis of set of clauses from N strictly smaller than C' with respect to <.

e N7, N¢ are sets of atoms, often called Herbrand Interpretations. N7 is the overall
(partial) model for N, whereas N¢ is generated from all clauses from N strictly
smaller than C'.

e Validity is defined by Nz |= P if P € Nz and Nz = =P if P ¢ Nz, accordingly for
Ne.

Superposition
The superposition calculus consists of the inference rules superposition left and factor-
ing:

Superposition Left
(NW{CyV P,CyvV—-P}) = (NU{C,V P, CyVv-PyU{C)VCy})

where P is strictly maximal in C V P and =P is maximal in C5 V =P

Factorin
(N&J{%VPVP}) = (Nu{CVvPVPIU{CVP})

where P is maximal in C'V PV P
examples for specific redundancy rules are

Subsumption
(NW{C1,Cy}) = (NU{Cy})

provided C7 C Cs

Tautology Deletion
(Nw{CVPV-P}) = (N)

Subsumption Resolution
(N H {Cl V L, CQ V L}) = (N U {Cl V L, CQ})

where C; C 0,

Theorem 2.13 If from a clause set N all possible superposition inferences are redun-
dant and L ¢ N then N is satisfiable and Nz |= N.

33

Proof. The proof is by contradiction. So assume if C' is any clause derived by super-
position left or factoring from N that C' is redundant, i.e., N*¢ = C. Furthermore,
we assume 1 ¢ N but Nz = N. Then there is a minimal, with respect to <, clause
Cy Vv L € N such that N7 £ C1 V L and L is a maximal literal in Cy V L. This clause
must exist because L ¢ N.

(i) note that because O V L is minimal it is not redundant. For otherwise, N<¢1VL =
CyV L and hence Nz = C; V L, a contradiction.

(ii) we distinguish the case wether L is a positive or negative literal. Firstly, let us
assume L is positive, i.e., L = P for some propositional variable P. Now if P is strictly
maximal in C; V P then actually d¢,vp = {P} and hence Nz |= C; V P, a contradiction.
So P is not strictly maximal. But then actually C; vV P has the form C| vV PV P and
by factoring we can derive C V P where (C] V P) < C;V PV P. Now C] V P is not
redundant (analogous to (i)), strictly smaller than C; V L, we have C] V P € N and
Nz }= C] Vv P, a contradiction against the choice of Cy V L.

Secondly, let us assume L is negative, i.e., L = =P for some propositional variable P.
Then, since Nz £ C; V =P we know P € Nz. So there is a clause Cy V P € N where
dcyvp = {P} and P is strictly maximal in Cy V P and (Cy vV P) < (Cy V =P). So by
superposition left we can derive C; V Cy where (Cy vV Cy) < (Cy V =P). The derived
clause C; V Cy cannot be redundant, because for otherwise either N=<¢2VF = CyV P or
N=OV=P = 0y v =P. So C; V Oy € N and Nz [~ Cy V Cy, a contradiction against the
choice of Cy Vv L.

O

So the proof actually tells us that at any point in time we need only to consider either
a superposition left inference between a minimal false clause and a productive clause or
a factoring inference on a minimal false clause.

A Superposition Theorem Prover ST P

3 clause sets:
N(ew) containing new inferred clauses
U(sable) containing reduced new inferred clauses
clauses get into W(orked) O(ff) once their inferences have been computed

Strategy:
Inferences will only be computed when there are no possibilities for simplification

34

Rewrite Rules for ST P
Tautology Deletion

(NW{C};U;WO) =gsrp (N;U;WO)
if C' is a tautology

Forward Subsumption
(NU{CHLU;WO) =srp (N;U;WO)

if some D € (U U WO) subsumes C
Backward Subsumption U

(NW{C}hUW{D};WO) =gsrp (NU{C}U;WO)
if C' strictly subsumes D (C' C D)

Backward Subsumption WO
(NW{C}hU;WOWwW{D}) =srp (NU{C}U;WO)

if C' strictly subsumes D (C' C D)
Forward Subsumption Resolution
(N@{Cl\/L};U; WO) = STP (NU{Cl};U; WO)
if there exists Cy V L € (UP UWO) such that Cy C C}
Backward Subsumption Resolution U
(NW{CLVLEUWY{CyV L} WO) =grp (NU{C,V L} UW{Cy};WO)
it C; C Oy

Backward Subsumption Resolution WO
(NU{CLVLEUWOW{CyVL}) =srp (NU{C,VL}UWOW{Csy})

it C7 C C%

Clause Processing
(NW{CHLU,WO) =gsrp (N;UU{C};WO)

Inference Computation
D; UW{C}H;,WO) =gsrp (N;U;WOU{C})

where N is the set of clauses derived by superposition inferences from C' and clauses in

Wo.

35

Soundness and Completeness

Theorem 2.14

NEL & (N:0:0) =%4p NU{LLU;WO)

Proof in L. Bachmair, H. Ganzinger: Resolution Theorem Proving appeared in the
Handbook of Automated Reasoning, 2001

Termination

Theorem 2.15 For finite N and a strategy where the reduction rules Tautology Dele-
tion, the two Subsumption and two Subsumption Resolution rules are always exhaus-
tively applied before Clause Processing and Inference Computation, the rewrite relation
=grp Is terminating on (N;0;0).

Proof: think of it (more later on).

Fairness

Problem:
If N is inconsistent, then (N;0;0) =%.p (N'U{L};U;WO).

Does this imply that every derivation starting from an inconsistent set N eventually
produces L7

No: a clause could be kept in U without ever being used for an inference.
We need in addition a fairness condition:

If an inference is possible forever (that is, none of its premises is ever deleted), then
it must be computed eventually.

One possible way to guarantee fairness: Implement U as a queue (there are other
techniques to guarantee fairness).

With this additional requirement, we get a stronger result: If N is inconsistent, then
every fair derivation will eventually produce L.

36

