Example

The “Standard” Interpretation for Peano Arithmetic:

Us = {0,1,2,..}

Oy = 0

SN ne—n—+1

+n : (nym)—n+m

sy (n,m)—>nxm

<y = {(n,m) |n less than or equal to m }
<y = {(n,m)|n less than m }

Note that N is just one out of many possible X p s-interpretations.
Values over N for Sample Terms and Formulas:

Under the assignment 5 : x — 1,y — 3 we obtain

N(B)(s(z) + 5(0)) = 3
N(B)(z +y ~ s(y)) = 1
N@B)(Vz,y(z+y=y+x) = 1
N(B)(Vz z < y) = 0
N(B)(Vzdy z < y) =1

3.3 Models, Validity, and Satisfiability

¢ is valid in A under assignment (:

AfEé = AP)(o) =1

¢ is valid in A (A is a model of ¢):

AE¢ & ABEOQ forallfe X Uy
¢ is valid (or is a tautology):

¢ = AE¢, forall A X-Alg

¢ is called satisfiable iff there exist A and  such that A, 5 = ¢. Otherwise ¢ is called

unsatisfiable.
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Substitution Lemma

The following propositions, to be proved by structural induction, hold for all Y-algebras
A, assignments 3, and substitutions o.

Lemma 3.3 For any X-term t

A(B)(to) = A(Boo)(t),

where oo : X — A is the assignment (3 o o(z) = A(B)(z0).
Proposition 3.4 For any Y-formula ¢, A(5)(¢co) = A(B o o)(p).
Corollary 3.5 A, =¢0 < A fool¢

These theorems basically express that the syntactic concept of substitution corresponds
to the semantic concept of an assignment.

Entailment and Equivalence

¢ entails (implies) 1 (or ¢ is a consequence of ¢), written ¢ = 9, if for all A4 € 3-Alg
and f € X — Uy, whenever A, 5 |= ¢, then A, 5 = 1.

¢ and 1) are called equivalent, written ¢ H v, if for all A € ¥-Alg and € X — Uy we
have A, B¢ & A BE .

Proposition 3.6 ¢ entails v iff (¢ — 1) is valid
Proposition 3.7 ¢ and ¢ are equivalent iff (¢ <> 1) is valid.

Extension to sets of formulas N in the “natural way”, e.g., N |= ¢

&= forall A€ X-Algand f € X — Uy: if A, 8=, for all v € N, then A, 8 | ¢.
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Validity vs. Unsatisfiability

Validity and unsatisfiability are just two sides of the same medal as explained by the
following proposition.
Proposition 3.8 Let ¢ and v be formulas, let N be a set of formulas. Then
(i) ¢ is valid if and only if —¢ is unsatisfiable.
(ii)) ¢ =4 if and only if ¢ N —) is unsatisfiable.
(iii) N = if and only if N U {—} is unsatisfiable.

Hence in order to design a theorem prover (validity checker) it is sufficient to design a
checker for unsatisfiability.

Theory of a Structure

Let A € ¥-Alg. The (first-order) theory of A is defined as
Th(A)={¢ eFs(X) | ARV}

Problem of axiomatizability:

For which structures A can one axiomatize Th(.A), that is, can one write down a formula
¢ (or a recursively enumerable set ¢ of formulas) such that

Th(A) ={v[oF=v}?

Analogously for sets of structures.

Two Interesting Theories

Let Xpres = ({0/0,5/1,+/2}, 0) and Z, = (Z,0, s, +) its standard interpretation on the
integers. Th(Z.) is called Presburger arithmetic (M. Presburger, 1929). (There is no
essential difference when one, instead of Z, considers the natural numbers N as standard
interpretation.)

Presburger arithmetic is decidable in 3EXPTIME (D. Oppen, JCSS, 16(3):323-332,
1978), and in 2EXPSPACE, using automata-theoretic methods (and there is a constant
¢ > 0 such that Th(Z,) € NTIME(2%™")).

However, N, = (N, 0, s, +, %), the standard interpretation of ¥p4 = ({0/0, s/1,+/2,%/2},0),
has as theory the so-called Peano arithmetic which is undecidable, not even recursively
enumerable.

Note: The choice of signature can make a big difference with regard to the computational
complexity of theories.
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3.4 Algorithmic Problems

Validity(¢): = ¢ ?

Satisfiability(¢): ¢ satisfiable?

Entailment(¢,1)): does ¢ entail 17

Model(A,¢): A = ¢?

Solve(A,¢): find an assignment [ such that A, 5 | ¢.
Solve(¢): find a substitution o such that = ¢o.

Abduce(¢): find ¢ with “certain properties” such that ¢ = ¢.

Godel’s Famous Theorems
1. For most signatures 3, validity is undecidable for ¥-formulas. (Later by Turing:
Encode Turing machines as >-formulas.)

2. For each signature X, the set of valid ¥-formulas is recursively enumerable. (We
will prove this by giving complete deduction systems.)

3. For ¥ = ¥ps and N, = (N,0, s, +, *), the theory Th(N,) is not recursively enu-
merable.

These complexity results motivate the study of subclasses of formulas (fragments) of
first-order logic

Q: Can you think of any fragments of first-order logic for which validity is decidable?

Some Decidable Fragments

Some decidable fragments:

e Monadic class: no function symbols, all predicates unary; validity is NEXPTIME-
complete.

e Variable-free formulas without equality: satisfiability is NP-complete. (why?)

e Variable-free Horn clauses (clauses with at most one positive atom): entailment is
decidable in linear time.

e Finite model checking is decidable in time polynomial in the size of the structure
and the formula.
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Plan

Lift superposition from propositional logic to first-order logic.

3.5 Normal Forms and Skolemization

Study of normal forms motivated by
e reduction of logical concepts,
e efficient data structures for theorem proving,
e satisfiability preserving transformations (renaming),
e Skolem’s and Herbrand’s theorem.

The main problem in first-order logic is the treatment of quantifiers. The subsequent
normal form transformations are intended to eliminate many of them.

Prenex Normal Form (Traditional)

Prenex formulas have the form

lel s ann ¢7

where ¢ is quantifier-free and Q; € {V,3}; we call Q1z;...Q,x, the quantifier prefix
and ¢ the matrix of the formula.

Computing prenex normal form by the rewrite system = p:

(660) =p (G- ) AW —0)
—Qrg =p Q¢ (—Q)
(Qzo) pv) =p Qylo{z =y} pv), pe{nV}
((Quo) =) =p Qu(d{z =y} — ),
(¢ p (Qry)) =p Qu(dpP{z—y}), pe{AV, =}

Here y is always assumed to be some fresh variable and @ denotes the quantifier dual

to Q,i.e.,V=Fand I=V.
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Skolemization
Intuition: replacement of dy by a concrete choice function computing y from all the
arguments y depends on.

Transformation =g (to be applied outermost, not in subformulas):

Ve, ...,y o =g Yoy, ...,z 0{y— f(x1,...,2,)}

where f/n is a new function symbol (Skolem function).

Together: ¢ =, v =% X
~~

prenex prenex, no 3

Theorem 3.9 Let ¢, ¢, and x as defined above and closed. Then
(i) ¢ and 1 are equivalent.

(ii) x | v but the converse is not true in general.

(iii) v satisfiable (¥-Alg) < x satisfiable (¥'-Alg) where ¥/ = (Q U SKF,1I), if
¥ = (Q,1I).

The Complete Picture

o =p Q... Quynt) (¢ quantifier-free)
=% Vo, ..., T X (m < n, x quantifier-free)
k n;
=0cNF VTL, ..., Ty /\ L;;
leave out ! &/_,
clauses C;
N (}7 D

N ={C,...,Cy} is called the clausal (normal) form (CNF) of ¢.

Note: the variables in the clauses are implicitly universally quantified.
Theorem 3.10 Let ¢ be closed. Then ¢' = ¢. (The converse is not true in general.)

Theorem 3.11 Let ¢ be closed. Then ¢ is satisfiable iff ¢’ is satisfiable iff N is satisfiable
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Optimization
The normal form algorithm described so far leaves lots of room for optimization. Note
that we only can preserve satisfiability anyway due to Skolemization.

e size of the CNF is exponential when done naively; the transformations we intro-
duced already for propositional logic avoid this exponential growth;

e we want to preserve the original formula structure;

e we want small arity of Skolem functions (see next section).
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3.6 Getting Small Skolem Functions

A clause set that is better suited for automated theorem proving can be obtained using
the following steps:

e produce a negation normal form (NNF)
e apply miniscoping
e rename all variables

e skolemize

Negation Normal Form (NNF)

Apply the rewrite system =-ynF:

Pl <> o]y =nnr O[(Y1 = Ya) A (V2 = )]y

if pol(¢,p) = 1 or pol(¢,p) =0

Pl <> ]y =NnE O[(Y1 Aa) V (P2 A =)

if pol(¢,p) = —1

“Qr¢ =nnyg Qr o
“(6VY) =xnp "GN
“(pAY) =xwp OV

=Y =N QVY

Qg =NNF O

Miniscoping

Apply the rewrite relation =-\is. For the rules below we assume that = occurs freely in
1, x, but  does not occur freely in ¢:

Qr(YNo) =ms (QrY)A¢
Qr(¥Ve) =ws (Qui)Vo
Ve (B AY) =ws (F2v) A (Vo)
w(HVY) v (Grg) v (3oy)
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Variable Renaming

Rename all variables in ¢ such that there are no two different positions p, ¢ with ¢|, =

Q¢ and ¢l = Q'w x.

Standard Skolemization

Apply the rewrite rule:

oErdl, =sk oz = flyr, - )ty

where p has minimal length,
{y1,...,yn} are the free variables in Jx v,
f/n is a new function symbol to ¢

3.7 Herbrand Interpretations

From now on we shall consider FOL without equality. We assume that €} contains at
least one constant symbol.

A Herbrand interpretation (over X) is a Y-algebra A such that

o U,y =Ty (= the set of ground terms over X)
o fui(s1,.ooySn) = f(s1,...,80), f/nEQ

In other words, values are fixed to be ground terms and functions are fixed to be the term
constructors. Only predicate symbols P/m € Il may be freely interpreted as relations
Py C TR,

Proposition 3.12 Every set of ground atoms I uniquely determines a Herbrand inter-
pretation A via

($1,...,8,) €E Py &= P(s1,...,8,) €1
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