
Example

The “Standard” Interpretation for Peano Arithmetic:

UN = {0, 1, 2, . . .}

0N = 0

sN : n 7→ n+ 1

+N : (n,m) 7→ n+m

∗N : (n,m) 7→ n ∗m

≤N = { (n,m) | n less than or equal to m }

<N = { (n,m) | n less than m }

Note that N is just one out of many possible ΣPA-interpretations.

Values over N for Sample Terms and Formulas:

Under the assignment β : x 7→ 1, y 7→ 3 we obtain

N(β)(s(x) + s(0)) = 3
N(β)(x+ y ≈ s(y)) = 1
N(β)(∀x, y(x+ y ≈ y + x)) = 1
N(β)(∀z z ≤ y) = 0
N(β)(∀x∃y x < y) = 1

3.3 Models, Validity, and Satisfiability

φ is valid in A under assignment β:

A, β |= φ :⇔ A(β)(φ) = 1

φ is valid in A (A is a model of φ):

A |= φ :⇔ A, β |= φ, for all β ∈ X → UA

φ is valid (or is a tautology):

|= φ :⇔ A |= φ, for all A ∈ Σ-Alg

φ is called satisfiable iff there exist A and β such that A, β |= φ. Otherwise φ is called
unsatisfiable.

57



Substitution Lemma

The following propositions, to be proved by structural induction, hold for all Σ-algebras
A, assignments β, and substitutions σ.

Lemma 3.3 For any Σ-term t

A(β)(tσ) = A(β ◦ σ)(t),

where β ◦ σ : X → A is the assignment β ◦ σ(x) = A(β)(xσ).

Proposition 3.4 For any Σ-formula φ, A(β)(φσ) = A(β ◦ σ)(φ).

Corollary 3.5 A, β |= φσ ⇔ A, β ◦ σ |= φ

These theorems basically express that the syntactic concept of substitution corresponds
to the semantic concept of an assignment.

Entailment and Equivalence

φ entails (implies) ψ (or ψ is a consequence of φ), written φ |= ψ, if for all A ∈ Σ-Alg
and β ∈ X → UA, whenever A, β |= φ, then A, β |= ψ.

φ and ψ are called equivalent, written φ |=| ψ, if for all A ∈ Σ-Alg and β ∈ X → UA we
have A, β |= φ ⇔ A, β |= ψ.

Proposition 3.6 φ entails ψ iff (φ→ ψ) is valid

Proposition 3.7 φ and ψ are equivalent iff (φ↔ ψ) is valid.

Extension to sets of formulas N in the “natural way”, e. g., N |= φ

:⇔ for all A ∈ Σ-Alg and β ∈ X → UA: if A, β |= ψ, for all ψ ∈ N , then A, β |= φ.
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Validity vs. Unsatisfiability

Validity and unsatisfiability are just two sides of the same medal as explained by the
following proposition.

Proposition 3.8 Let φ and ψ be formulas, let N be a set of formulas. Then

(i) φ is valid if and only if ¬φ is unsatisfiable.

(ii) φ |= ψ if and only if φ ∧ ¬ψ is unsatisfiable.

(iii) N |= ψ if and only if N ∪ {¬ψ} is unsatisfiable.

Hence in order to design a theorem prover (validity checker) it is sufficient to design a
checker for unsatisfiability.

Theory of a Structure

Let A ∈ Σ-Alg. The (first-order) theory of A is defined as

Th(A) = {ψ ∈ FΣ(X) | A |= ψ }

Problem of axiomatizability:

For which structures A can one axiomatize Th(A), that is, can one write down a formula
φ (or a recursively enumerable set φ of formulas) such that

Th(A) = {ψ | φ |= ψ }?

Analogously for sets of structures.

Two Interesting Theories

Let ΣPres = ({0/0, s/1,+/2}, ∅) and Z+ = (Z, 0, s,+) its standard interpretation on the
integers. Th(Z+) is called Presburger arithmetic (M. Presburger, 1929). (There is no
essential difference when one, instead of Z, considers the natural numbers N as standard
interpretation.)

Presburger arithmetic is decidable in 3EXPTIME (D. Oppen, JCSS, 16(3):323–332,
1978), and in 2EXPSPACE, using automata-theoretic methods (and there is a constant
c ≥ 0 such that Th(Z+) 6∈ NTIME(22

cn

)).

However, N∗ = (N, 0, s,+, ∗), the standard interpretation of ΣPA = ({0/0, s/1,+/2, ∗/2}, ∅),
has as theory the so-called Peano arithmetic which is undecidable, not even recursively
enumerable.

Note: The choice of signature can make a big difference with regard to the computational
complexity of theories.
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3.4 Algorithmic Problems

Validity(φ): |= φ ?

Satisfiability(φ): φ satisfiable?

Entailment(φ,ψ): does φ entail ψ?

Model(A,φ): A |= φ?

Solve(A,φ): find an assignment β such that A, β |= φ.

Solve(φ): find a substitution σ such that |= φσ.

Abduce(φ): find ψ with “certain properties” such that ψ |= φ.

Gödel’s Famous Theorems

1. For most signatures Σ, validity is undecidable for Σ-formulas. (Later by Turing:
Encode Turing machines as Σ-formulas.)

2. For each signature Σ, the set of valid Σ-formulas is recursively enumerable. (We
will prove this by giving complete deduction systems.)

3. For Σ = ΣPA and N∗ = (N, 0, s,+, ∗), the theory Th(N∗) is not recursively enu-
merable.

These complexity results motivate the study of subclasses of formulas (fragments) of
first-order logic

Q: Can you think of any fragments of first-order logic for which validity is decidable?

Some Decidable Fragments

Some decidable fragments:

• Monadic class: no function symbols, all predicates unary; validity is NEXPTIME-
complete.

• Variable-free formulas without equality: satisfiability is NP-complete. (why?)

• Variable-free Horn clauses (clauses with at most one positive atom): entailment is
decidable in linear time.

• Finite model checking is decidable in time polynomial in the size of the structure
and the formula.
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Plan

Lift superposition from propositional logic to first-order logic.

3.5 Normal Forms and Skolemization

Study of normal forms motivated by

• reduction of logical concepts,

• efficient data structures for theorem proving,

• satisfiability preserving transformations (renaming),

• Skolem’s and Herbrand’s theorem.

The main problem in first-order logic is the treatment of quantifiers. The subsequent
normal form transformations are intended to eliminate many of them.

Prenex Normal Form (Traditional)

Prenex formulas have the form

Q1x1 . . . Qnxn φ,

where φ is quantifier-free and Qi ∈ {∀, ∃}; we call Q1x1 . . . Qnxn the quantifier prefix
and φ the matrix of the formula.

Computing prenex normal form by the rewrite system ⇒P :

(φ↔ ψ) ⇒P (φ→ ψ) ∧ (ψ → φ)
¬Qxφ ⇒P Qx¬φ (¬Q)

((Qxφ) ρ ψ) ⇒P Qy(φ{x 7→ y} ρ ψ), ρ ∈ {∧,∨}
((Qxφ)→ ψ) ⇒P Qy(φ{x 7→ y} → ψ),
(φ ρ (Qxψ)) ⇒P Qy(φ ρ ψ{x 7→ y}), ρ ∈ {∧,∨,→}

Here y is always assumed to be some fresh variable and Q denotes the quantifier dual
to Q, i. e., ∀ = ∃ and ∃ = ∀.
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Skolemization

Intuition: replacement of ∃y by a concrete choice function computing y from all the
arguments y depends on.

Transformation ⇒S (to be applied outermost, not in subformulas):

∀x1, . . . , xn∃y φ ⇒S ∀x1, . . . , xn φ{y 7→ f(x1, . . . , xn)}

where f/n is a new function symbol (Skolem function).

Together: φ⇒∗
P ψ︸︷︷︸
prenex

⇒∗
S χ︸︷︷︸
prenex, no ∃

Theorem 3.9 Let φ, ψ, and χ as defined above and closed. Then

(i) φ and ψ are equivalent.

(ii) χ |= ψ but the converse is not true in general.

(iii) ψ satisfiable (Σ-Alg) ⇔ χ satisfiable (Σ′-Alg) where Σ′ = (Ω ∪ SKF,Π), if
Σ = (Ω,Π).

The Complete Picture

φ ⇒∗
P Q1y1 . . . Qnyn ψ (ψ quantifier-free)

⇒∗
S ∀x1, . . . , xm χ (m ≤ n, χ quantifier-free)

⇒∗
OCNF ∀x1, . . . , xm︸ ︷︷ ︸

leave out

k∧

i=1

ni∨

j=1

Lij

︸ ︷︷ ︸
clauses Ci︸ ︷︷ ︸

φ′

N = {C1, . . . , Ck} is called the clausal (normal) form (CNF) of φ.
Note: the variables in the clauses are implicitly universally quantified.

Theorem 3.10 Let φ be closed. Then φ′ |= φ. (The converse is not true in general.)

Theorem 3.11 Let φ be closed. Then φ is satisfiable iff φ′ is satisfiable iffN is satisfiable
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Optimization

The normal form algorithm described so far leaves lots of room for optimization. Note
that we only can preserve satisfiability anyway due to Skolemization.

• size of the CNF is exponential when done naively; the transformations we intro-
duced already for propositional logic avoid this exponential growth;

• we want to preserve the original formula structure;

• we want small arity of Skolem functions (see next section).
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3.6 Getting Small Skolem Functions

A clause set that is better suited for automated theorem proving can be obtained using
the following steps:

• produce a negation normal form (NNF)

• apply miniscoping

• rename all variables

• skolemize

Negation Normal Form (NNF)

Apply the rewrite system ⇒NNF:

φ[ψ1 ↔ ψ2]p ⇒NNF φ[(ψ1 → ψ2) ∧ (ψ2 → ψ1)]p

if pol(φ, p) = 1 or pol(φ, p) = 0

φ[ψ1 ↔ ψ2]p ⇒NNF φ[(ψ1 ∧ ψ2) ∨ (¬ψ2 ∧ ¬ψ1)]p

if pol(φ, p) = −1

¬Qxφ ⇒NNF Qx¬φ
¬(φ ∨ ψ) ⇒NNF ¬φ ∧ ¬ψ
¬(φ ∧ ψ) ⇒NNF ¬φ ∨ ¬ψ
φ→ ψ ⇒NNF ¬φ ∨ ψ
¬¬φ ⇒NNF φ

Miniscoping

Apply the rewrite relation ⇒MS. For the rules below we assume that x occurs freely in
ψ, χ, but x does not occur freely in φ:

Qx (ψ ∧ φ) ⇒MS (Qxψ) ∧ φ
Qx (ψ ∨ φ) ⇒MS (Qxψ) ∨ φ
∀x (ψ ∧ χ) ⇒MS (∀xψ) ∧ (∀xχ)
∃x (ψ ∨ χ) ⇒MS (∃xψ) ∨ (∃xχ)
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Variable Renaming

Rename all variables in φ such that there are no two different positions p, q with φ|p =
Qxψ and φ|q = Q′xχ.

Standard Skolemization

Apply the rewrite rule:

φ[∃xψ]p ⇒SK φ[ψ{x 7→ f(y1, . . . , yn)}]p
where p has minimal length,
{y1, . . . , yn} are the free variables in ∃xψ,
f/n is a new function symbol to φ

3.7 Herbrand Interpretations

From now on we shall consider FOL without equality. We assume that Ω contains at
least one constant symbol.

A Herbrand interpretation (over Σ) is a Σ-algebra A such that

• UA = TΣ (= the set of ground terms over Σ)

• fA : (s1, . . . , sn) 7→ f(s1, . . . , sn), f/n ∈ Ω

f
fA(△, . . . ,△) =

△ . . . △

In other words, values are fixed to be ground terms and functions are fixed to be the term
constructors. Only predicate symbols P/m ∈ Π may be freely interpreted as relations
PA ⊆ Tm

Σ .

Proposition 3.12 Every set of ground atoms I uniquely determines a Herbrand inter-
pretation A via

(s1, . . . , sn) ∈ PA :⇔ P (s1, . . . , sn) ∈ I
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