
Variable Renaming

Rename all variables in φ such that there are no two different positions p, q with φ|p =
Qxψ and φ|q = Q′xχ.

Standard Skolemization

Apply the rewrite rule:

φ[∃xψ]p ⇒SK φ[ψ{x 7→ f(y1, . . . , yn)}]p
where p has minimal length,
{y1, . . . , yn} are the free variables in ∃xψ,
f/n is a new function symbol to φ

3.7 Herbrand Interpretations

From now on we shall consider FOL without equality. We assume that Ω contains at
least one constant symbol.

A Herbrand interpretation (over Σ) is a Σ-algebra A such that

• UA = TΣ (= the set of ground terms over Σ)

• fA : (s1, . . . , sn) 7→ f(s1, . . . , sn), f/n ∈ Ω

f
fA(△, . . . ,△) =

△ . . . △

In other words, values are fixed to be ground terms and functions are fixed to be the term
constructors. Only predicate symbols P/m ∈ Π may be freely interpreted as relations
PA ⊆ Tm

Σ .

Proposition 3.12 Every set of ground atoms I uniquely determines a Herbrand inter-
pretation A via

(s1, . . . , sn) ∈ PA :⇔ P (s1, . . . , sn) ∈ I

65



Thus we shall identify Herbrand interpretations (over Σ) with sets of Σ-ground atoms.

Example: ΣPres = ({0/0, s/1,+/2}, {</2,≤/2})

N as Herbrand interpretation over ΣPres:
I = { 0 ≤ 0, 0 ≤ s(0), 0 ≤ s(s(0)), . . . ,

0 + 0 ≤ 0, 0 + 0 ≤ s(0), . . . ,
. . . , (s(0) + 0) + s(0) ≤ s(0) + (s(0) + s(0))
. . .
s(0) + 0 < s(0) + 0 + 0 + s(0)
. . .}

Existence of Herbrand Models

A Herbrand interpretation I is called a Herbrand model of φ, if I |= φ.

Theorem 3.13 (Herbrand) Let N be a set of Σ-clauses.

N satisfiable ⇔ N has a Herbrand model (over Σ)
⇔ GΣ(N) has a Herbrand model (over Σ)

where GΣ(N) = {Cσ ground clause | C ∈ N, σ : X → TΣ } is the set of ground
instances of N .

[The proof will be given below in the context of the completeness proof for superposi-
tion.]

Example of a GΣ

For ΣPres one obtains for

C = (x < y) ∨ (y ≤ s(x))

the following ground instances:

(0 < 0) ∨ (0 ≤ s(0))
(s(0) < 0) ∨ (0 ≤ s(s(0)))
. . .
(s(0) + s(0) < s(0) + 0) ∨ (s(0) + 0 ≤ s(s(0) + s(0)))
. . .

66



3.8 Inference Systems and Proofs

Inference systems Γ (proof calculi) are sets of tuples

(φ1, . . . , φn, φn+1), n ≥ 0,

called inferences, and written

premises︷ ︸︸ ︷
φ1 . . . φn

φn+1︸︷︷︸
conclusion

.

Clausal inference system: premises and conclusions are clauses. One also considers
inference systems over other data structures.

Inference Systems

Inference systems Γ are short hands for rewrite systems over sets of formulas. If N is a
set of formulas, then

premises︷ ︸︸ ︷
φ1 . . . φn

φn+1︸︷︷︸
conclusion

side condition

is a shorthand for

N ∪ {φ1 . . . φn} ⇒Γ N ∪ {φ1 . . . φn} ∪ {φn+1}
if side condition

Proofs

A proof in Γ of a formula φ from a a set of formulas N (called assumptions) is a sequence
φ1, . . . , φk of formulas where

(i) φk = φ,

(ii) for all 1 ≤ i ≤ k: φi ∈ N , or else there exists an inference

φi1 . . . φini

φi

in Γ, such that 0 ≤ ij < i, for 1 ≤ j ≤ ni.

67



Soundness and Completeness

Provability ⊢Γ of φ from N in Γ: N ⊢Γ φ if there exists a proof Γ of φ from N .

Γ is called sound

φ1 . . . φn

φ
∈ Γ implies φ1, . . . , φn |= φ

Γ is called complete

N |= φ implies N ⊢Γ φ

Γ is called refutationally complete

N |= ⊥ implies N ⊢Γ ⊥

Proposition 3.14

(i) Let Γ be sound. Then N ⊢Γ φ implies N |= φ

(ii) N ⊢Γ φ implies there exist finitely many clauses φ1, . . . , φn ∈ N such that φ1, . . . , φn ⊢Γ
φ

Proofs as Trees

markings =̂ formulas
leaves =̂ assumptions and axioms

other nodes =̂ inferences: conclusion =̂ ancestor
premises =̂ direct descendants

P (f(c))

P (f(c)) ∨Q(b)

P (f(c)) ∨Q(b) ¬P (f(c)) ∨ ¬P (f(c)) ∨Q(b)

¬P (f(c)) ∨Q(b) ∨Q(b)

¬P (f(c)) ∨Q(b)

Q(b) ∨Q(b)

Q(b) ¬P (f(c)) ∨ ¬Q(b)

¬P (f(c))

⊥

68



3.9 Ground Superposition

We observe that propositional clauses and ground clauses are essentially the same, as
long as we do not consider equational atoms.

In this section we only deal with ground clauses and recall partly the material from
Section 2.5 for first-order ground clauses.

The Resolution Calculus Res

Resolution inference rule:

D ∨A ¬A ∨ C

D ∨ C

Terminology: D ∨ C: resolvent; A: resolved atom For Superposition (Sup): A strictly
maximal, ¬A maximal

(Positive) factorization inference rule:

C ∨ A ∨A

C ∨A

For Superposition (Sup): A maximal

These are schematic inference rules; for each substitution of the schematic variables C,
D, and A, by ground clauses and ground atoms, respectively, we obtain an inference.

We treat “∨” as associative and commutative, hence A and ¬A can occur anywhere in
the clauses; moreover, when we write C ∨ A, etc., this includes unit clauses, that is,
C = ⊥.

Sample Refutation

1. ¬P (f(c)) ∨ ¬P (f(c)) ∨Q(b) (given)
2. P (f(c)) ∨Q(b) (given)
3. ¬P (g(b, c)) ∨ ¬Q(b) (given)
4. P (g(b, c)) (given)
5. ¬P (f(c)) ∨Q(b) ∨Q(b) (Res. 2. into 1.)
6. ¬P (f(c)) ∨Q(b) (Fact. 5.)
7. Q(b) ∨Q(b) (Res. 2. into 6.)
8. Q(b) (Fact. 7.)
9. ¬P (g(b, c)) (Res. 8. into 3.)
10. ⊥ (Res. 4. into 9.)

69



Soundness of Resolution

Theorem 3.15 Propositional resolution is sound.

Proof. Let B ∈ Σ-Alg. To be shown:

(i) for resolution: B |= D ∨ A, B |= C ∨ ¬A ⇒ B |= D ∨ C

(ii) for factorization: B |= C ∨A ∨ A ⇒ B |= C ∨A

(i): Assume premises are valid in B. Two cases need to be considered:
If B |= A, then B |= C, hence B |= D ∨ C.
Otherwise, B |= ¬A, then B |= D, and again B |= D ∨ C.
(ii): even simpler. 2

Note: In propositional logic (ground clauses) we have:

1. B |= L1 ∨ . . . ∨ Ln iff there exists i: B |= Li.

2. B |= A or B |= ¬A.

This does not hold for formulas with variables!

70



Closure of Clause Sets under Res

Res(N) = {C | C is conclusion of an inference in Res
with premises in N }

Res0(N) = N
Resn+1(N) = Res(Resn(N)) ∪Resn(N), for n ≥ 0
Res∗(N) =

⋃
n≥0Res

n(N)

N is called saturated (w. r. t. resolution), if Res(N) ⊆ N .

Proposition 3.16

(i) Res∗(N) is saturated.

(ii) Res is refutationally complete, iff for each set N of ground clauses:

N |= ⊥ iff ⊥ ∈ Res∗(N)

Construction of Interpretations

Done the same way as for propositional logic: ground atoms play the rôle of propositional
variables.

Model Existence Theorem

Theorem 3.17 (Bachmair & Ganzinger 1990) Let ≻ be a clause ordering, let N
be saturated w. r. t. Res (or Sup), and suppose that ⊥ 6∈ N . Then N≻

I |= N .

Corollary 3.18 Let N be saturated w. r. t. Res. Then N |= ⊥ ⇔ ⊥ ∈ N .

Proof of Theorem 3.17. Suppose ⊥ 6∈ N , but I≻N 6|= N . Let C ∈ N minimal (in ≻)
such that I≻N 6|= C. Since C is false in IN , C is not productive. As C 6= ⊥ there exists a
maximal atom A in C.

Case 1: C = ¬A ∨ C ′ (i. e., the maximal atom occurs negatively)
⇒ IN |= A and IN 6|= C ′

⇒ some D = D′ ∨A ∈ N produces A. Since there is an inference

D′ ∨ A ¬A ∨ C ′

D′ ∨ C ′
,

we infer that D′ ∨ C ′ ∈ N , and C ≻ D′ ∨ C ′ and IN 6|= D′ ∨ C ′. This contradicts the
minimality of C.

71



Case 2: C = C ′ ∨ A ∨ A. There is an inference

C ′ ∨ A ∨ A

C ′ ∨ A

that yields a smaller counterexample C ′ ∨A ∈ N . This contradicts the minimality of C.
2

Compactness of Propositional Logic

Theorem 3.19 (Compactness) Let N be a set of propositional (or first-order ground)
formulas. Then N is unsatisfiable, if and only if some finite subset M ⊆ N is unsatisfi-
able.

Proof. “⇐”: trivial. “⇒”: Let N be unsatisfiable.
⇒ Res∗(N) unsatisfiable
⇒ ⊥ ∈ Res∗(N) by refutational completeness of resolution
⇒ ∃n ≥ 0 : ⊥ ∈ Resn(N)
⇒ ⊥ has a finite resolution proof P ;
choose M as the set of assumptions in P . 2

3.10 General Resolution

Propositional (ground) resolution:

refutationally complete,

in its most naive version: not guaranteed to terminate for satisfiable sets of clauses,
(improved versions do terminate, however)

inferior to the DPLL procedure.

But: in contrast to the DPLL procedure, resolution can be easily extended to non-ground
clauses.

General Resolution through Instantiation

Idea: instantiate clauses appropriately:

72



P (z′, z′) ∨ ¬Q(z) ¬P (a, y) P (x′, b) ∨Q(f(x′, x))

P (a, a) ∨ ¬Q(f(a, b))¬P (a, a) ¬P (a, b) P (a, b) ∨Q(f(a, b))

¬Q(f(a, b)) Q(f(a, b))

⊥

[a/z′, f(a, b)/z] [a/y] [b/y] [a/x′, b/x]

Problems:

More than one instance of a clause can participate in a proof.

Even worse: There are infinitely many possible instances.

Observation:

Instantiation must produce complementary literals (so that inferences become possi-
ble).

Idea:

Do not instantiate more than necessary to get complementary literals.

P (z′, z′) ∨ ¬Q(z) ¬P (a, y) P (x′, b) ∨Q(f(x′, x))

P (a, a) ∨ ¬Q(z) ¬P (a, a) ¬P (a, b) P (a, b) ∨Q(f(a, x))

¬Q(z) Q(f(a, x))

¬Q(f(a, x)) Q(f(a, x))

⊥

[a/z′] [a/y] [b/y] [a/x′]

[f(a, x)/z]

73



Lifting Principle

Problem: Make saturation of infinite sets of clauses as they arise from taking the (ground)
instances of finitely many general clauses (with variables) effective and efficient.

Idea (Robinson 1965):

• Resolution for general clauses:

• Equality of ground atoms is generalized to unifiability of general atoms;

• Only compute most general (minimal) unifiers (mgu).

Significance: The advantage of the method in (Robinson 1965) compared with (Gilmore
1960) is that unification enumerates only those instances of clauses that participate
in an inference. Moreover, clauses are not right away instantiated into ground
clauses. Rather they are instantiated only as far as required for an inference.
Inferences with non-ground clauses in general represent infinite sets of ground
inferences which are computed simultaneously in a single step.

Resolution for General Clauses

General binary resolution Res:

D ∨ B C ∨ ¬A

(D ∨ C)σ
if σ = mgu(A,B) [resolution]

C ∨ A ∨B

(C ∨ A)σ
if σ = mgu(A,B) [factorization]

For inferences with more than one premise, we assume that the variables in the premises
are (bijectively) renamed such that they become different to any variable in the other
premises. We do not formalize this. Which names one uses for variables is otherwise
irrelevant.

Unification

Let E = {s1
.
= t1, . . . , sn

.
= tn} (si, ti terms or atoms) a multiset of equality problems.

A substitution σ is called a unifier of E if siσ = tiσ for all 1 ≤ i ≤ n.

If a unifier of E exists, then E is called unifiable.

A substitution σ is called more general than a substitution τ , denoted by σ ≤ τ , if
there exists a substitution ρ such that ρ ◦ σ = τ , where (ρ ◦ σ)(x) := (xσ)ρ is the
composition of σ and ρ as mappings. (Note that ρ ◦ σ has a finite domain as required
for a substitution.)

74



If a unifier of E is more general than any other unifier of E, then we speak of a most
general unifier of E, denoted by mgu(E).

Proposition 3.20

(i) ≤ is a quasi-ordering on substitutions, and ◦ is associative.

(ii) If σ ≤ τ and τ ≤ σ (we write σ ∼ τ in this case), then xσ and xτ are equal up to
(bijective) variable renaming, for any x in X .

A substitution σ is called idempotent, if σ ◦ σ = σ.

Proposition 3.21 σ is idempotent iff dom(σ) ∩ codom(σ) = ∅.

Rule-Based Naive Standard Unification

t
.
= t, E ⇒SU E

f(s1, . . . , sn)
.
= f(t1, . . . , tn), E ⇒SU s1

.
= t1, . . . , sn

.
= tn, E

f(. . .)
.
= g(. . .), E ⇒SU ⊥

x
.
= t, E ⇒SU x

.
= t, E{t 7→ x}

if x ∈ var(E), x 6∈ var(t)

x
.
= t, E ⇒SU ⊥

if x 6= t, x ∈ var(t)

t
.
= x, E ⇒SU x

.
= t, E

if t 6∈ X

SU: Main Properties

If E = x1
.
= u1, . . . , xk

.
= uk, with xi pairwise distinct, xi 6∈ var(uj), then E is called

an (equational problem in) solved form representing the solution σE = {x1 7→ u1, . . . ,
xk 7→ uk}.

Proposition 3.22 If E is a solved form then σE is an mgu of E.

Theorem 3.23

1. If E ⇒SU E
′ then σ is a unifier of E iff σ is a unifier of E ′

2. If E
∗
⇒SU ⊥ then E is not unifiable.

3. If E
∗
⇒SU E

′ with E ′ in solved form, then σE′ is an mgu of E.

75



Proof. (1) We have to show this for each of the rules. Let’s treat the case for the 4th
rule here. Suppose σ is a unifier of x

.
= t, that is, xσ = tσ. Thus, σ ◦ {x 7→ t} = σ[x 7→

tσ] = σ[x 7→ xσ] = σ. Therefore, for any equation u
.
= v in E: uσ = vσ, iff u{x 7→

t}σ = v{x 7→ t}σ. (2) and (3) follow by induction from (1) using Proposition 3.22. 2

Main Unification Theorem

Theorem 3.24 E is unifiable if and only if there is a most general unifier σ of E, such
that σ is idempotent and dom(σ) ∪ codom(σ) ⊆ var(E).

Proof.

• ⇒SU is Noetherian. A suitable lexicographic ordering on the multisets E (with ⊥
minimal) shows this. Compare in this order:

1. the number of defined variables (d.h. variables x in equations x
.
= t with

x 6∈ var(t)), which also occur outside their definition elsewhere in E;

2. the multiset ordering induced by (i) the size (number of symbols) in an equa-
tion; (ii) if sizes are equal consider x

.
= t smaller than t

.
= x, if t 6∈ X .

• A system E that is irreducible w. r. t. ⇒SU is either ⊥ or a solved form.

• Therefore, reducing any E by SU will end (no matter what reduction strategy we
apply) in an irreducible E ′ having the same unifiers as E, and we can read off the
mgu (or non-unifiability) of E from E ′ (Theorem 3.23, Proposition 3.22).

• σ is idempotent because of the substitution in rule 4. dom(σ) ∪ codom(σ) ⊆
var(E), as no new variables are generated.

2

Rule-Based Polynomial Unification

Problem: using ⇒SU , an exponential growth of terms is possible.

The following unification algorithm avoids this problem, at least if the final solved form
is represented as a DAG.

76


