Properties of PU

Theorem 3.25

- 1. If $E \Rightarrow_{PU} E'$ then σ is a unifier of E iff σ is a unifier of E'
- 2. If $E \Rightarrow_{PU}^* \perp$ then E is not unifiable.
- 3. If $E \Rightarrow_{PU}^{*} E'$ with E' in solved form, then $\sigma_{E'}$ is an mgu of E.

Note: The solved form of \Rightarrow_{PU} is different form the solved form obtained from \Rightarrow_{SU} . In order to obtain the unifier $\sigma_{E'}$, we have to sort the list of equality problems $x_i \doteq t_i$ in such a way that x_i does not occur in t_j for j < i, and then we have to compose the substitutions $\{x_1 \mapsto t_1\} \circ \cdots \circ \{x_k \mapsto t_k\}$.

Lifting Lemma

Lemma 3.26 Let C and D be variable-disjoint clauses. If

$$\begin{array}{cccc}
D & C \\
\downarrow \sigma & \downarrow \rho \\
\underline{D\sigma} & \underline{C\rho} \\
\hline
C' & [propositional resolution]
\end{array}$$

then there exists a substitution τ such that

$$\frac{D \quad C}{C''} \qquad [\text{general resolution}]$$
$$\downarrow \tau$$
$$C' = C''\tau$$

An analogous lifting lemma holds for factorization.

Saturation of Sets of General Clauses

Corollary 3.27 Let N be a set of general clauses saturated under Res, i.e., $Res(N) \subseteq N$. Then also $G_{\Sigma}(N)$ is saturated, that is,

 $Res(G_{\Sigma}(N)) \subseteq G_{\Sigma}(N).$

Proof. W.l.o.g. we may assume that clauses in N are pairwise variable-disjoint. (Otherwise make them disjoint, and this renaming process changes neither Res(N) nor $G_{\Sigma}(N)$.)

Let $C' \in Res(G_{\Sigma}(N))$, meaning (i) there exist resolvable ground instances $D\sigma$ and $C\rho$ of N with resolvent C', or else (ii) C' is a factor of a ground instance $C\sigma$ of C.

Case (i): By the Lifting Lemma, D and C are resolvable with a resolvent C'' with $C''\tau = C'$, for a suitable substitution τ . As $C'' \in N$ by assumption, we obtain that $C' \in G_{\Sigma}(N)$.

Case (ii): Similar.

Herbrand's Theorem

Lemma 3.28 Let N be a set of Σ -clauses, let \mathcal{A} be an interpretation. Then $\mathcal{A} \models N$ implies $\mathcal{A} \models G_{\Sigma}(N)$.

Lemma 3.29 Let N be a set of Σ -clauses, let \mathcal{A} be a Herbrand interpretation. Then $\mathcal{A} \models G_{\Sigma}(N)$ implies $\mathcal{A} \models N$.

Theorem 3.30 (Herbrand) A set N of Σ -clauses is satisfiable if and only if it has a Herbrand model over Σ .

Proof. The " \Leftarrow " part is trivial. For the " \Rightarrow " part let $N \not\models \bot$.

$$N \not\models \bot \Rightarrow \bot \notin Res^{*}(N)$$
 (resolution is sound)

$$\Rightarrow \bot \notin G_{\Sigma}(Res^{*}(N))$$

$$\Rightarrow G_{\Sigma}(Res^{*}(N))_{\mathcal{I}} \models G_{\Sigma}(Res^{*}(N))$$
 (Thm. 3.17; Cor. 3.27)

$$\Rightarrow G_{\Sigma}(Res^{*}(N))_{\mathcal{I}} \models Res^{*}(N)$$
 (Lemma 3.29)

$$\Rightarrow G_{\Sigma}(Res^{*}(N))_{\mathcal{I}} \models N$$
 ($N \subseteq Res^{*}(N)$) \Box

The Theorem of Löwenheim-Skolem

Theorem 3.31 (Löwenheim–Skolem) Let Σ be a countable signature and let S be a set of closed Σ -formulas. Then S is satisfiable iff S has a model over a countable universe.

Proof. If both X and Σ are countable, then S can be at most countably infinite. Now generate, maintaining satisfiability, a set N of clauses from S. This extends Σ by at most countably many new Skolem functions to Σ' . As Σ' is countable, so is $T_{\Sigma'}$, the universe of Herbrand-interpretations over Σ' . Now apply Theorem 3.30.

Refutational Completeness of General Resolution

Theorem 3.32 Let N be a set of general clauses where $Res(N) \subseteq N$. Then

 $N \models \bot \Leftrightarrow \bot \in N.$

Proof. Let $Res(N) \subseteq N$. By Corollary 3.27: $Res(G_{\Sigma}(N)) \subseteq G_{\Sigma}(N)$

 $N \models \bot \Leftrightarrow G_{\Sigma}(N) \models \bot \qquad \text{(Lemma 3.28/3.29; Theorem 3.30)}$ $\Leftrightarrow \bot \in G_{\Sigma}(N) \qquad \text{(propositional resolution sound and complete)}$ $\Leftrightarrow \bot \in N \quad \Box$

Compactness of Predicate Logic

Theorem 3.33 (Compactness Theorem for First-Order Logic) Let S be a set of first-order formulas. S is unsatisfiable iff some finite subset $S' \subseteq S$ is unsatisfiable.

Proof. The " \Leftarrow " part is trivial. For the " \Rightarrow " part let *S* be unsatisfiable and let *N* be the set of clauses obtained by Skolemization and CNF transformation of the formulas in *S*. Clearly $Res^*(N)$ is unsatisfiable. By Theorem 3.32, $\perp \in Res^*(N)$, and therefore $\perp \in Res^n(N)$ for some $n \in \mathbb{N}$. Consequently, \perp has a finite resolution proof *B* of depth $\leq n$. Choose *S'* as the subset of formulas in *S* such that the corresponding clauses contain the assumptions (leaves) of *B*.

3.11 First-Order Superposition with Selection

Motivation: Search space for *Res very* large.

Ideas for improvement:

- In the completeness proof (Model Existence Theorem 2.13) one only needs to resolve and factor maximal atoms
 ⇒ if the calculus is restricted to inferences involving maximal atoms, the proof remains correct
 ⇒ ordering restrictions
- 2. In the proof, it does not really matter with which negative literal an inference is performed

 \Rightarrow choose a negative literal don't-care-nondeterministically

 \Rightarrow selection

Selection Functions

A selection function is a mapping

sel : $C \mapsto$ set of occurrences of negative literals in C

Example of selection with selected literals indicated as X:

$$\boxed{\neg A} \lor \neg A \lor B$$
$$\boxed{\neg B_0} \lor \boxed{\neg B_1} \lor A$$

Intuition:

- If a clause has at least one selected literal, compute only inferences that involve a selected literal.
- If a clause has no selected literals, compute only inferences that involve a maximal literal.

Orderings for Terms, Atoms, Clauses

For first-order logic an ordering on the signature symbols is not sufficient to compare atoms, e.g., how to compare P(a) and P(b)?

We propose the Knuth-Bendix Ordering for terms, atoms (with variables) which is then lifted as in the propositional case to literals and clauses.

The Knuth-Bendix Ordering (Simple)

Let $\Sigma = (\Omega, \Pi)$ be a finite signature, let \succ be a total ordering ("precedence") on $\Omega \cup \Pi$, let $w : \Omega \cup \Pi \cup X \to \mathbb{R}^+$ be a weight function, satisfying $w(x) = w_0 \in \mathbb{R}^+$ for all variables $x \in X$ and $w(c) \ge w_0$ for all constants $c \in \Omega$.

The weight function w can be extended to terms (atoms) as follows:

$$w(f(t_1,\ldots,t_n)) = w(f) + \sum_{1 \le i \le n} w(t_i)$$
$$w(P(t_1,\ldots,t_n)) = w(P) + \sum_{1 \le i \le n} w(t_i)$$

The Knuth-Bendix ordering \succ_{kbo} on $T_{\Sigma}(X)$ (atoms) induced by \succ and w is defined by: $s \succ_{\text{kbo}} t$ iff

- (1) $\#(x,s) \ge \#(x,t)$ for all variables x and w(s) > w(t), or
- (2) $\#(x,s) \ge \#(x,t)$ for all variables x, w(s) = w(t), and (a) $s = f(s_1, \dots, s_m), t = g(t_1, \dots, t_n)$, and $f \succ g$, or (b) $s = f(s_1, \dots, s_m), t = f(t_1, \dots, t_m)$, and $(s_1, \dots, s_m) (\succ_{kbo})_{lex} (t_1, \dots, t_m)$.

where $\#(s,t) = |\{p \mid t|_p = s\}|.$

Proposition 3.34 The Knuth-Bendix ordering \succ_{kbo} is

- (1) a strict partial well-founded ordering on terms (atoms).
- (2) stable under substitution: if $s \succ_{\text{kbo}} t$ then $s\sigma \succ_{\text{kbo}} t\sigma$ for any σ .
- (3) total on ground terms (ground atoms).

Superposition Calculus Sup_{sel}^{\succ}

The resolution calculus Sup_{sel}^{\succ} is parameterized by

- a selection function sel
- and a total and well-founded atom ordering \succ .

In the completeness proof, we talk about (strictly) maximal literals of ground clauses.

In the non-ground calculus, we have to consider those literals that correspond to (strictly) maximal literals of ground instances:

A literal *L* is called *[strictly] maximal* in a clause *C* if and only if there exists a ground substitution σ such that $L\sigma$ is *[strictly] maximal* in $C\sigma$ (i.e., if for no other *L'* in *C*: $L\sigma \prec L'\sigma [L\sigma \preceq L'\sigma]$).

$$\frac{D \lor B \qquad C \lor \neg A}{(D \lor C)\sigma} \qquad [Superposition \ Left \ with \ Selection]$$

if the following conditions are satisfied:

- (i) $\sigma = mgu(A, B);$
- (ii) $B\sigma$ strictly maximal in $D\sigma \vee B\sigma$;
- (iii) nothing is selected in $D \vee B$ by sel;
- (iv) either $\neg A$ is selected, or else nothing is selected in $C \lor \neg A$ and $\neg A\sigma$ is maximal in $C\sigma \lor \neg A\sigma$.

$$\frac{C \lor A \lor B}{(C \lor A)\sigma} \qquad [Factoring]$$

if the following conditions are satisfied:

- (i) $\sigma = mgu(A, B);$
- (ii) $A\sigma$ is maximal in $C\sigma \lor A\sigma \lor B\sigma$;
- (iii) nothing is selected in $C \lor A \lor B$ by sel.

Special Case: Propositional Logic

For ground clauses the superposition inference rule simplifies to

$$\frac{D \lor P \qquad C \lor \neg P}{D \lor C}$$

if the following conditions are satisfied:

(i)
$$P \succ D$$
;

- (ii) nothing is selected in $D \vee P$ by sel;
- (iii) $\neg P$ is selected in $C \lor \neg P$, or else nothing is selected in $C \lor \neg P$ and $\neg P \succeq \max(C)$.

Note: For positive literals, $P \succ D$ is the same as $P \succ \max(D)$.

Analogously, the factoring rule simplifies to

$$\frac{C \lor P \lor P}{C \lor P}$$

if the following conditions are satisfied:

- (i) P is the largest literal in $C \lor P \lor P$;
- (ii) nothing is selected in $C \lor P \lor P$ by sel.

Search Spaces Become Smaller

1	$P \lor Q$		we assume $P \succ Q$
2	$P \lor \neg Q$		and sel as indicated by
3	$\neg P \lor Q$		X. The maximal lit-
4	$\neg P \lor \neg Q$		eral in a clause is de-
5	$Q \lor Q$	Res 1, 3	picted in red.
6	Q	Fact 5	
7	$\neg P$	Res 6, 4	
8	P	Res 6, 2	
9	\perp	Res 8, 7	
x 7· / 1	.1. 1.	1 1	6

With this ordering and selection function the refutation proceeds strictly deterministically in this example. Generally, proof search will still be non-deterministic but the search space will be much smaller than with unrestricted resolution.

Avoiding Rotation Redundancy

From

$$\frac{C_1 \lor P \quad C_2 \lor \neg P \lor Q}{\frac{C_1 \lor C_2 \lor Q}{C_1 \lor C_2 \lor C_3}} \frac{C_3 \lor \neg Q}{C_3 \lor \neg Q}$$

we can obtain by rotation

$$\frac{C_1 \vee P}{C_1 \vee C_2 \vee \neg P \vee Q} \frac{C_2 \vee \neg P \vee Q}{C_2 \vee \neg P \vee C_3} \frac{C_2 \vee \neg Q}{C_1 \vee C_2 \vee C_3}$$

another proof of the same clause. In large proofs many rotations are possible. However, if $P \succ Q$, then the second proof does not fulfill the orderings restrictions.

Conclusion: In the presence of orderings restrictions (however one chooses \succ) no rotations are possible. In other words, orderings identify exactly one representant in any class of rotation-equivalent proofs.

Lifting Lemma for Sup_{sel}^{\succ}

Lemma 3.35 Let D and C be variable-disjoint clauses. If

$$\begin{array}{ccc} D & C \\ \downarrow \sigma & \downarrow \rho \\ \underline{D\sigma} & \underline{C\rho} \\ \hline C' \end{array} \qquad [propositional inference in Sup_{sel}^{\succ}] \end{array}$$

and if $\operatorname{sel}(D\sigma) \simeq \operatorname{sel}(D)$, $\operatorname{sel}(C\rho) \simeq \operatorname{sel}(C)$ (that is, "corresponding" literals are selected), then there exists a substitution τ such that

$$\frac{D \quad C}{C''} \qquad [\text{inference in } Sup_{\text{sel}}^{\succ}]$$
$$\downarrow \tau$$
$$C' = C''\tau$$

An analogous lifting lemma holds for factorization.

Saturation of General Clause Sets

Corollary 3.36 Let N be a set of general clauses saturated under Sup_{sel}^{\succ} , i. e., $Sup_{sel}^{\succ}(N) \subseteq N$. Then there exists a selection function sel' such that sel $|_N = sel'|_N$ and $G_{\Sigma}(N)$ is also saturated, i. e.,

 $Sup_{sel'}^{\succ}(G_{\Sigma}(N)) \subseteq G_{\Sigma}(N).$

Proof. We first define the selection function sel' such that $\operatorname{sel}'(C) = \operatorname{sel}(C)$ for all clauses $C \in G_{\Sigma}(N) \cap N$. For $C \in G_{\Sigma}(N) \setminus N$ we choose a fixed but arbitrary clause $D \in N$ with $C \in G_{\Sigma}(D)$ and define $\operatorname{sel}'(C)$ to be those occurrences of literals that are ground instances of the occurrences selected by sel in D. Then proceed as in the proof of Cor. 3.27 using the above lifting lemma.

Soundness and Refutational Completeness

Theorem 3.37 Let \succ be an atom ordering and sel a selection function such that $Sup_{sel}^{\succ}(N) \subseteq N$. Then

 $N \models \bot \Leftrightarrow \bot \in N$

Proof. The " \Leftarrow " part is trivial. For the " \Rightarrow " part consider the propositional level: Construct a candidate interpretation $N_{\mathcal{I}}$ as for superposition without selection, except that clauses C in N that have selected literals are not productive, even when they are false in N_C and when their maximal atom occurs only once and positively. The result then follows by Corollary 3.36.

Craig-Interpolation

A theoretical application of superposition is Craig-Interpolation:

Theorem 3.38 (Craig 1957) Let ϕ and ψ be two propositional formulas such that $\phi \models \psi$. Then there exists a formula χ (called the interpolant for $\phi \models \psi$), such that χ contains only prop. variables occurring both in ϕ and in ψ , and such that $\phi \models \chi$ and $\chi \models \psi$.

Proof. Translate ϕ and $\neg \psi$ into CNF. let N and M, resp., denote the resulting clause set. Choose an atom ordering \succ for which the prop. variables that occur in ϕ but not in ψ are maximal. Saturate N into N^* w.r.t. Sup_{sel}^{\succ} with an empty selection function sel . Then saturate $N^* \cup M$ w.r.t. Sup_{sel}^{\succ} to derive \bot . As N^* is already saturated, due to the ordering restrictions only inferences need to be considered where premises, if they are from N^* , only contain symbols that also occur in ψ . The conjunction of these premises is an interpolant χ . The theorem also holds for first-order formulas. For universal formulas the above proof can be easily extended. In the general case, a proof based on superposition technology is more complicated because of Skolemization. \Box

Redundancy

So far: local restrictions of the resolution inference rules using orderings and selection functions.

Is it also possible to delete clauses altogether? Under which circumstances are clauses unnecessary? (Conjecture: e.g., if they are tautologies or if they are subsumed by other clauses.)

Intuition: If a clause is guaranteed to be neither a minimal counterexample nor productive, then we do not need it.

A Formal Notion of Redundancy

Let N be a set of ground clauses and C a ground clause (not necessarily in N). C is called *redundant* w.r.t. N, if there exist $C_1, \ldots, C_n \in N$, $n \ge 0$, such that $C_i \prec C$ and $C_1, \ldots, C_n \models C$.

Redundancy for general clauses: C is called *redundant* w.r.t. N, if all ground instances $C\sigma$ of C are redundant w.r.t. $G_{\Sigma}(N)$.

Intuition: Redundant clauses are neither minimal counterexamples nor productive.

Note: The same ordering \prec is used for ordering restrictions and for redundancy (and for the completeness proof).