
2.10 Superposition Versus CDCL

We will establish a relationship between Superposition and CDCL operating on a clause
set N :

Superposition: Is based on an ordering ≺. It computes a model assumption NI .
Either NI is a model, N contains the empty clause, or there is an inference on the
minimal false clause with respect to ≺.

CDCL: Is based on a variable selection heuristic. It computes a model assumption
via decision variables and propagation. Either this assumption is a model of N , N
contains the empty clause, or there is a backjump clause that is learned.

Proposition 2.20 Let (L1 + L2 + . . . + Lk;N) be a CDCL with eager propagation
state. Some of the Li may be decision literals and the corresponding propositional
variables are P1, . . . , Pk. Furthermore, let us assume that L1 + . . . + Lk−1 is a partial
valuation that does not falsify any clause in N whereas L1 + L2 + . . .+ Lk falsifies some
clause C ∨ Lk ∈ N . Then

(a) Lk is a propagated literal.

(b) The resolvent between C ∨ Lk and the clause propagating Lk is a superposition
inference and the conclusion is not redundant with respect to the ordering P1 ≺
P2 . . . ≺ Pk.

Proof. (a) The clause C ∨ Lk propagates Lk with respect to L1 + . . . + Lk−1, so with
eager propagation, the literal Lk cannot be decision literal but was propagated by a
clause C ′ ∨ Lk ∈ N .

(b) Both C and C ′ only contain literals with variables from P1, . . . , Pk−1. Since we
assume duplicate literals to be removed and tautologies to be deleted, the literal Lk is
strictly maximal in C ∨ Lk and Lk is strictly maximal in C ′ ∨ Lk. So resolving on Lk is
a superposition inference with respect to the variable ordering P1 ≺ P2 . . . ≺ Pk. Now
assume C ∨C ′ is redundant, i.e., there are clauses D1, . . . , Dn from N with Di ≺ C ∨C ′

and D1, . . . , Dn |= C ∨ C ′. Since C ∨ C ′ is false in L1 + . . .+ Lk−1 there is at least one
Di that is also false in L1 + . . . + Lk−1. A contradiction against the assumption that
L1 + . . .+ Lk−1 does not falsify any clause in N . 2

Proposition 2.21 The 1UIP backjump clause is not redundant.

Proof. By Proposition 2.20 a one resolution step 1UIP backjump clause has this prop-
erty. The argument in the proof of Proposition 2.20 can be repeated until we reach the
first decision literal Lm by resolving away Lk, Lk−1, . . . , Lm+1. 2
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Proposition 2.22 Let (L1+L2 + . . .+Lk;N) be a CDCL with eager propagation state.
We assume that all decision literals among the Li are negative and let the corresponding
propositional variables be P1, . . . , Pk. Furthermore, let us assume that L1 + . . . + Lk is
a partial valuation that does not falsify any clause in N . Then N

≺Pk+1

I = {P1, . . . , Pk} ∩
{L1, . . . , Lk} with ordering P1 ≺ P2 . . . ≺ Pk+1.

Proof. We assume that there is a variable Pk+1 ∈ Σ for otherwise it can be added. By
induction on k. For the base case k = 1 we distinguish two cases. If L1 is propagated
then there is a clause L1 ∈ N . In case L1 is positive then it is also productive and
L1 ∈ N

≺P2

I . If it is negative then there cannot be a clause P1 ∈ N , so P1 6∈ N
≺P2

I .

For the induction step assume N≺Pk

I = {P1, . . . , Pk−1} ∩ {L1, . . . , Lk−1}. If Lk is prop-
agated and positive, then there is a clause C ∨ Lk where all atoms in C are from
{P1, . . . , Pk−1} and hence Lk is strictly maximal in C ∨ Lk, the clause C is false in

N≺Pk

I and therefore Lk is produced, proving N
≺Pk+1

I = {P1, . . . , Pk} ∩ {L1, . . . , Lk}.

If Lk is propagated and negative, then there cannot be a clause C ∨ Pk ∈ N
≺Pk+1 with

C false in N≺Pk

I , because for otherwise L1 + . . .+ Lk falsifies a clause in N . So there is

no clause in N producing Pk and hence N
≺Pk+1

I = {P1, . . . , Pk} ∩ {L1, . . . , Lk}.

If Lk is a decision literal and therefore negative, there cannot be a clause C ∨Pk ∈ N
≺Pk+1

with C false in N≺Pk

I , because we assume eager propagation and so again N
≺Pk+1

I =
{P1, . . . , Pk} ∩ {L1, . . . , Lk}. 2

3 First-Order Logic

→First-order logic

• formalizes fundamental mathematical concepts

• is expressive (Turing-complete)

• is not too expressive (e. g. not axiomatizable: natural numbers, uncountable sets)

• has a rich structure of decidable fragments

• has a rich model and proof theory

First-order logic is also called (first-order) predicate logic.
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