If a unifier of E is more general than any other unifier of E, then we speak of a most general unifier of E, denoted by $\operatorname{mgu}(E)$.

Proposition 3.20

(i) \leq is a quasi-ordering on substitutions, and \circ is associative.
(ii) If $\sigma \leq \tau$ and $\tau \leq \sigma$ (we write $\sigma \sim \tau$ in this case), then $x \sigma$ and $x \tau$ are equal up to (bijective) variable renaming, for any x in X.

A substitution σ is called idempotent, if $\sigma \circ \sigma=\sigma$.

Proposition 3.21σ is idempotent iff $\operatorname{dom}(\sigma) \cap \operatorname{codom}(\sigma)=\emptyset$.

Rule-Based Naive Standard Unification

$$
\begin{array}{rll}
t \doteq t, E & \Rightarrow_{S U} & E \\
f\left(s_{1}, \ldots, s_{n}\right) \doteq f\left(t_{1}, \ldots, t_{n}\right), E & \Rightarrow_{S U} & s_{1} \doteq t_{1}, \ldots, s_{n} \doteq t_{n}, E \\
f(\ldots) \doteq g(\ldots), E & \Rightarrow_{S U} & \perp \\
x \doteq t, E & \Rightarrow_{S U} & x \doteq t, E\{x \mapsto t\} \\
& & \text { if } x \in \operatorname{var}(E), x \notin \operatorname{var}(t) \\
x \doteq t, E & \Rightarrow_{S U} & \perp \\
& & \text { if } x \neq t, x \in \operatorname{var}(t) \\
t \doteq x, E & \Rightarrow_{S U} & x \doteq t, E \\
& & \text { if } t \notin X
\end{array}
$$

SU: Main Properties

If $E=x_{1} \doteq u_{1}, \ldots, x_{k} \doteq u_{k}$, with x_{i} pairwise distinct, $x_{i} \notin \operatorname{var}\left(u_{j}\right)$, then E is called an (equational problem in) solved form representing the solution $\sigma_{E}=\left\{x_{1} \mapsto u_{1}, \ldots\right.$, $\left.x_{k} \mapsto u_{k}\right\}$.

Proposition 3.22 If E is a solved form then σ_{E} is an mgu of E.

Theorem 3.23

1. If $E \Rightarrow_{S U} E^{\prime}$ then σ is a unifier of E iff σ is a unifier of E^{\prime}
2. If $E \Rightarrow{ }_{S U}^{*} \perp$ then E is not unifiable.
3. If $E \Rightarrow_{S U}^{*} E^{\prime}$ with E^{\prime} in solved form, then $\sigma_{E^{\prime}}$ is an mgu of E.

Proof. (1) We have to show this for each of the rules. Let's treat the case for the 4th rule here. Suppose σ is a unifier of $x \doteq t$, that is, $x \sigma=t \sigma$. Thus, $\sigma \circ\{x \mapsto t\}=\sigma[x \mapsto$ $t \sigma]=\sigma[x \mapsto x \sigma]=\sigma$. Therefore, for any equation $u \doteq v$ in $E: u \sigma=v \sigma$, iff $u\{x \mapsto$ $t\} \sigma=v\{x \mapsto t\} \sigma$. (2) and (3) follow by induction from (1) using Proposition 3.22.

Main Unification Theorem

Theorem 3.24 E is unifiable if and only if there is a most general unifier σ of E, such that σ is idempotent and $\operatorname{dom}(\sigma) \cup \operatorname{codom}(\sigma) \subseteq \operatorname{var}(E)$.

Proof.

- $\Rightarrow_{S U}$ is Noetherian. A suitable lexicographic ordering on the multisets E (with \perp minimal) shows this. Compare in this order:

1. the number of defined variables (d.h. variables x in equations $x \doteq t$ with $x \notin \operatorname{var}(t)$), which also occur outside their definition elsewhere in E;
2. the multiset ordering induced by (i) the size (number of symbols) in an equation; (ii) if sizes are equal consider $x \doteq t$ smaller than $t \doteq x$, if $t \notin X$.

- A system E that is irreducible w.r.t. $\Rightarrow_{S U}$ is either \perp or a solved form.
- Therefore, reducing any E by SU will end (no matter what reduction strategy we apply) in an irreducible E^{\prime} having the same unifiers as E, and we can read off the mgu (or non-unifiability) of E from E^{\prime} (Theorem 3.23, Proposition 3.22).
- σ is idempotent because of the substitution in rule 4. $\operatorname{dom}(\sigma) \cup \operatorname{codom}(\sigma) \subseteq$ $\operatorname{var}(E)$, as no new variables are generated.

Rule-Based Polynomial Unification

Problem: using $\Rightarrow_{S U}$, an exponential growth of terms is possible.
The following unification algorithm avoids this problem, at least if the final solved form is represented as a DAG.

$$
\begin{array}{rlrl}
t \doteq t, E & \Rightarrow_{P U} & E \\
f\left(s_{1}, \ldots, s_{n}\right) \doteq f\left(t_{1}, \ldots, t_{n}\right), E & \Rightarrow_{P U} & s_{1} \doteq t_{1}, \ldots, s_{n} \doteq t_{n}, E \\
f(\ldots) \doteq g(\ldots), E & \Rightarrow_{P U} & \perp \\
x \doteq y, E & \Rightarrow_{P U} & x \doteq y, E\{x \mapsto y\} \\
& \text { if } x \in \operatorname{var}(E), x \neq y \\
x_{1} \doteq t_{1}, \ldots, x_{n} \doteq t_{n}, E & \Rightarrow_{P U} & \perp \\
& \text { if there are positions } p_{i} \text { with } \\
& t_{i} / p_{i}=x_{i+1}, t_{n} / p_{n}=x_{1} \\
& \text { and some } p_{i} \neq \epsilon \\
x \doteq t, E & \Rightarrow_{P U} & \perp \\
& \text { if } x \neq t, x \in \operatorname{var}(t) \\
t \doteq x, E & \Rightarrow_{P U} & x \doteq t, E \\
& \text { if } t \notin X \\
x \doteq t, x \doteq s, E & \Rightarrow_{P U} & x \doteq t, t \doteq s, E \\
& \text { if } t, s \notin X \text { and }|t| \leq|s|
\end{array}
$$

Properties of PU

Theorem 3.25

1. If $E \Rightarrow_{P U} E^{\prime}$ then σ is a unifier of E iff σ is a unifier of E^{\prime}
2. If $E \Rightarrow_{P U}^{*} \perp$ then E is not unifiable.
3. If $E \Rightarrow_{P U}^{*} E^{\prime}$ with E^{\prime} in solved form, then $\sigma_{E^{\prime}}$ is an mgu of E.

Note: The solved form of $\Rightarrow_{P U}$ is different form the solved form obtained from $\Rightarrow_{S U}$. In order to obtain the unifier $\sigma_{E^{\prime}}$, we have to sort the list of equality problems $x_{i} \doteq t_{i}$ in such a way that x_{i} does not occur in t_{j} for $j<i$, and then we have to compose the substitutions $\left\{x_{1} \mapsto t_{1}\right\} \circ \cdots \circ\left\{x_{k} \mapsto t_{k}\right\}$.

Lifting Lemma

Lemma 3.26 Let C and D be variable-disjoint clauses. If

then there exists a substitution τ such that

An analogous lifting lemma holds for factorization.

Saturation of Sets of General Clauses

Corollary 3.27 Let N be a set of general clauses saturated under Res, i. e., $\operatorname{Res}(N) \subseteq$ N. Then also $G_{\Sigma}(N)$ is saturated, that is,

$$
\operatorname{Res}\left(G_{\Sigma}(N)\right) \subseteq G_{\Sigma}(N)
$$

