
Craig-Interpolation

A theoretical application of superposition is Craig-Interpolation:

Theorem 3.38 (Craig 1957) Let φ and ψ be two propositional formulas such that
φ |= ψ. Then there exists a formula χ (called the interpolant for φ |= ψ), such that χ
contains only prop. variables occurring both in φ and in ψ, and such that φ |= χ and
χ |= ψ.

Proof. Translate φ and ¬ψ into CNF. let N and M , resp., denote the resulting clause
set. Choose an atom ordering ≻ for which the prop. variables that occur in φ but not
in ψ are maximal. Saturate N into N∗ w. r. t. Sup≻sel with an empty selection function
sel . Then saturate N∗ ∪ M w. r. t. Sup≻sel to derive ⊥. As N∗ is already saturated,
due to the ordering restrictions only inferences need to be considered where premises,
if they are from N∗, only contain symbols that also occur in ψ. The conjunction of
these premises is an interpolant χ. The theorem also holds for first-order formulas. For
universal formulas the above proof can be easily extended. In the general case, a proof
based on superposition technology is more complicated because of Skolemization. 2

Redundancy

So far: local restrictions of the resolution inference rules using orderings and selection
functions.

Is it also possible to delete clauses altogether? Under which circumstances are clauses
unnecessary? (Conjecture: e. g., if they are tautologies or if they are subsumed by other
clauses.)

Intuition: If a clause is guaranteed to be neither a minimal counterexample nor produc-
tive, then we do not need it.

A Formal Notion of Redundancy

Recall: Let N be a set of ground clauses and C a ground clause (not necessarily in N).
C is called redundant w. r. t. N , if there exist C1, . . . , Cn ∈ N , n ≥ 0, such that Ci ≺ C
and C1, . . . , Cn |= C.

Redundancy for general clauses: C is called redundant w. r. t. N , if all ground instances
Cσ of C are redundant w. r. t. GΣ(N).

Note: The same ordering ≺ is used for ordering restrictions and for redundancy (and
for the completeness proof).

88

Examples of Redundancy

Proposition 3.39 Recall the redundancy criteria:

• C tautology (i. e., |= C) ⇒ C redundant w. r. t. any set N .
Tautology Deletion

• Cσ ⊂ D ⇒ D redundant w. r. t. N ∪ {C}.
Subsumption

• Cσ ⊆ D ⇒ D ∨ Lσ redundant w. r. t. N ∪ {C ∨ L, D}.
Subsumption Resolution

Saturation up to Redundancy

N is called saturated up to redundancy (w. r. t. Sup≻sel)

:⇔ Sup≻sel(N \Red(N)) ⊆ N ∪Red(N)

Theorem 3.40 Let N be saturated up to redundancy. Then

N |= ⊥ ⇔ ⊥ ∈ N

Proof (Sketch). (i) Ground case:

• consider the construction of the candidate interpretation N≻
I for Sup≻sel

• redundant clauses are not productive

• redundant clauses in N are not minimal counterexamples for N≻
I

The premises of “essential” inferences are either minimal counterexamples or productive.

(ii) Lifting: no additional problems over the proof of Theorem 3.37. 2

Monotonicity Properties of Redundancy

Theorem 3.41

(i) N ⊆M ⇒ Red(N) ⊆ Red(M)

(ii) M ⊆ Red(N)⇒ Red(N) ⊆ Red(N \M)

We conclude that redundancy is preserved when, during a theorem proving process,
one adds (derives) new clauses or deletes redundant clauses. Recall that Red(N) may
include clauses that are not in N .

89

A First-Order Superposition Theorem Prover

Straightfotward extension of the propositional STP prover.

3 clause sets:
N(ew) containing new inferred clauses
U(sable) containing reduced new inferred clauses
clauses get into W(orked) O(ff) once their inferences have been computed

Strategy:
Inferences will only be computed when there are no possibilities for simplification

Rewrite Rules for STP

Tautology Deletion
(N ⊎ {C};U ;WO) ⇒STP (N ;U ;WO)

if C is a tautology

Forward Subsumption
(N ⊎ {C};U ;WO) ⇒STP (N ;U ;WO)

if some D ∈ (U ∪WO) subsumes C, Dσ ⊆ C

Backward Subsumption U
(N ⊎ {C};U ⊎ {D};WO) ⇒STP (N ∪ {C};U ;WO)

if C strictly subsumes D (Cσ ⊂ D)

Backward Subsumption WO
(N ⊎ {C};U ;WO ⊎ {D}) ⇒STP (N ∪ {C};U ;WO)

if C strictly subsumes D (Cσ ⊂ D)

Forward Subsumption Resolution
(N ⊎ {C1 ∨ L};U ;WO) ⇒STP (N ∪ {C1};U ;WO)

if C2 ∨ L
′ ∈ (U ∪WO) such that C2σ ⊆ C1 and L′σ = L

Backward Subsumption Resolution U
(N ⊎ {C1 ∨ L};U ⊎ {C2 ∨ L

′};WO) ⇒STP (N ∪ {C1 ∨ L};U ⊎ {C2};WO)

if C1σ ⊆ C2 and L′σ = L

Backward Subsumption Resolution WO
(N ⊎ {C1 ∨ L

′};U ;WO ⊎ {C2 ∨ L}) ⇒STP (N ∪ {C1 ∨ L};U ;WO ⊎ {C2})

if C1σ ⊆ C2 and L′σ = L

90

Clause Processing
(N ⊎ {C};U ;WO) ⇒STP (N ;U ∪ {C};WO)

Inference Computation
(∅;U ⊎ {C};WO) ⇒STP (N ;U ;WO ∪ {C})

where N is the set of clauses derived by first-order superposition inferences from C and
clauses in WO.

Implementation

Although first-order and propositional subsumption just differ in the matcher σ, proposi-
tional subsumption between two clauses C and D can be decided in O(n), n = |C|+ |D|
whereas first-order subsumption is NP-complete.

Hyperresolution

There are many variants of resolution. (We refer to [Bachmair, Ganzinger: Resolution
Theorem Proving] for further reading.)

One well-known example is hyperresolution (Robinson 1965):

Assume that several negative literals are selected in a clause C. If we perform an
inference with C, then one of the selected literals is eliminated.

Suppose that the remaining selected literals of C are again selected in the conclusion.
Then we must eliminate the remaining selected literals one by one by further resolution
steps.

Hyperresolution replaces these successive steps by a single inference. As for Sup≻sel, the
calculus is parameterized by an atom ordering ≻ and a selection function sel.

D1 ∨ B1 . . . Dn ∨ Bn C ∨ ¬A1 ∨ . . . ∨ ¬An

(D1 ∨ . . . ∨Dn ∨ C)σ

with σ = mgu(A1
.
= B1, . . . , An

.
= Bn), if

(i) Biσ strictly maximal in Diσ, 1 ≤ i ≤ n;

(ii) nothing is selected in Di;

(iii) the indicated occurrences of the ¬Ai are exactly the ones selected by sel, or else
nothing is selected in the right premise and n = 1 and ¬A1σ is maximal in Cσ.

91

Similarly to superposition (resolution), hyperresolution has to be complemented by a
factorization inference.

As we have seen, hyperresolution can be simulated by iterated binary superposition.

However this yields intermediate clauses which HR might not derive, and many of them
might not be extendable into a full HR inference.

3.12 Summary: Superposition Theorem Proving

• Superposition is a machine calculus.

• Subtle interleaving of enumerating instances and proving inconsistency through
the use of unification.

• Parameters: atom ordering ≻ and selection function sel. On the non-ground level,
ordering constraints can (only) be solved approximatively.

• Completeness proof by constructing candidate interpretations from productive
clauses C ∨ A, A ≻ C; inferences with those reduce counterexamples.

• Local restrictions of inferences via ≻ and sel
⇒ fewer proof variants.

• Global restrictions of the search space via elimination of redundancy
⇒ computing with “smaller” clause sets;
⇒ termination on many decidable fragments.

• However: not good enough for dealing with orderings, equality and more specific
algebraic theories (lattices, abelian groups, rings, fields) or arithmetic
⇒ further specialization of inference systems required.

92

Other Inference Systems

• Tableaux

• Instantiation-based methods
Resolution-based instance generation
Disconnection calculus
. . .

• Natural deduction

• Sequent calculus/Gentzen calculus

• Hilbert calculus

One major problem with all those calculi concerning automation is that they contain a
rule either guessing instances or limiting the use of formulas. So the procedure has to
guess instances and/or the number of copies of formulas. For example rules like:

Universal Quantification
S ∪ {∀x φ} ⇒ S ∪ {∀x φ} ∪ φ{x 7→ t}

for some ground term t ∈ TΣ

Existential Quantification
S ∪ {∃x φ} ⇒ S ∪ {∃x φ} ∪ φ{x 7→ a}

for some constant a new to φ

4 First-Order Logic with Equality

Equality is the most important relation in mathematics and functional programming.

In principle, problems in first-order logic with equality can be handled by any prover for
first-order logic without equality:

4.1 Handling Equality Naively

Proposition 4.1 Let F be a closed first-order formula with equality. Let ∼ /∈ Π be a
new predicate symbol. The set Eq(Σ) contains the formulas

∀x (x ∼ x)
∀x, y (x ∼ y → y ∼ x)

∀x, y, z (x ∼ y ∧ y ∼ z → x ∼ z)
∀~x, ~y (x1 ∼ y1 ∧ · · · ∧ xn ∼ yn → f(x1, . . . , xn) ∼ f(y1, . . . , yn))
∀~x, ~y (x1 ∼ y1 ∧ · · · ∧ xm ∼ ym ∧ p(x1, . . . , xm)→ p(y1, . . . , ym))

93

