
Other Inference Systems

• Tableaux

• Instantiation-based methods
Resolution-based instance generation
Disconnection calculus
. . .

• Natural deduction

• Sequent calculus/Gentzen calculus

• Hilbert calculus

One major problem with all those calculi concerning automation is that they contain a
rule either guessing instances or limiting the use of formulas. So the procedure has to
guess instances and/or the number of copies of formulas. For example rules like:

Universal Quantification
S ∪ {∀x φ} ⇒ S ∪ {∀x φ} ∪ φ{x 7→ t}

for some ground term t ∈ TΣ

Existential Quantification
S ∪ {∃x φ} ⇒ S ∪ {∃x φ} ∪ φ{x 7→ a}

for some constant a new to φ

4 First-Order Logic with Equality

Equality is the most important relation in mathematics and functional programming.

In principle, problems in first-order logic with equality can be handled by any prover for
first-order logic without equality:

4.1 Handling Equality Naively

Proposition 4.1 Let φ be a closed first-order formula with equality. Let ∼ /∈ Π be a
new predicate symbol. The set Eq(Σ) contains the formulas

∀x (x ∼ x)
∀x, y (x ∼ y → y ∼ x)

∀x, y, z (x ∼ y ∧ y ∼ z → x ∼ z)
∀~x, ~y (x1 ∼ y1 ∧ · · · ∧ xn ∼ yn → f(x1, . . . , xn) ∼ f(y1, . . . , yn))
∀~x, ~y (x1 ∼ y1 ∧ · · · ∧ xm ∼ ym ∧ P (x1, . . . , xm)→ P (y1, . . . , ym))
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for every f ∈ Ω and P ∈ Π. Let φ̃ be the formula that one obtains from φ if every
occurrence of ≈ is replaced by ∼. Then φ is satisfiable if and only if Eq(Σ) ∪ {φ̃} is
satisfiable.

Proof. Let Σ = (Ω,Π), let Σ1 = (Ω,Π ∪ {∼}).

For the “only if” part assume that φ is satisfiable and let A be a Σ-model of φ. Then we
define a Σ1-algebra B in such a way that B and A have the same universe, fB = fA for
every f ∈ Ω, pB = pA for every p ∈ Π, and ∼B is the identity relation on the universe.
It is easy to check that B is a model of both φ̃ and of Eq(Σ).

The proof of the “if” part consists of two steps.

Assume that the Σ1-algebra B = (UB, (fB : Un → U)f∈Ω, (pB ⊆ Um
B )p∈Π∪{∼}) is a model

of Eq(Σ) ∪ {φ̃}. In the first step, we can show that the interpretation ∼B of ∼ in B is a
congruence relation. We will prove this for the symmetry property, the other properties
of congruence relations, that is, reflexivity, transitivity, and congruence with respect to
functions and predicates are shown analogously. Let a, a′ ∈ UB such that a ∼B a

′. We
have to show that a′ ∼B a. Since B is a model ofEq(Σ), B(β)(∀x, y (x ∼ y → y ∼ x)) = 1
for every β, hence B(β[x 7→ b1, y 7→ b2])(x ∼ y → y ∼ x) = 1 for every β and every
b1, b2 ∈ UB. Set b1 = a and b2 = a′, then 1 = B(β[x 7→ a, y 7→ a′])(x ∼ y → y ∼ x) =
(a ∼B a

′ → a′ ∼B a), and since a ∼B a
′ holds by assumption, a′ ∼B a must also hold.

In the second step, we will now construct a Σ-algebra A from B and the congruence
relation∼B. Let [a] be the congruence class of an element a ∈ UB with respect to∼B. The
universe UA ofA is the set { [a] | a ∈ UB } of congruence classes of the universe of B. For a
function symbol f ∈ Ω, we define fA([a1], . . . , [an]) = [fB(a1, . . . , an)], and for a predicate
symbol p ∈ Π, we define ([a1], . . . , [an]) ∈ pA if and only if (a1, . . . , an) ∈ pB. Observe
that this is well-defined: If we take different representatives of the same congruence
class, we get the same result by congruence of ∼B. Now for every Σ-term t and every
B-assignment β, [B(β)(t)] = A(γ)(t), where γ is the A-assignment that maps every
variable x to [β(x)], and analogously for every Σ-formula ψ, B(β)(ψ̃) = A(γ)(ψ). Both
properties can easily shown by structural induction. Consequently, A is a model of φ.

2

By giving the equality axioms explicitly, first-order problems with equality can in prin-
ciple be solved by FSTP .

But this is unfortunately not efficient, mainly due to the transitivity axiom.

Equality is theoretically difficult: First-order functional programming is Turing-complete.

But: FSTP cannot even solve equational problems that are intuitively easy.

Consequence: to handle equality efficiently, knowledge must be integrated into the the-
orem prover.
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Roadmap

How to proceed:

Term rewrite systems
Expressing semantic consequence syntactically
Knuth-Bendix-Completion
Entailment for equations
(Superposition for first-order clauses with equality)

4.2 Term Rewrite Systems

Let E be a set of (implicitly universally quantified) equations.

The rewrite relation →E ⊆ TΣ(X)× TΣ(X) is defined by

s→E t iff there exist (l ≈ r) ∈ E, p ∈ pos(s),
and σ : X → TΣ(X),
such that s|p = lσ and t = s[rσ]p.

An instance of the lhs (left-hand side) of an equation is called a redex (reducible expres-
sion). Contracting a redex means replacing it with the corresponding instance of the
rhs (right-hand side) of the rule.

An equation l ≈ r is also called a rewrite rule, if l is not a variable and vars(l) ⊇
vars(r).

Notation: l → r.

A set of rewrite rules is called a term rewrite system (TRS).

We say that a set of equations E or a TRS R is terminating, if the rewrite relation →E

or →R has this property.

(Analogously for other properties of (abstract) rewrite systems).

Note: If E is terminating, then it is a TRS.

Rewrite Relations

Corollary 4.2 If E is convergent (i. e., terminating and confluent), then s ≈E t if and
only if s↔∗

E t if and only if s↓E = t↓E .

Corollary 4.3 If E is finite and convergent, then ≈E is decidable.
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Reminder:
If E is terminating, then it is confluent if and only if it is locally confluent.

Problems:

Show local confluence of E.

Show termination of E.

Transform E into an equivalent set of equations that is locally confluent and termi-
nating.

E-Algebras

Let E be a set of universally quantified equations. A model of E is also called an
E-algebra.

If E |= ∀~x(s ≈ t), i. e., ∀~x(s ≈ t) is valid in all E-algebras, we write this also as s ≈E t.

Goal:
Use the rewrite relation→E to express the semantic consequence relation syntactically:

s ≈E t if and only if s↔∗
E t.

Let E be a set of equations over TΣ(X). The following inference system allows to derive
consequences of E:

I
t ≈ t

(Reflexivity)

I
t ≈ t′

t′ ≈ t
(Symmetry)

I
t ≈ t′ t′ ≈ t′′

t ≈ t′′
(Transitivity)

I
t1 ≈ t′1 . . . tn ≈ t′n

f(t1, . . . , tn) ≈ f(t′1, . . . , t
′
n)

for any f/n (Congruence)

I
t ≈ t′

tσ ≈ t′σ
for any substitution σ (Instance)
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Lemma 4.4 The following properties are equivalent:

(i) s↔∗
E t

(ii) E ⇒∗ s ≈ t.

where E ⇒∗ s ≈ t is an abbreviation for E ⇒∗ E ′ and s ≈ t ∈ E ′.

Recall that the before inference rules of the form I
A1 . . . Ak

B
are abbreviations for

rewrite rules E ⊎ {A1, . . . , Ak} ⇒ E ∪ {A1, . . .Ak, B}.

Proof. (i)⇒(ii): s↔E t implies E ⇒∗ s ≈ t by induction on the depth of the position
where the rewrite rule is applied; then s ↔∗

E t implies E ⇒∗ s ≈ t by induction on the
number of rewrite steps in s↔∗

E t.

(ii)⇒(i): By induction on the size (number of symbols) of the derivation for E ⇒∗ s ≈ t.
2

Constructing a quotient algebra:

Let X be a set of variables.

For t ∈ TΣ(X) let [t] = { t′ ∈ TΣ(X) | E ⇒∗ t ≈ t′ } be the congruence class of t.

Define a Σ-algebra TΣ(X)/E (abbreviated by T ) as follows:

UT = { [t] | t ∈ TΣ(X) }.

fT ([t1], . . . , [tn]) = [f(t1, . . . , tn)] for f ∈ Ω.

Lemma 4.5 fT is well-defined: If [ti] = [t′i], then [f(t1, . . . , tn)] = [f(t′1, . . . , t
′
n)].

Proof. Follows directly from the Congruence rule for ⇒∗. 2

Lemma 4.6 T = TΣ(X)/E is an E-algebra.

Proof. Let ∀x1 . . . xn(s ≈ t) be an equation in E; let β be an arbitrary assignment.

We have to show that T (β)(∀~x(s ≈ t)) = 1, or equivalently, that T (γ)(s) = T (γ)(t) for
all γ = β[ xi 7→ [ti] | 1 ≤ i ≤ n ] with [ti] ∈ UT .

Let σ = {x1 7→ t1, . . . , xn 7→ tn}, then sσ ∈ T (γ)(s) and tσ ∈ T (γ)(t).

By the Instance rule, E ⇒∗ sσ ≈ tσ, hence T (γ)(s) = [sσ] = [tσ] = T (γ)(t). 2
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Lemma 4.7 Let X be a countably infinite set of variables; let s, t ∈ TΣ(X). If
TΣ(X)/E |= ∀~x(s ≈ t), then E ⇒∗ s ≈ t.

Proof. Assume that T |= ∀~x(s ≈ t), i. e., T (β)(∀~x(s ≈ t)) = 1. Consequently,
T (γ)(s) = T (γ)(t) for all γ = β[ xi 7→ [ti] | 1 ≤ i ≤ n ] with [ti] ∈ UT .

Choose ti = xi, then [s] = T (γ)(s) = T (γ)(t) = [t], so E ⇒∗ s ≈ t by definition of T .
2

Theorem 4.8 (“Birkhoff’s Theorem”) Let X be a countably infinite set of vari-
ables, let E be a set of (universally quantified) equations. Then the following properties
are equivalent for all s, t ∈ TΣ(X):

(i) s↔∗
E t.

(ii) E ⇒∗ s ≈ t.

(iii) s ≈E t, i. e., E |= ∀~x(s ≈ t).

(iv) TΣ(X)/E |= ∀~x(s ≈ t).

Proof. (i)⇔(ii): Lemma 4.4.

(ii)⇒(iii): By induction on the size of the derivation for E ⇒∗ s ≈ t.

(iii)⇒(iv): Obvious, since T = TΣ(X)/E is an E-algebra.

(iv)⇒(ii): Lemma 4.7. 2

Universal Algebra

TΣ(X)/E = TΣ(X)/≈E = TΣ(X)/↔∗
E is called the free E-algebra with generating set

X/≈E = { [x] | x ∈ X }:

Every mapping ϕ : X/≈E → B for some E-algebra B can be extended to a homomor-
phism ϕ̂ : TΣ(X)/E → B.

TΣ(∅)/E = TΣ(∅)/≈E = TΣ(∅)/↔
∗
E is called the initial E-algebra.

≈E = { (s, t) | E |= s ≈ t } is called the equational theory of E.

≈I
E = { (s, t) | TΣ(∅)/E |= s ≈ t } is called the inductive theory of E.

Example:

Let E = {∀x(x + 0 ≈ x), ∀x∀y(x + s(y) ≈ s(x + y))}. Then x + y ≈I
E y + x, but

x+ y 6≈E y + x.
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4.3 Critical Pairs

Showing local confluence (Sketch):

Problem: If t1 E← t0 →E t2, does there exist a term s such that t1 →
∗
E s

∗
E← t2 ?

If the two rewrite steps happen in different subtrees (disjoint redexes): yes.

If the two rewrite steps happen below each other (overlap at or below a variable
position): yes.

If the left-hand sides of the two rules overlap at a non-variable position: needs further
investigation.

Question:
Are there rewrite rules l1 → r1 and l2 → r2 such that some subterm l1|p and l2 have
a common instance (l1|p)σ1 = l2σ2 ?

Observation:
If we assume w.o.l.o.g. that the two rewrite rules do not have common variables, then
only a single substitution is necessary: (l1|p)σ = l2σ.

Further observation:
The mgu of l1|p and l2 subsumes all unifiers σ of l1|p and l2.

Let li → ri (i = 1, 2) be two rewrite rules in a TRS R whose variables have been renamed
such that vars(l1) ∩ vars(l2) = ∅. (Remember that vars(li) ⊇ vars(ri).)

Let p ∈ pos(l1) be a position such that l1|p is not a variable and σ is an mgu of l1|p and
l2.

Then r1σ ← l1σ → (l1σ)[r2σ]p.

〈r1σ, (l1σ)[r2σ]p〉 is called a critical pair of R.

The critical pair is joinable (or: converges), if r1σ ↓R (l1σ)[r2σ]p.

Theorem 4.9 (“Critical Pair Theorem”) A TRS R is locally confluent if and only
if all its critical pairs are joinable.

Proof. “only if”: obvious, since joinability of a critical pair is a special case of local
confluence.

“if”: Suppose s rewrites to t1 and t2 using rewrite rules li → ri ∈ R at positions
pi ∈ pos(s), where i = 1, 2. Without loss of generality, we can assume that the two rules
are variable disjoint, hence s|pi = liθ and ti = s[riθ]pi.

We distinguish between two cases: Either p1 and p2 are in disjoint subtrees (p1 || p2), or
one is a prefix of the other (w.o.l.o.g., p1 ≤ p2).
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Case 1: p1 || p2.

Then s = s[l1θ]p1[l2θ]p2, and therefore t1 = s[r1θ]p1[l2θ]p2 and t2 = s[l1θ]p1 [r2θ]p2 .

Let t0 = s[r1θ]p1 [r2θ]p2 . Then clearly t1 →R t0 using l2 → r2 and t2 →R t0 using
l1 → r1.

Case 2: p1 ≤ p2.

Case 2.1: p2 = p1q1q2, where l1|q1 is some variable x.

In other words, the second rewrite step takes place at or below a variable in the first
rule. Suppose that x occurs m times in l1 and n times in r1 (where m ≥ 1 and n ≥ 0).

Then t1 →
∗
R t0 by applying l2 → r2 at all positions p1q

′q2, where q
′ is a position of x in

r1.

Conversely, t2 →
∗
R t0 by applying l2 → r2 at all positions p1qq2, where q is a position of

x in l1 different from q1, and by applying l1 → r1 at p1 with the substitution θ′, where
θ′ = θ[x 7→ (xθ)[r2θ]q2 ].

Case 2.2: p2 = p1p, where p is a non-variable position of l1.

Then s|p2 = l2θ and s|p2 = (s|p1)|p = (l1θ)|p = (l1|p)θ, so θ is a unifier of l2 and l1|p.

Let σ be the mgu of l2 and l1|p, then θ = τ ◦ σ and 〈r1σ, (l1σ)[r2σ]p〉 is a critical pair.

By assumption, it is joinable, so r1σ →
∗
R v ←

∗
R (l1σ)[r2σ]p.

Consequently, t1 = s[r1θ]p1 = s[r1στ ]p1 →
∗
R s[vτ ]p1 and t2 = s[r2θ]p2 = s[(l1θ)[r2θ]p]p1 =

s[(l1στ)[r2στ ]p]p1 = s[((l1σ)[r2σ]p)τ ]p1 →
∗
R s[vτ ]p1 .

This completes the proof of the Critical Pair Theorem. 2

Note: Critical pairs between a rule and (a renamed variant of) itself must be considered
– except if the overlap is at the root (i. e., p = ε).

Corollary 4.10 A terminating TRS R is confluent if and only if all its critical pairs are
joinable.

Proof. By Newman’s Lemma and the Critical Pair Theorem. 2

Corollary 4.11 For a finite terminating TRS, confluence is decidable.

Proof. For every pair of rules and every non-variable position in the first rule there is
at most one critical pair 〈u1, u2〉.

Reduce every ui to some normal form u′i. If u′1 = u′2 for every critical pair, then R is
confluent, otherwise there is some non-confluent situation u′1

∗
R← u1 ←R s→R u2 →

∗
R u

′
2.
2
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