Example

The "Standard" Interpretation for Peano Arithmetic:

 $U_{\mathbb{N}} = \{0, 1, 2, ...\} \\ 0_{\mathbb{N}} = 0 \\ s_{\mathbb{N}} : n \mapsto n+1 \\ +_{\mathbb{N}} : (n, m) \mapsto n+m \\ *_{\mathbb{N}} : (n, m) \mapsto n * m \\ \leq_{\mathbb{N}} = \{(n, m) \mid n \text{ less than or equal to } m \} \\ <_{\mathbb{N}} = \{(n, m) \mid n \text{ less than } m \}$

Note that \mathbb{N} is just one out of many possible Σ_{PA} -interpretations.

Values over $\mathbb N$ for Sample Terms and Formulas:

Under the assignment $\beta: x \mapsto 1, y \mapsto 3$ we obtain

$$\begin{split} \mathbb{N}(\beta)(s(x) + s(0)) &= 3\\ \mathbb{N}(\beta)(x + y \approx s(y)) &= 1\\ \mathbb{N}(\beta)(\forall x, y(x + y \approx y + x)) &= 1\\ \mathbb{N}(\beta)(\forall z \ z \leq y) &= 0\\ \mathbb{N}(\beta)(\forall x \exists y \ x < y) &= 1 \end{split}$$

3.3 Models, Validity, and Satisfiability

 ϕ is valid in \mathcal{A} under assignment β :

 $\mathcal{A}, \beta \models \phi : \Leftrightarrow \mathcal{A}(\beta)(\phi) = 1$

 ϕ is valid in \mathcal{A} (\mathcal{A} is a model of ϕ):

$$\mathcal{A} \models \phi : \Leftrightarrow \mathcal{A}, \beta \models \phi, \text{ for all } \beta \in X \to U_{\mathcal{A}}$$

 ϕ is valid (or is a tautology):

 $\models \phi \quad :\Leftrightarrow \quad \mathcal{A} \models \phi, \text{ for all } \mathcal{A} \in \Sigma\text{-Alg}$

 ϕ is called *satisfiable* iff there exist \mathcal{A} and β such that $\mathcal{A}, \beta \models \phi$. Otherwise ϕ is called *unsatisfiable*.

Substitution Lemma

The following propositions, to be proved by structural induction, hold for all Σ -algebras \mathcal{A} , assignments β , and substitutions σ .

Lemma 3.3 For any Σ -term t

 $\mathcal{A}(\beta)(t\sigma) = \mathcal{A}(\beta \circ \sigma)(t),$

where $\beta \circ \sigma : X \to \mathcal{A}$ is the assignment $\beta \circ \sigma(x) = \mathcal{A}(\beta)(x\sigma)$.

Proposition 3.4 For any Σ -formula ϕ , $\mathcal{A}(\beta)(\phi\sigma) = \mathcal{A}(\beta \circ \sigma)(\phi)$.

Corollary 3.5 $\mathcal{A}, \beta \models \phi \sigma \iff \mathcal{A}, \beta \circ \sigma \models \phi$

These theorems basically express that the syntactic concept of substitution corresponds to the semantic concept of an assignment.

Entailment and Equivalence

 ϕ entails (implies) ψ (or ψ is a consequence of ϕ), written $\phi \models \psi$, if for all $\mathcal{A} \in \Sigma$ -Alg and $\beta \in X \to U_{\mathcal{A}}$, whenever $\mathcal{A}, \beta \models \phi$, then $\mathcal{A}, \beta \models \psi$.

 ϕ and ψ are called *equivalent*, written $\phi \models \psi$, if for all $\mathcal{A} \in \Sigma$ -Alg and $\beta \in X \to U_{\mathcal{A}}$ we have $\mathcal{A}, \beta \models \phi \iff \mathcal{A}, \beta \models \psi$.

Proposition 3.6 ϕ entails ψ iff $(\phi \rightarrow \psi)$ is valid

Proposition 3.7 ϕ and ψ are equivalent iff ($\phi \leftrightarrow \psi$) is valid.

Extension to sets of formulas N in the "natural way", e.g., $N \models \phi$: \Leftrightarrow for all $\mathcal{A} \in \Sigma$ -Alg and $\beta \in X \to U_{\mathcal{A}}$: if $\mathcal{A}, \beta \models \psi$, for all $\psi \in N$, then $\mathcal{A}, \beta \models \phi$.

Validity vs. Unsatisfiability

Validity and unsatisfiability are just two sides of the same medal as explained by the following proposition.

Proposition 3.8 Let ϕ and ψ be formulas, let N be a set of formulas. Then

- (i) ϕ is valid if and only if $\neg \phi$ is unsatisfiable.
- (ii) $\phi \models \psi$ if and only if $\phi \land \neg \psi$ is unsatisfiable.
- (iii) $N \models \psi$ if and only if $N \cup \{\neg\psi\}$ is unsatisfiable.

Hence in order to design a theorem prover (validity checker) it is sufficient to design a checker for unsatisfiability.

Theory of a Structure

Let $\mathcal{A} \in \Sigma$ -Alg. The (first-order) theory of \mathcal{A} is defined as

$$Th(\mathcal{A}) = \{ \psi \in F_{\Sigma}(X) \mid \mathcal{A} \models \psi \}$$

Problem of axiomatizability:

For which structures \mathcal{A} can one axiomatize $Th(\mathcal{A})$, that is, can one write down a formula ϕ (or a recursively enumerable set ϕ of formulas) such that

 $Th(\mathcal{A}) = \{ \psi \mid \phi \models \psi \}?$

Analogously for sets of structures.

Two Interesting Theories

Let $\Sigma_{Pres} = (\{0/0, s/1, +/2\}, \emptyset)$ and $\mathbb{Z}_+ = (\mathbb{Z}, 0, s, +)$ its standard interpretation on the integers. $Th(\mathbb{Z}_+)$ is called *Presburger arithmetic* (M. Presburger, 1929). (There is no essential difference when one, instead of \mathbb{Z} , considers the natural numbers \mathbb{N} as standard interpretation.)

Presburger arithmetic is decidable in 3EXPTIME (D. Oppen, JCSS, 16(3):323–332, 1978), and in 2EXPSPACE, using automata-theoretic methods (and there is a constant $c \geq 0$ such that $Th(\mathbb{Z}_+) \notin \text{NTIME}(2^{2^{cn}})$).

However, $\mathbb{N}_* = (\mathbb{N}, 0, s, +, *)$, the standard interpretation of $\Sigma_{PA} = (\{0/0, s/1, +/2, */2\}, \emptyset)$, has as theory the so-called *Peano arithmetic* which is undecidable, not even recursively enumerable.

Note: The choice of signature can make a big difference with regard to the computational complexity of theories.

3.4 Algorithmic Problems

Validity(ϕ): $\models \phi$?

Satisfiability(ϕ): ϕ satisfiable?

Entailment (ϕ, ψ) : does ϕ entail ψ ?

 $Model(\mathcal{A},\phi): \ \mathcal{A} \models \phi?$

Solve(\mathcal{A}, ϕ): find an assignment β such that $\mathcal{A}, \beta \models \phi$.

Solve(ϕ): find a substitution σ such that $\models \phi \sigma$.

Abduce(ϕ): find ψ with "certain properties" such that $\psi \models \phi$.

Gödel's Famous Theorems

- 1. For most signatures Σ , validity is undecidable for Σ -formulas. (Later by Turing: Encode Turing machines as Σ -formulas.)
- 2. For each signature Σ , the set of valid Σ -formulas is recursively enumerable. (We will prove this by giving complete deduction systems.)
- 3. For $\Sigma = \Sigma_{PA}$ and $\mathbb{N}_* = (\mathbb{N}, 0, s, +, *)$, the theory $Th(\mathbb{N}_*)$ is not recursively enumerable.

These complexity results motivate the study of subclasses of formulas (*fragments*) of first-order logic

Q: Can you think of any fragments of first-order logic for which validity is decidable?

Some Decidable Fragments

Some decidable fragments:

- *Monadic class*: no function symbols, all predicates unary; validity is NEXPTIME-complete.
- Variable-free formulas without equality: satisfiability is NP-complete. (why?)
- Variable-free Horn clauses (clauses with at most one positive atom): entailment is decidable in linear time.
- Finite model checking is decidable in time polynomial in the size of the structure and the formula.

Plan

Lift superposition from propositional logic to first-order logic.

3.5 Normal Forms and Skolemization

Study of normal forms motivated by

- reduction of logical concepts,
- efficient data structures for theorem proving,
- satisfiability preserving transformations (renaming),
- Skolem's and Herbrand's theorem.

The main problem in first-order logic is the treatment of quantifiers. The subsequent normal form transformations are intended to eliminate many of them.

Prenex Normal Form (Traditional)

Prenex formulas have the form

$$Q_1 x_1 \ldots Q_n x_n \phi_1$$

where ϕ is quantifier-free and $Q_i \in \{\forall, \exists\}$; we call $Q_1 x_1 \dots Q_n x_n$ the quantifier prefix and ϕ the matrix of the formula.

Computing prenex normal form by the rewrite system \Rightarrow_P :

$$\begin{array}{ll} (\phi \leftrightarrow \psi) &\Rightarrow_{P} & (\phi \rightarrow \psi) \land (\psi \rightarrow \phi) \\ \neg Qx\phi &\Rightarrow_{P} & \overline{Q}x\neg\phi \\ ((Qx\phi) \rho \psi) &\Rightarrow_{P} & Qy(\phi\{x \mapsto y\} \rho \psi), \ \rho \in \{\land,\lor\} \\ ((Qx\phi) \rightarrow \psi) &\Rightarrow_{P} & \overline{Q}y(\phi\{x \mapsto y\} \rightarrow \psi), \\ (\phi \ \rho \ (Qx\psi)) &\Rightarrow_{P} & Qy(\phi \ \rho \ \psi\{x \mapsto y\}), \ \rho \in \{\land,\lor,\rightarrow\} \end{array}$$

Here y is always assumed to be some fresh variable and \overline{Q} denotes the quantifier dual to Q, i.e., $\overline{\forall} = \exists$ and $\overline{\exists} = \forall$.

Skolemization

Intuition: replacement of $\exists y$ by a concrete choice function computing y from all the arguments y depends on.

Transformation \Rightarrow_S (to be applied outermost, not in subformulas):

$$\forall x_1, \dots, x_n \exists y \phi \Rightarrow_S \forall x_1, \dots, x_n \phi \{ y \mapsto f(x_1, \dots, x_n) \}$$

where f/n is a new function symbol (Skolem function).

Together: $\phi \Rightarrow_P^* \underbrace{\psi}_{\text{prenex}} \Rightarrow_S^* \underbrace{\chi}_{\text{prenex, no } \exists}$

Theorem 3.9 Let ϕ , ψ , and χ as defined above and closed. Then

- (i) ϕ and ψ are equivalent.
- (ii) $\chi \models \psi$ but the converse is not true in general.
- (iii) ψ satisfiable (Σ -Alg) $\Leftrightarrow \chi$ satisfiable (Σ '-Alg) where $\Sigma' = (\Omega \cup SKF, \Pi)$, if $\Sigma = (\Omega, \Pi)$.

The Complete Picture

$$\phi \implies_{P}^{*} Q_{1}y_{1}\dots Q_{n}y_{n}\psi \qquad (\psi \text{ quantifier-free})$$

$$\Rightarrow_{S}^{*} \forall x_{1},\dots,x_{m}\chi \qquad (m \leq n, \chi \text{ quantifier-free})$$

$$\Rightarrow_{OCNF}^{*} \underbrace{\forall x_{1},\dots,x_{m}}_{\text{leave out}} \bigwedge_{i=1}^{k} \underbrace{\bigvee_{j=1}^{n_{i}} L_{ij}}_{\text{clauses } C_{i}}$$

 $N = \{C_1, \ldots, C_k\}$ is called the *clausal (normal) form* (CNF) of ϕ . Note: the variables in the clauses are implicitly universally quantified.

Theorem 3.10 Let ϕ be closed. Then $\phi' \models \phi$. (The converse is not true in general.)

Theorem 3.11 Let ϕ be closed. Then ϕ is satisfiable iff ϕ' is satisfiable iff N is satisfiable

Optimization

The normal form algorithm described so far leaves lots of room for optimization. Note that we only can preserve satisfiability anyway due to Skolemization.

- size of the CNF is exponential when done naively; the transformations we introduced already for propositional logic avoid this exponential growth;
- we want to preserve the original formula structure;
- we want small arity of Skolem functions (see next section).

3.6 Getting Small Skolem Functions

A clause set that is better suited for automated theorem proving can be obtained using the following steps:

- produce a negation normal form (NNF)
- apply miniscoping
- rename all variables
- skolemize

Negation Normal Form (NNF)

Apply the rewrite system \Rightarrow_{NNF} :

$$\phi[\psi_1 \leftrightarrow \psi_2]_p \Rightarrow_{\text{NNF}} \phi[(\psi_1 \rightarrow \psi_2) \land (\psi_2 \rightarrow \psi_1)]_p$$

if $\text{pol}(\phi, p) = 1$ or $\text{pol}(\phi, p) = 0$

$$\phi[\psi_1 \leftrightarrow \psi_2]_p \Rightarrow_{\text{NNF}} \phi[(\psi_1 \land \psi_2) \lor (\neg \psi_2 \land \neg \psi_1)]_p$$

if $pol(\phi, p) = -1$

$$\neg Qx \phi \Rightarrow_{\rm NNF} \overline{Q}x \neg \phi \neg (\phi \lor \psi) \Rightarrow_{\rm NNF} \neg \phi \land \neg \psi \neg (\phi \land \psi) \Rightarrow_{\rm NNF} \neg \phi \lor \neg \psi \phi \rightarrow \psi \Rightarrow_{\rm NNF} \neg \phi \lor \psi \neg \neg \phi \Rightarrow_{\rm NNF} \phi$$

Miniscoping

Apply the rewrite relation \Rightarrow_{MS} . For the rules below we assume that x occurs freely in ψ , χ , but x does not occur freely in ϕ :

$$\begin{array}{ll} Qx \left(\psi \land \phi\right) & \Rightarrow_{\mathrm{MS}} & (Qx \,\psi) \land \phi \\ Qx \left(\psi \lor \phi\right) & \Rightarrow_{\mathrm{MS}} & (Qx \,\psi) \lor \phi \\ \forall x \left(\psi \land \chi\right) & \Rightarrow_{\mathrm{MS}} & (\forall x \,\psi) \land (\forall x \,\chi) \\ \exists x \left(\psi \lor \chi\right) & \Rightarrow_{\mathrm{MS}} & (\exists x \,\psi) \lor (\exists x \,\chi) \end{array}$$

Variable Renaming

Rename all variables in ϕ such that there are no two different positions p, q with $\phi|_p = Qx \psi$ and $\phi|_q = Q'x \chi$.

Standard Skolemization

Apply the rewrite rule:

 $\phi[\exists x \, \psi]_p \Rightarrow_{\mathrm{SK}} \phi[\psi\{x \mapsto f(y_1, \dots, y_n)\}]_p$ where p has minimal length, $\{y_1, \dots, y_n\} \text{ are the free variables in } \exists x \, \psi,$ $f/n \text{ is a new function symbol to } \phi$

3.7 Herbrand Interpretations

From now on we shall consider FOL without equality. We assume that Ω contains at least one constant symbol.

A Herbrand interpretation (over Σ) is a Σ -algebra \mathcal{A} such that

- $U_{\mathcal{A}} = T_{\Sigma}$ (= the set of ground terms over Σ)
- $f_{\mathcal{A}}: (s_1, \ldots, s_n) \mapsto f(s_1, \ldots, s_n), f/n \in \Omega$

In other words, values are fixed to be ground terms and functions are fixed to be the term constructors. Only predicate symbols $P/m \in \Pi$ may be freely interpreted as relations $P_{\mathcal{A}} \subseteq T_{\Sigma}^{m}$.

Proposition 3.12 Every set of ground atoms I uniquely determines a Herbrand interpretation \mathcal{A} via

$$(s_1,\ldots,s_n) \in P_{\mathcal{A}} \iff P(s_1,\ldots,s_n) \in I$$