Example

The "Standard" Interpretation for Peano Arithmetic:

$$
\begin{aligned}
U_{\mathbb{N}} & =\{0,1,2, \ldots\} \\
0_{\mathbb{N}} & =0 \\
s_{\mathbb{N}} & : n \mapsto n+1 \\
+_{\mathbb{N}} & :(n, m) \mapsto n+m \\
*_{\mathbb{N}} & :(n, m) \mapsto n * m \\
\leq_{\mathbb{N}} & =\{(n, m) \mid n \text { less than or equal to } m\} \\
<_{\mathbb{N}} & =\{(n, m) \mid n \text { less than } m\}
\end{aligned}
$$

Note that \mathbb{N} is just one out of many possible $\Sigma_{P A}$-interpretations.
Values over \mathbb{N} for Sample Terms and Formulas:
Under the assignment $\beta: x \mapsto 1, y \mapsto 3$ we obtain

$$
\begin{array}{ll}
\mathbb{N}(\beta)(s(x)+s(0)) & =3 \\
\mathbb{N}(\beta)(x+y \approx s(y)) & =1 \\
\mathbb{N}(\beta)(\forall x, y(x+y \approx y+x)) & =1 \\
\mathbb{N}(\beta)(\forall z z \leq y) & =0 \\
\mathbb{N}(\beta)(\forall x \exists y x<y) & =1
\end{array}
$$

3.3 Models, Validity, and Satisfiability

ϕ is valid in \mathcal{A} under assignment β :

$$
\mathcal{A}, \beta \models \phi \quad: \Leftrightarrow \mathcal{A}(\beta)(\phi)=1
$$

ϕ is valid in $\mathcal{A}(\mathcal{A}$ is a model of $\phi)$:

$$
\mathcal{A} \models \phi \quad: \Leftrightarrow \mathcal{A}, \beta \models \phi, \text { for all } \beta \in X \rightarrow U_{\mathcal{A}}
$$

ϕ is valid (or is a tautology):

$$
\models \phi \quad: \Leftrightarrow \mathcal{A} \models \phi, \text { for all } \mathcal{A} \in \Sigma \text { - } \operatorname{Alg}
$$

ϕ is called satisfiable iff there exist \mathcal{A} and β such that $\mathcal{A}, \beta \models \phi$. Otherwise ϕ is called unsatisfiable.

Substitution Lemma

The following propositions, to be proved by structural induction, hold for all Σ-algebras \mathcal{A}, assignments β, and substitutions σ.

Lemma 3.3 For any Σ-term t

$$
\mathcal{A}(\beta)(t \sigma)=\mathcal{A}(\beta \circ \sigma)(t),
$$

where $\beta \circ \sigma: X \rightarrow \mathcal{A}$ is the assignment $\beta \circ \sigma(x)=\mathcal{A}(\beta)(x \sigma)$.

Proposition 3.4 For any Σ-formula $\phi, \mathcal{A}(\beta)(\phi \sigma)=\mathcal{A}(\beta \circ \sigma)(\phi)$.

Corollary 3.5 $\mathcal{A}, \beta \models \phi \sigma \quad \Leftrightarrow \quad \mathcal{A}, \beta \circ \sigma \models \phi$

These theorems basically express that the syntactic concept of substitution corresponds to the semantic concept of an assignment.

Entailment and Equivalence

ϕ entails (implies) ψ (or ψ is a consequence of ϕ), written $\phi \models \psi$, if for all $\mathcal{A} \in \Sigma$ - Alg and $\beta \in X \rightarrow U_{\mathcal{A}}$, whenever $\mathcal{A}, \beta \models \phi$, then $\mathcal{A}, \beta \models \psi$.
ϕ and ψ are called equivalent, written $\phi \models \psi$, if for all $\mathcal{A} \in \Sigma$-Alg and $\beta \in X \rightarrow U_{\mathcal{A}}$ we have $\mathcal{A}, \beta \models \phi \quad \Leftrightarrow \quad \mathcal{A}, \beta \models \psi$.

Proposition 3.6ϕ entails ψ iff $(\phi \rightarrow \psi)$ is valid

Proposition 3.7ϕ and ψ are equivalent iff $(\phi \leftrightarrow \psi)$ is valid.

Extension to sets of formulas N in the "natural way", e.g., $N \models \phi$
$: \Leftrightarrow$ for all $\mathcal{A} \in \Sigma$ - Alg and $\beta \in X \rightarrow U_{\mathcal{A}}$: if $\mathcal{A}, \beta \models \psi$, for all $\psi \in N$, then $\mathcal{A}, \beta \models \phi$.

Validity vs. Unsatisfiability

Validity and unsatisfiability are just two sides of the same medal as explained by the following proposition.

Proposition 3.8 Let ϕ and ψ be formulas, let N be a set of formulas. Then
(i) ϕ is valid if and only if $\neg \phi$ is unsatisfiable.
(ii) $\phi \models \psi$ if and only if $\phi \wedge \neg \psi$ is unsatisfiable.
(iii) $N \models \psi$ if and only if $N \cup\{\neg \psi\}$ is unsatisfiable.

Hence in order to design a theorem prover (validity checker) it is sufficient to design a checker for unsatisfiability.

Theory of a Structure

Let $\mathcal{A} \in \Sigma$-Alg. The (first-order) theory of \mathcal{A} is defined as

$$
\operatorname{Th}(\mathcal{A})=\left\{\psi \in \mathrm{F}_{\Sigma}(X) \mid \mathcal{A} \models \psi\right\}
$$

Problem of axiomatizability:
For which structures \mathcal{A} can one axiomatize $\operatorname{Th}(\mathcal{A})$, that is, can one write down a formula ϕ (or a recursively enumerable set ϕ of formulas) such that

$$
\operatorname{Th}(\mathcal{A})=\{\psi \mid \phi \models \psi\} ?
$$

Analogously for sets of structures.

Two Interesting Theories

Let $\Sigma_{\text {Pres }}=(\{0 / 0, s / 1,+/ 2\}, \emptyset)$ and $\mathbb{Z}_{+}=(\mathbb{Z}, 0, s,+)$ its standard interpretation on the integers. $T h\left(\mathbb{Z}_{+}\right)$is called Presburger arithmetic (M. Presburger, 1929). (There is no essential difference when one, instead of \mathbb{Z}, considers the natural numbers \mathbb{N} as standard interpretation.)

Presburger arithmetic is decidable in 3EXPTIME (D. Oppen, JCSS, 16(3):323-332, 1978), and in 2EXPSPACE, using automata-theoretic methods (and there is a constant $c \geq 0$ such that $\left.T h\left(\mathbb{Z}_{+}\right) \notin \operatorname{NTIME}\left(2^{2^{c n}}\right)\right)$.
However, $\mathbb{N}_{*}=(\mathbb{N}, 0, s,+, *)$, the standard interpretation of $\Sigma_{P A}=(\{0 / 0, s / 1,+/ 2, * / 2\}, \emptyset)$, has as theory the so-called Peano arithmetic which is undecidable, not even recursively enumerable.

Note: The choice of signature can make a big difference with regard to the computational complexity of theories.

3.4 Algorithmic Problems

$\operatorname{Validity}(\phi): \models \phi$?
Satisfiability (ϕ) : ϕ satisfiable?
Entailment (ϕ, ψ) : does ϕ entail ψ ?
$\operatorname{Model}(\mathcal{A}, \phi): \quad \mathcal{A} \models \phi$?
Solve (\mathcal{A}, ϕ) : find an assignment β such that $\mathcal{A}, \beta \models \phi$.
Solve (ϕ) : find a substitution σ such that $\models \phi \sigma$.
Abduce (ϕ) : find ψ with "certain properties" such that $\psi \models \phi$.

Gödel's Famous Theorems

1. For most signatures Σ, validity is undecidable for Σ-formulas. (Later by Turing: Encode Turing machines as Σ-formulas.)
2. For each signature Σ, the set of valid Σ-formulas is recursively enumerable. (We will prove this by giving complete deduction systems.)
3. For $\Sigma=\Sigma_{P A}$ and $\mathbb{N}_{*}=(\mathbb{N}, 0, s,+, *)$, the theory $\operatorname{Th}\left(\mathbb{N}_{*}\right)$ is not recursively enumerable.

These complexity results motivate the study of subclasses of formulas (fragments) of first-order logic
Q : Can you think of any fragments of first-order logic for which validity is decidable?

Some Decidable Fragments

Some decidable fragments:

- Monadic class: no function symbols, all predicates unary; validity is NEXPTIMEcomplete.
- Variable-free formulas without equality: satisfiability is NP-complete. (why?)
- Variable-free Horn clauses (clauses with at most one positive atom): entailment is decidable in linear time.
- Finite model checking is decidable in time polynomial in the size of the structure and the formula.

Plan

Lift superposition from propositional logic to first-order logic.

3.5 Normal Forms and Skolemization

Study of normal forms motivated by

- reduction of logical concepts,
- efficient data structures for theorem proving,
- satisfiability preserving transformations (renaming),
- Skolem's and Herbrand's theorem.

The main problem in first-order logic is the treatment of quantifiers. The subsequent normal form transformations are intended to eliminate many of them.

Prenex Normal Form (Traditional)

Prenex formulas have the form

$$
Q_{1} x_{1} \ldots Q_{n} x_{n} \phi
$$

where ϕ is quantifier-free and $Q_{i} \in\{\forall, \exists\}$; we call $Q_{1} x_{1} \ldots Q_{n} x_{n}$ the quantifier prefix and ϕ the matrix of the formula.

Computing prenex normal form by the rewrite system \Rightarrow_{P} :

$$
\begin{array}{rll}
(\phi \leftrightarrow \psi) & \Rightarrow_{P} & (\phi \rightarrow \psi) \wedge(\psi \rightarrow \phi) \\
\neg Q x \phi & \Rightarrow_{P} & \bar{Q} x \neg \phi \\
((Q x \phi) \rho \psi) & \Rightarrow_{P} & Q y(\phi\{x \mapsto y\} \rho \psi), \rho \in\{\wedge, \vee\} \\
((Q x \phi) \rightarrow \psi) & \Rightarrow_{P} & \bar{Q} y(\phi\{x \mapsto y\} \rightarrow \psi), \\
(\phi \rho(Q x \psi)) & \Rightarrow_{P} & Q y(\phi \rho \psi\{x \mapsto y\}), \rho \in\{\wedge, \vee, \rightarrow\}
\end{array}
$$

Here y is always assumed to be some fresh variable and \bar{Q} denotes the quantifier dual to Q, i. e., $\bar{\forall}=\exists$ and $\bar{\exists}=\forall$.

Skolemization

Intuition: replacement of $\exists y$ by a concrete choice function computing y from all the arguments y depends on.

Transformation \Rightarrow_{S} (to be applied outermost, not in subformulas):

$$
\forall x_{1}, \ldots, x_{n} \exists y \phi \Rightarrow_{S} \quad \forall x_{1}, \ldots, x_{n} \phi\left\{y \mapsto f\left(x_{1}, \ldots, x_{n}\right)\right\}
$$

where f / n is a new function symbol (Skolem function).
Together: $\phi \Rightarrow{ }_{P}^{*}$

Theorem 3.9 Let ϕ, ψ, and χ as defined above and closed. Then
(i) ϕ and ψ are equivalent.
(ii) $\chi \models \psi$ but the converse is not true in general.
(iii) ψ satisfiable (Σ-Alg) $\Leftrightarrow \chi$ satisfiable (Σ^{\prime}-Alg) where $\Sigma^{\prime}=(\Omega \cup S K F, \Pi)$, if $\Sigma=(\Omega, \Pi)$.

The Complete Picture

$$
\begin{array}{rlrr}
\phi & \Rightarrow_{P}^{*} & Q_{1} y_{1} \ldots Q_{n} y_{n} \psi & (\psi \text { quantifier-free }) \\
& \Rightarrow_{S}^{*} & \forall x_{1}, \ldots, x_{m} \chi \quad(m \leq n, \chi \text { quantifier-free }) \\
& \Rightarrow_{O C N F}^{*} \underbrace{\forall x_{1}, \ldots, x_{m}}_{\phi^{\prime}} \bigwedge_{i=1}^{k} \underbrace{\bigvee_{j=1}^{n_{i}} L_{i j}}_{\text {clause out } C_{i}}
\end{array}
$$

$N=\left\{C_{1}, \ldots, C_{k}\right\}$ is called the clausal (normal) form (CNF) of ϕ.
Note: the variables in the clauses are implicitly universally quantified.

Theorem 3.10 Let ϕ be closed. Then $\phi^{\prime} \models \phi$. (The converse is not true in general.)

Theorem 3.11 Let ϕ be closed. Then ϕ is satisfiable iff ϕ^{\prime} is satisfiable iff N is satisfiable

Optimization

The normal form algorithm described so far leaves lots of room for optimization. Note that we only can preserve satisfiability anyway due to Skolemization.

- size of the CNF is exponential when done naively; the transformations we introduced already for propositional logic avoid this exponential growth;
- we want to preserve the original formula structure;
- we want small arity of Skolem functions (see next section).

3.6 Getting Small Skolem Functions

A clause set that is better suited for automated theorem proving can be obtained using the following steps:

- produce a negation normal form (NNF)
- apply miniscoping
- rename all variables
- skolemize

Negation Normal Form (NNF)

Apply the rewrite system $\Rightarrow_{\mathrm{NNF}}$:

$$
\phi\left[\psi_{1} \leftrightarrow \psi_{2}\right]_{p} \Rightarrow_{\mathrm{NNF}} \phi\left[\left(\psi_{1} \rightarrow \psi_{2}\right) \wedge\left(\psi_{2} \rightarrow \psi_{1}\right)\right]_{p}
$$

if $\operatorname{pol}(\phi, p)=1$ or $\operatorname{pol}(\phi, p)=0$

$$
\phi\left[\psi_{1} \leftrightarrow \psi_{2}\right]_{p} \Rightarrow_{\mathrm{NNF}} \phi\left[\left(\psi_{1} \wedge \psi_{2}\right) \vee\left(\neg \psi_{2} \wedge \neg \psi_{1}\right)\right]_{p}
$$

if $\operatorname{pol}(\phi, p)=-1$

$$
\begin{array}{rll}
\neg Q x \phi & \Rightarrow_{\mathrm{NNF}} & \bar{Q} x \neg \phi \\
\neg(\phi \vee \psi) & \Rightarrow_{\mathrm{NNF}} & \neg \phi \wedge \neg \psi \\
\neg(\phi \wedge \psi) & \Rightarrow_{\mathrm{NNF}} & \neg \phi \vee \neg \psi \\
\phi \rightarrow \psi & \Rightarrow_{\mathrm{NNF}} & \neg \phi \vee \psi \\
\neg \neg \phi & \Rightarrow_{\mathrm{NNF}} & \phi
\end{array}
$$

Miniscoping

Apply the rewrite relation $\Rightarrow_{\text {MS }}$. For the rules below we assume that x occurs freely in ψ, χ, but x does not occur freely in ϕ :

$$
\begin{array}{lll}
Q x(\psi \wedge \phi) & \Rightarrow_{\mathrm{MS}} & (Q x \psi) \wedge \phi \\
Q x(\psi \vee \phi) & \Rightarrow_{\mathrm{MS}} & (Q x \psi) \vee \phi \\
\forall x(\psi \wedge \chi) & \Rightarrow_{\mathrm{MS}} & (\forall x \psi) \wedge(\forall x \chi) \\
\exists x(\psi \vee \chi) & \Rightarrow_{\mathrm{MS}} & (\exists x \psi) \vee(\exists x \chi)
\end{array}
$$

Variable Renaming

Rename all variables in ϕ such that there are no two different positions p, q with $\left.\phi\right|_{p}=$ $Q x \psi$ and $\left.\phi\right|_{q}=Q^{\prime} x \chi$.

Standard Skolemization

Apply the rewrite rule:

$$
\begin{aligned}
& \phi[\exists x \psi]_{p} \Rightarrow_{\mathrm{SK}} \quad \phi\left[\psi\left\{x \mapsto f\left(y_{1}, \ldots, y_{n}\right)\right\}\right]_{p} \\
& \text { where } p \text { has minimal length, } \\
& \left\{y_{1}, \ldots, y_{n}\right\} \text { are the free variables in } \exists x \psi, \\
& f / n \text { is a new function symbol to } \phi
\end{aligned}
$$

3.7 Herbrand Interpretations

From now on we shall consider FOL without equality. We assume that Ω contains at least one constant symbol.

A Herbrand interpretation (over Σ) is a Σ-algebra \mathcal{A} such that

- $U_{\mathcal{A}}=\mathrm{T}_{\Sigma}(=$ the set of ground terms over $\Sigma)$
- $f_{\mathcal{A}}:\left(s_{1}, \ldots, s_{n}\right) \mapsto f\left(s_{1}, \ldots, s_{n}\right), f / n \in \Omega$

In other words, values are fixed to be ground terms and functions are fixed to be the term constructors. Only predicate symbols $P / m \in \Pi$ may be freely interpreted as relations $P_{\mathcal{A}} \subseteq \mathrm{T}_{\Sigma}^{m}$.

Proposition 3.12 Every set of ground atoms I uniquely determines a Herbrand interpretation \mathcal{A} via

$$
\left(s_{1}, \ldots, s_{n}\right) \in P_{\mathcal{A}} \quad: \Leftrightarrow \quad P\left(s_{1}, \ldots, s_{n}\right) \in I
$$

