If a unifier of E is more general than any other unifier of E, then we speak of a most general unifier of E, denoted by mgu(E).

Proposition 3.20

- (i) \leq is a quasi-ordering on substitutions, and \circ is associative.
- (ii) If $\sigma \leq \tau$ and $\tau \leq \sigma$ (we write $\sigma \sim \tau$ in this case), then $x\sigma$ and $x\tau$ are equal up to (bijective) variable renaming, for any x in X.

A substitution σ is called *idempotent*, if $\sigma \circ \sigma = \sigma$.

Proposition 3.21 σ is idempotent iff $dom(\sigma) \cap codom(\sigma) = \emptyset$.

Rule-Based Naive Standard Unification

$$t \doteq t, E \Rightarrow_{SU} E$$

$$f(s_1, \dots, s_n) \doteq f(t_1, \dots, t_n), E \Rightarrow_{SU} s_1 \doteq t_1, \dots, s_n \doteq t_n, E$$

$$f(\dots) \doteq g(\dots), E \Rightarrow_{SU} \bot$$

$$x \doteq t, E \Rightarrow_{SU} x \doteq t, E\{x \mapsto t\}$$

$$\text{if } x \in var(E), x \notin var(t)$$

$$x \doteq t, E \Rightarrow_{SU} \bot$$

$$\text{if } x \neq t, x \in var(t)$$

$$t \doteq x, E \Rightarrow_{SU} x \doteq t, E$$

$$\text{if } t \notin X$$

SU: Main Properties

If $E = x_1 \doteq u_1, \ldots, x_k \doteq u_k$, with x_i pairwise distinct, $x_i \notin var(u_j)$, then E is called an (equational problem in) solved form representing the solution $\sigma_E = \{x_1 \mapsto u_1, \ldots, x_k \mapsto u_k\}$.

Proposition 3.22 If E is a solved form then σ_E is an mgu of E.

Theorem 3.23

- 1. If $E \Rightarrow_{SU} E'$ then σ is a unifier of E iff σ is a unifier of E'
- 2. If $E \Rightarrow_{SU}^* \perp$ then E is not unifiable.
- 3. If $E \Rightarrow_{SU}^* E'$ with E' in solved form, then $\sigma_{E'}$ is an mgu of E.

Proof. (1) We have to show this for each of the rules. Let's treat the case for the 4th rule here. Suppose σ is a unifier of $x \doteq t$, that is, $x\sigma = t\sigma$. Thus, $\sigma \circ \{x \mapsto t\} = \sigma[x \mapsto t\sigma] = \sigma[x \mapsto x\sigma] = \sigma$. Therefore, for any equation $u \doteq v$ in E: $u\sigma = v\sigma$, iff $u\{x \mapsto t\}\sigma = v\{x \mapsto t\}\sigma$. (2) and (3) follow by induction from (1) using Proposition 3.22. \Box

Main Unification Theorem

Theorem 3.24 *E* is unifiable if and only if there is a most general unifier σ of *E*, such that σ is idempotent and $dom(\sigma) \cup codom(\sigma) \subseteq var(E)$.

Proof.

- \Rightarrow_{SU} is Noetherian. A suitable lexicographic ordering on the multisets E (with \perp minimal) shows this. Compare in this order:
 - 1. the number of defined variables (d.h. variables x in equations $x \doteq t$ with $x \notin var(t)$), which also occur outside their definition elsewhere in E;
 - 2. the multiset ordering induced by (i) the size (number of symbols) in an equation; (ii) if sizes are equal consider $x \doteq t$ smaller than $t \doteq x$, if $t \notin X$.
- A system E that is irreducible w.r.t. \Rightarrow_{SU} is either \perp or a solved form.
- Therefore, reducing any E by SU will end (no matter what reduction strategy we apply) in an irreducible E' having the same unifiers as E, and we can read off the mgu (or non-unifiability) of E from E' (Theorem 3.23, Proposition 3.22).
- σ is idempotent because of the substitution in rule 4. $dom(\sigma) \cup codom(\sigma) \subseteq var(E)$, as no new variables are generated.

Rule-Based Polynomial Unification

Problem: using \Rightarrow_{SU} , an exponential growth of terms is possible.

The following unification algorithm avoids this problem, at least if the final solved form is represented as a DAG.

$$t \doteq t, E \Rightarrow_{PU} E$$

$$f(s_1, \dots, s_n) \doteq f(t_1, \dots, t_n), E \Rightarrow_{PU} s_1 \doteq t_1, \dots, s_n \doteq t_n, E$$

$$f(\dots) \doteq g(\dots), E \Rightarrow_{PU} \bot$$

$$x \doteq y, E \Rightarrow_{PU} x \doteq y, E\{x \mapsto y\}$$

$$if \ x \in var(E), x \neq y$$

$$x_1 \doteq t_1, \dots, x_n \doteq t_n, E \Rightarrow_{PU} \bot$$

$$if \ there \ are \ positions \ p_i \ with$$

$$t_i/p_i = x_{i+1}, t_n/p_n = x_1$$

$$and \ some \ p_i \neq \epsilon$$

$$x \doteq t, E \Rightarrow_{PU} \bot$$

$$if \ x \neq t, x \in var(t)$$

$$t \doteq x, E \Rightarrow_{PU} x \doteq t, E$$

$$if \ t \notin X$$

$$x \doteq t, x \doteq s, E \Rightarrow_{PU} x \doteq t, t \doteq s, E$$

$$if \ t, s \notin X \ and \ |t| \leq |s|$$

Properties of PU

Theorem 3.25

- 1. If $E \Rightarrow_{PU} E'$ then σ is a unifier of E iff σ is a unifier of E'
- 2. If $E \Rightarrow_{PU}^* \perp$ then E is not unifiable.
- 3. If $E \Rightarrow_{PU}^{*} E'$ with E' in solved form, then $\sigma_{E'}$ is an mgu of E.

Note: The solved form of \Rightarrow_{PU} is different form the solved form obtained from \Rightarrow_{SU} . In order to obtain the unifier $\sigma_{E'}$, we have to sort the list of equality problems $x_i \doteq t_i$ in such a way that x_i does not occur in t_j for j < i, and then we have to compose the substitutions $\{x_1 \mapsto t_1\} \circ \cdots \circ \{x_k \mapsto t_k\}$.

Lifting Lemma

Lemma 3.26 Let C and D be variable-disjoint clauses. If

$$\begin{array}{cccc}
D & C \\
\downarrow \sigma & \downarrow \rho \\
\underline{D\sigma} & \underline{C\rho} \\
\hline
C' & [propositional resolution]
\end{array}$$

then there exists a substitution τ such that

$$\frac{D}{C''} C'' \qquad [general resolution]$$
$$\downarrow \tau$$
$$C' = C'' \tau$$

An analogous lifting lemma holds for factorization.

Saturation of Sets of General Clauses

Corollary 3.27 Let N be a set of general clauses saturated under Res, i.e., $Res(N) \subseteq N$. Then also $G_{\Sigma}(N)$ is saturated, that is,

 $Res(G_{\Sigma}(N)) \subseteq G_{\Sigma}(N).$