
If a unifier of E is more general than any other unifier of E, then we speak of a most
general unifier of E, denoted by mgu(E).

Proposition 3.20

(i) ≤ is a quasi-ordering on substitutions, and ◦ is associative.

(ii) If σ ≤ τ and τ ≤ σ (we write σ ∼ τ in this case), then xσ and xτ are equal up to
(bijective) variable renaming, for any x in X .

A substitution σ is called idempotent, if σ ◦ σ = σ.

Proposition 3.21 σ is idempotent iff dom(σ) ∩ codom(σ) = ∅.

Rule-Based Naive Standard Unification

t
.
= t, E ⇒SU E

f(s1, . . . , sn)
.
= f(t1, . . . , tn), E ⇒SU s1

.
= t1, . . . , sn

.
= tn, E

f(. . .)
.
= g(. . .), E ⇒SU ⊥

x
.
= t, E ⇒SU x

.
= t, E{x 7→ t}

if x ∈ var(E), x 6∈ var(t)

x
.
= t, E ⇒SU ⊥

if x 6= t, x ∈ var(t)

t
.
= x, E ⇒SU x

.
= t, E

if t 6∈ X

SU: Main Properties

If E = x1
.
= u1, . . . , xk

.
= uk, with xi pairwise distinct, xi 6∈ var(uj), then E is called

an (equational problem in) solved form representing the solution σE = {x1 7→ u1, . . . ,
xk 7→ uk}.

Proposition 3.22 If E is a solved form then σE is an mgu of E.

Theorem 3.23

1. If E ⇒SU E
′ then σ is a unifier of E iff σ is a unifier of E ′

2. If E
∗
⇒SU ⊥ then E is not unifiable.

3. If E
∗
⇒SU E

′ with E ′ in solved form, then σE′ is an mgu of E.
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Proof. (1) We have to show this for each of the rules. Let’s treat the case for the 4th
rule here. Suppose σ is a unifier of x

.
= t, that is, xσ = tσ. Thus, σ ◦ {x 7→ t} = σ[x 7→

tσ] = σ[x 7→ xσ] = σ. Therefore, for any equation u
.
= v in E: uσ = vσ, iff u{x 7→

t}σ = v{x 7→ t}σ. (2) and (3) follow by induction from (1) using Proposition 3.22. 2

Main Unification Theorem

Theorem 3.24 E is unifiable if and only if there is a most general unifier σ of E, such
that σ is idempotent and dom(σ) ∪ codom(σ) ⊆ var(E).

Proof.

• ⇒SU is Noetherian. A suitable lexicographic ordering on the multisets E (with ⊥
minimal) shows this. Compare in this order:

1. the number of defined variables (d.h. variables x in equations x
.
= t with

x 6∈ var(t)), which also occur outside their definition elsewhere in E;

2. the multiset ordering induced by (i) the size (number of symbols) in an equa-
tion; (ii) if sizes are equal consider x

.
= t smaller than t

.
= x, if t 6∈ X .

• A system E that is irreducible w. r. t. ⇒SU is either ⊥ or a solved form.

• Therefore, reducing any E by SU will end (no matter what reduction strategy we
apply) in an irreducible E ′ having the same unifiers as E, and we can read off the
mgu (or non-unifiability) of E from E ′ (Theorem 3.23, Proposition 3.22).

• σ is idempotent because of the substitution in rule 4. dom(σ) ∪ codom(σ) ⊆
var(E), as no new variables are generated.

2

Rule-Based Polynomial Unification

Problem: using ⇒SU , an exponential growth of terms is possible.

The following unification algorithm avoids this problem, at least if the final solved form
is represented as a DAG.
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t
.
= t, E ⇒PU E

f(s1, . . . , sn)
.
= f(t1, . . . , tn), E ⇒PU s1

.
= t1, . . . , sn

.
= tn, E

f(. . .)
.
= g(. . .), E ⇒PU ⊥

x
.
= y, E ⇒PU x

.
= y, E{x 7→ y}

if x ∈ var(E), x 6= y

x1
.
= t1, . . . , xn

.
= tn, E ⇒PU ⊥

if there are positions pi with
ti/pi = xi+1, tn/pn = x1
and some pi 6= ǫ

x
.
= t, E ⇒PU ⊥

if x 6= t, x ∈ var(t)

t
.
= x, E ⇒PU x

.
= t, E

if t 6∈ X

x
.
= t, x

.
= s, E ⇒PU x

.
= t, t

.
= s, E

if t, s 6∈ X and |t| ≤ |s|
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Properties of PU

Theorem 3.25

1. If E ⇒PU E
′ then σ is a unifier of E iff σ is a unifier of E ′

2. If E
∗
⇒PU ⊥ then E is not unifiable.

3. If E
∗
⇒PU E

′ with E ′ in solved form, then σE′ is an mgu of E.

Note: The solved form of ⇒PU is different form the solved form obtained from ⇒SU .
In order to obtain the unifier σE′ , we have to sort the list of equality problems xi

.
= ti

in such a way that xi does not occur in tj for j < i, and then we have to compose the
substitutions {x1 7→ t1} ◦ · · · ◦ {xk 7→ tk}.

Lifting Lemma

Lemma 3.26 Let C and D be variable-disjoint clauses. If

Dy σ

Dσ

Cy ρ

Cρ
C ′

[propositional resolution]

then there exists a substitution τ such that

D C

C ′′y τ

C ′ = C ′′τ

[general resolution]

An analogous lifting lemma holds for factorization.

Saturation of Sets of General Clauses

Corollary 3.27 Let N be a set of general clauses saturated under Res, i. e., Res(N) ⊆
N . Then also GΣ(N) is saturated, that is,

Res(GΣ(N)) ⊆ GΣ(N).
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