Ordering restrictions

Let \prec be a total ordering on Σ.

We lift \prec to a total ordering on literals by $\prec \subseteq \prec_L$ and $P \prec_L \neg P$ and $\neg P \prec_L Q$ for all $P \prec Q$.

We further lift \prec_L to a total ordering on clauses \prec_C by considering the multiset extension of \prec_L for clauses.

Eventually, we overload \prec with \prec_L and \prec_C.

We define $N^{<C} = \{ D \in N \mid D \prec C \}$.

Eventually we will restrict inferences to maximal literals with respect to \prec.

Abstract Redundancy

A clause C is redundant with respect to a clause set N if $N^{<C} \models C$.

Tautologies are redundant. Subsumed clauses are redundant if \subseteq is strict.

Remark: Note that for finite N, $N^{<C} \models C$ can be decided for $PROP(\Sigma)$ but is as hard as testing unsatisfiability for a clause set N.

Partial Model Construction

Given a clause set N and an ordering \prec we can construct a (partial) model N_I for N as follows:

$N_C := \bigcup_{D \prec C} \delta_D$

$\delta_D := \begin{cases}
\{ P \} & \text{if } D = D' \lor P, P \text{ strictly maximal and } N_D \not\models D \\
\emptyset & \text{otherwise}
\end{cases}$

$N_I := \bigcup_{C \in N} \delta_C$

Clauses C with $\delta_C \neq \emptyset$ are called productive. Some properties of the partial model construction.

Proposition 2.12

1. For every D with $(C \lor \neg P) \prec D$ we have $\delta_D \neq \{ P \}$.

2. If $\delta_C = \{ P \}$ then $N_C \cup \delta_C \models C$.

3. If $N_C \models D$ then for all C' with $C \prec C'$ we have $N_{C'} \models D$ and in particular $N_I \models D$.

32
Notation: N, $N^{<C}$, N_I, N_C

Please properly distinguish:

- N is a set of clauses interpreted as the conjunction of all clauses.
- $N^{<C}$ is of set of clauses from N strictly smaller than C with respect to \prec.
- N_I, N_C are sets of atoms, often called Herbrand Interpretations. N_I is the overall (partial) model for N, whereas N_C is generated from all clauses from N strictly smaller than C.
- Validity is defined by $N_I \models P$ if $P \in N_I$ and $N_I \models \neg P$ if $P \notin N_I$, accordingly for N_C.

Superposition

The superposition calculus consists of the inference rules superposition left and factoring:

Superposition Left

$$(N \uplus \{C_1 \lor P, C_2 \lor \neg P\}) \Rightarrow (N \cup \{C_1 \lor P, C_2 \lor \neg P\} \cup \{C_1 \lor C_2\})$$

where P is strictly maximal in $C_1 \lor P$ and $\neg P$ is maximal in $C_2 \lor \neg P$

Factoring

$$(N \uplus \{C \lor P \lor P\}) \Rightarrow (N \cup \{C \lor P \lor P\} \cup \{C \lor P\})$$

where P is maximal in $C \lor P \lor P$

examples for specific redundancy rules are

Subsumption

$$(N \uplus \{C_1, C_2\}) \Rightarrow (N \cup \{C_1\})$$

provided $C_1 \subset C_2$

Tautology Deletion

$$(N \uplus \{C \lor P \lor \neg P\}) \Rightarrow (N)$$

Subsumption Resolution

$$(N \uplus \{C_1 \lor L, C_2 \lor \neg L\}) \Rightarrow (N \cup \{C_1 \lor L, C_2\})$$

where $C_1 \subseteq C_2$

Theorem 2.13 If from a clause set N all possible superposition inferences are redundant and $\bot \notin N$ then N is satisfiable and $N_I \models N$.

33
The proof is by contradiction. So assume if \(C \) is any clause derived by superposition left or factoring from \(N \) that \(C \) is redundant, i.e., \(N^{\prec C} \models C \). Furthermore, we assume \(\bot \notin N \) but \(N \not\models C \). Then there is a minimal, with respect to \(\prec \), clause \(C_1 \lor L \in N \) such that \(N \not\models C_1 \lor L \) and \(L \) is a maximal literal in \(C_1 \lor L \). This clause must exist because \(\bot \notin N \).

(i) note that because \(C_1 \lor L \) is minimal it is not redundant. For otherwise, \(N^{\prec C_1 \lor L} \models C_1 \lor L \) and hence \(N \models C_1 \lor L \), a contradiction.

(ii) we distinguish the case whether \(L \) is a positive or negative literal. Firstly, let us assume \(L \) is positive, i.e., \(L = P \) for some propositional variable \(P \). Now if \(P \) is strictly maximal in \(C_1 \lor P \) then actually \(\delta_{C_1 \lor P} = \{ P \} \) and hence \(N \models C_1 \lor P \), a contradiction. So \(P \) is not strictly maximal. But then actually \(C_1 \lor P \) has the form \(C_1' \lor P \lor P \) and by factoring we can derive \(C_1' \lor P \) where \((C_1' \lor P) \prec (C_1' \lor P \lor P) \). Now \(C_1' \lor P \) is not redundant (analogous to (i)), strictly smaller than \(C_1 \lor L \), we have \(C_1' \lor P \in N \) and \(N \not\models C_1' \lor P \), a contradiction against the choice of \(C_1 \lor L \).

Secondly, let us assume \(L \) is negative, i.e., \(L = \neg P \) for some propositional variable \(P \). Then, since \(N \not\models C_1 \lor \neg P \) we know \(P \in N \). So there is a clause \(C_2 \lor P \in N \) where \(\delta_{C_2 \lor P} = \{ P \} \) and \(P \) is strictly maximal in \(C_2 \lor P \) and \((C_2 \lor P) \prec (C_1 \lor \neg P) \). So by superposition left we can derive \(C_1 \lor C_2 \) where \((C_1 \lor C_2) \prec (C_1 \lor \neg P) \). The derived clause \(C_1 \lor C_2 \) cannot be redundant, because for otherwise either \(N^{\prec C_2 \lor P} \models C_2 \lor P \) or \(N^{\prec C_1 \lor \neg P} \models C_1 \lor \neg P \). So \(C_1 \lor C_2 \in N \) and \(N \not\models C_1 \lor C_2 \), a contradiction against the choice of \(C_1 \lor L \).

\[\square \]

So the proof actually tells us that at any point in time we need only to consider either a superposition left inference between a minimal false clause and a productive clause or a factoring inference on a minimal false clause.

A Superposition Theorem Prover STP

3 clause sets:
- \(N(ew) \) containing new inferred clauses
- \(U(sable) \) containing reduced new inferred clauses
- clauses get into \(W(orked) \ O(ff) \) once their inferences have been computed

Strategy:
- Inferences will only be computed when there are no possibilities for simplification
Rewrite Rules for STP

Tautology Deletion
\((N \uplus \{C\};U;WO) \Rightarrow_{STP} (N;U;WO) \)
if \(C \) is a tautology

Forward Subsumption
\((N \uplus \{C\};U;WO) \Rightarrow_{STP} (N;U;WO) \)
if some \(D \in (U \cup WO) \) subsumes \(C \)

Backward Subsumption \(U \)
\((N \uplus \{C\};U \uplus \{D\};WO) \Rightarrow_{STP} (N \cup \{C\};U;WO) \)
if \(C \) strictly subsumes \(D \) (\(C \subset D \))

Backward Subsumption \(WO \)
\((N \uplus \{C\};U;WO \uplus \{D\}) \Rightarrow_{STP} (N \cup \{C\};U;WO) \)
if \(C \) strictly subsumes \(D \) (\(C \subset D \))

Forward Subsumption Resolution
\((N \uplus \{C_1 \lor L\};U;WO) \Rightarrow_{STP} (N \cup \{C_1\};U;WO) \)
if there exists \(C_2 \lor \bar{L} \in (UP \cup WO) \) such that \(C_2 \subseteq C_1 \)

Backward Subsumption Resolution \(U \)
\((N \uplus \{C_1 \lor L\};U \uplus \{C_2 \lor \bar{L}\};WO) \Rightarrow_{STP} (N \cup \{C_1 \lor L\};U \uplus \{C_2\};WO) \)
if \(C_1 \subseteq C_2 \)

Backward Subsumption Resolution \(WO \)
\((N \uplus \{C_1 \lor L\};U;WO \uplus \{C_2 \lor \bar{L}\}) \Rightarrow_{STP} (N \cup \{C_1 \lor L\};U;WO \uplus \{C_2\}) \)
if \(C_1 \subseteq C_2 \)

Clause Processing
\((N \uplus \{C\};U;WO) \Rightarrow_{STP} (N;U \uplus \{C\};WO) \)

Inference Computation
\((\emptyset;U \uplus \{C\};WO) \Rightarrow_{STP} (N;U;WO \uplus \{C\}) \)

where \(N \) is the set of clauses derived by superposition inferences from \(C \) and clauses in \(WO \).
Soundness and Completeness

Theorem 2.14

\[N \models \bot \iff (N; \emptyset; \emptyset) \Rightarrow^*_{STP} (N' \cup \{\bot\}; U; WO) \]

Termination

Theorem 2.15 For finite \(N \) and a strategy where the reduction rules Tautology Deletion, the two Subsumption and two Subsumption Resolution rules are always exhaustively applied before Clause Processing and Inference Computation, the rewrite relation \(\Rightarrow_{STP} \) is terminating on \((N; \emptyset; \emptyset) \).

Proof: think of it (more later on).

Fairness

Problem:

If \(N \) is inconsistent, then \((N; \emptyset; \emptyset) \Rightarrow^*_{STP} (N' \cup \{\bot\}; U; WO) \).

Does this imply that every derivation starting from an inconsistent set \(N \) eventually produces \(\bot \)?

No: a clause could be kept in \(U \) without ever being used for an inference.

We need in addition a fairness condition:

If an inference is possible forever (that is, none of its premises is ever deleted), then it must be computed eventually.

One possible way to guarantee fairness: Implement \(U \) as a queue (there are other techniques to guarantee fairness).

With this additional requirement, we get a stronger result: If \(N \) is inconsistent, then every fair derivation will eventually produce \(\bot \).