
Ordering restrictions

Let ≺ be a total ordering on Σ.

We lift ≺ to a total ordering on literals by ≺⊆≺L and P ≺L ¬P and ¬P ≺L Q for all
P ≺ Q.

We further lift ≺L to a total ordering on clauses ≺C by considering the multiset extension
of ≺L for clauses.

Eventually, we overload ≺ with ≺L and ≺C .

We define N≺C = {D ∈ N | D ≺ C}.

Eventually we will restrict inferences to maximal literals with respect to ≺.

Abstract Redundancy

A clause C is redundant with respect to a clause set N if N≺C |= C.

Tautologies are redundant. Subsumed clauses are redundant if ⊆ is strict.

Remark: Note that for finite N , N≺C |= C can be decided for PROP(Σ) but is as hard
as testing unsatisfiability for a clause set N .

Partial Model Construction

Given a clause set N and an ordering ≺ we can construct a (partial) model NI for N
as follows:

NC :=
⋃

D≺C δD

δD :=

{
{P} if D = D′ ∨ P, P strictly maximal and ND 6|= D
∅ otherwise

NI :=
⋃

C∈N δC

Clauses C with δC 6= ∅ are called productive. Some properties of the partial model
construction.

Proposition 2.12 1. For every D with (C ∨ ¬P) ≺ D we have δD 6= {P}.

2. If δC = {P} then NC ∪ δC |= C.

3. If NC |= D then for all C ′ with C ≺ C ′ we have NC′ |= D and in particular
NI |= D.

32

Notation: N , N≺C, NI , NC

Please properly distinguish:

• N is a set of clauses intepreted as the conjunction of all clauses.

• N≺C is of set of clauses from N strictly smaller than C with respect to ≺.

• NI , NC are sets of atoms, often called Herbrand Interpretations. NI is the overall
(partial) model for N , whereas NC is generated from all clauses from N strictly
smaller than C.

• Validity is defined by NI |= P if P ∈ NI and NI |= ¬P if P 6∈ NI , accordingly for
NC .

Superposition

The superposition calculus consists of the inference rules superposition left and factor-
ing :

Superposition Left
(N ⊎ {C1 ∨ P,C2 ∨ ¬P}) ⇒ (N ∪ {C1 ∨ P,C2 ∨ ¬P} ∪ {C1 ∨ C2})

where P is strictly maximal in C1 ∨ P and ¬P is maximal in C2 ∨ ¬P

Factoring
(N ⊎ {C ∨ P ∨ P}) ⇒ (N ∪ {C ∨ P ∨ P} ∪ {C ∨ P})

where P is maximal in C ∨ P ∨ P

examples for specific redundancy rules are

Subsumption
(N ⊎ {C1, C2}) ⇒ (N ∪ {C1})

provided C1 ⊂ C2

Tautology Deletion
(N ⊎ {C ∨ P ∨ ¬P}) ⇒ (N)

Subsumption Resolution
(N ⊎ {C1 ∨ L,C2 ∨ L̄}) ⇒ (N ∪ {C1 ∨ L,C2})

where C1 ⊆ C2

Theorem 2.13 If from a clause set N all possible superposition inferences are redun-
dant and ⊥ /∈ N then N is satisfiable and NI |= N .

33

Proof. The proof is by contradiction. So assume if C is any clause derived by super-
position left or factoring from N that C is redundant, i.e., N≺C |= C. Furthermore,
we assume ⊥ /∈ N but NI 6|= N . Then there is a minimal, with respect to ≺, clause
C1 ∨ L ∈ N such that NI 6|= C1 ∨ L and L is a maximal literal in C1 ∨ L. This clause
must exist because ⊥ /∈ N .

(i) note that because C1 ∨ L is minimal it is not redundant. For otherwise, N≺C1∨L |=
C1 ∨ L and hence NI |= C1 ∨ L, a contradiction.

(ii) we distinguish the case wether L is a positive or negative literal. Firstly, let us
assume L is positive, i.e., L = P for some propositional variable P . Now if P is strictly
maximal in C1 ∨ P then actually δC1∨P = {P} and hence NI |= C1 ∨ P , a contradiction.
So P is not strictly maximal. But then actually C1 ∨ P has the form C ′

1 ∨ P ∨ P and
by factoring we can derive C ′

1 ∨ P where (C ′
1 ∨ P) ≺ C ′

1 ∨ P ∨ P . Now C ′
1 ∨ P is not

redundant (analogous to (i)), strictly smaller than C1 ∨ L, we have C ′
1 ∨ P ∈ N and

NI 6|= C ′
1 ∨ P , a contradiction against the choice of C1 ∨ L.

Secondly, let us assume L is negative, i.e., L = ¬P for some propositional variable P .
Then, since NI 6|= C1 ∨ ¬P we know P ∈ NI . So there is a clause C2 ∨ P ∈ N where
δC2∨P = {P} and P is strictly maximal in C2 ∨ P and (C2 ∨ P) ≺ (C1 ∨ ¬P). So by
superposition left we can derive C1 ∨ C2 where (C1 ∨ C2) ≺ (C1 ∨ ¬P). The derived
clause C1 ∨ C2 cannot be redundant, because for otherwise either N≺C2∨P |= C2 ∨ P or
N≺C1∨¬P |= C1 ∨ ¬P . So C1 ∨ C2 ∈ N and NI 6|= C1 ∨ C2, a contradiction against the
choice of C1 ∨ L.

2

So the proof actually tells us that at any point in time we need only to consider either
a superposition left inference between a minimal false clause and a productive clause or
a factoring inference on a minimal false clause.

A Superposition Theorem Prover STP

3 clause sets:
N(ew) containing new inferred clauses
U(sable) containing reduced new inferred clauses
clauses get into W(orked) O(ff) once their inferences have been computed

Strategy:
Inferences will only be computed when there are no possibilities for simplification

34

Rewrite Rules for STP

Tautology Deletion
(N ⊎ {C};U ;WO) ⇒STP (N ;U ;WO)

if C is a tautology

Forward Subsumption
(N ⊎ {C};U ;WO) ⇒STP (N ;U ;WO)

if some D ∈ (U ∪WO) subsumes C

Backward Subsumption U
(N ⊎ {C};U ⊎ {D};WO) ⇒STP (N ∪ {C};U ;WO)

if C strictly subsumes D (C ⊂ D)

Backward Subsumption WO
(N ⊎ {C};U ;WO ⊎ {D}) ⇒STP (N ∪ {C};U ;WO)

if C strictly subsumes D (C ⊂ D)

Forward Subsumption Resolution
(N ⊎ {C1 ∨ L};U ;WO) ⇒STP (N ∪ {C1};U ;WO)

if there exists C2 ∨ L̄ ∈ (UP ∪WO) such that C2 ⊆ C1

Backward Subsumption Resolution U
(N ⊎ {C1 ∨ L};U ⊎ {C2 ∨ L̄};WO) ⇒STP (N ∪ {C1 ∨ L};U ⊎ {C2};WO)

if C1 ⊆ C2

Backward Subsumption Resolution WO
(N ⊎ {C1 ∨ L};U ;WO ⊎ {C2 ∨ L̄}) ⇒STP (N ∪ {C1 ∨ L};U ;WO ⊎ {C2})

if C1 ⊆ C2

Clause Processing
(N ⊎ {C};U ;WO) ⇒STP (N ;U ∪ {C};WO)

Inference Computation
(∅;U ⊎ {C};WO) ⇒STP (N ;U ;WO ∪ {C})

where N is the set of clauses derived by superposition inferences from C and clauses in
WO.

35

Soundness and Completeness

Theorem 2.14

N |= ⊥ ⇔ (N ; ∅; ∅) ⇒∗
STP (N ′ ∪ {⊥};U ;WO)

Proof in L. Bachmair, H. Ganzinger: Resolution Theorem Proving appeared in the
Handbook of Automated Reasoning, 2001

Termination

Theorem 2.15 For finite N and a strategy where the reduction rules Tautology Dele-
tion, the two Subsumption and two Subsumption Resolution rules are always exhaus-
tively applied before Clause Processing and Inference Computation, the rewrite relation
⇒STP is terminating on (N ; ∅; ∅).

Proof: think of it (more later on).

Fairness

Problem:

If N is inconsistent, then (N ; ∅; ∅) ⇒∗
STP (N ′ ∪ {⊥};U ;WO) .

Does this imply that every derivation starting from an inconsistent set N eventually
produces ⊥ ?

No: a clause could be kept in U without ever being used for an inference.

We need in addition a fairness condition:

If an inference is possible forever (that is, none of its premises is ever deleted), then
it must be computed eventually.

One possible way to guarantee fairness: Implement U as a queue (there are other
techniques to guarantee fairness).

With this additional requirement, we get a stronger result: If N is inconsistent, then
every fair derivation will eventually produce ⊥.

36

