
6.3 Reduction Pairs and Argument Filterings

Goal: Show the non-existence of K-minimal infinite rewrite sequences

t1 →
∗
R u1 →K t2 →

∗
R u2 →K . . .

using well-founded orderings.

We observe that the requirements for the orderings used here are less restrictive than
for reduction orderings:

K-rules are only used at the top, so we need stability under substitutions, but com-
patibility with contexts is unnecessary.

While →K-steps should be decreasing, for →R-steps it would be sufficient to show
that they are not increasing.

This motivates the following definitions:

Rewrite quasi-ordering %:

reflexive and transitive binary relation, stable under substitutions, compatible with
contexts.

Reduction pair (%,≻):

% is a rewrite quasi-ordering.

≻ is a well-founded ordering that is stable under substitutions.

% and ≻ are compatible: % ◦ ≻ ⊆ ≻ or ≻ ◦% ⊆ ≻.

(In practice, ≻ is almost always the strict part of the quasi-ordering %.)

Clearly, for any reduction ordering ≻, (�,≻) is a reduction pair. More general reduction
pairs can be obtained using argument filterings:

Argument filtering π:

π : Ω ∪ Ω♯ → N ∪ list of N

π(f) =

{
i ∈ {1, . . . , arity(f)}, or

[i1, . . . , ik], where 1 ≤ i1 < · · · < ik ≤ arity(f), 0 ≤ k ≤ arity(f)

Extension to terms:

π(x) = x

π(f(t1, . . . , tn)) = π(ti), if π(f) = i

π(f(t1, . . . , tn)) = f ′(π(ti1), . . . , π(tik)), if π(f) = [i1, . . . , ik],
where f ′/k is a new function symbol.
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Let ≻ be a reduction ordering, let π be an argument filtering. Define s ≻π t iff π(s) ≻
π(t) and s %π t iff π(s) � π(t).

Lemma 6.2 (%π,≻π) is a reduction pair.

Proof. Follows from the following two properties:

π(sσ) = π(s)σπ, where σπ is the substitution that maps x to π(σ(x)).

π(s[u]p) =

{
π(s), if p does not correspond to any position in π(s)

π(s)[π(u)]q, if p corresponds to q in π(s)
2

For interpretation-based orderings (such as polynomial orderings) the idea of “cutting
out” certain subterms can be included directly in the definition of the ordering:

Reduction pairs by interpretation:

Let A be a Σ-algebra; let ≻ be a well-founded strict partial ordering on its universe.

Assume that all interpretations fA of function symbols are weakly monotone, i. e.,
ai � bi implies f(a1, . . . , , an) � f(b1, . . . , bn) for all ai, bi ∈ UA.

Define s %A t iff A(β)(s) � A(β)(t) for all assignments β : X → UA; define s ≻A t iff
A(β)(s) ≻ A(β)(t) for all assignments β : X → UA.

Then (%A,≻A) is a reduction pair.

For polynomial orderings, this definition permits interpretations of function symbols
where some variable does not occur at all (e. g., Pf(X, Y ) = 2X + 1 for a binary function
symbol). It is no longer required that every variable must occur with some positive
coefficient.

Theorem 6.3 (Arts and Giesl) Let K be a cycle in the dependency graph of the
TRS R. If there is a reduction pair (%,≻) such that

• l % r for all l → r ∈ R,

• l % r or l ≻ r for all l → r ∈ K,

• l ≻ r for at least one l → r ∈ K,

then there is no K-minimal infinite sequence.
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Proof. Assume that

t1 →
∗
R u1 →K t2 →

∗
R u2 →K . . .

is a K-minimal infinite rewrite sequence.

As l % r for all l → r ∈ R, we obtain ti % ui by stability under substitutions, compati-
bility with contexts, reflexivity and transitivity.

As l % r or l ≻ r for all l → r ∈ K, we obtain ui (% ∪ ≻) ti+1 by stability under
substitutions.

So we get an infinite (% ∪ ≻)-sequence containing infinitely many ≻-steps (since every
DP in K, in particular the one for which l ≻ r holds, is used infinitely often).

By compatibility of % and ≻, we can transform this into an infinite ≻-sequence, contra-
dicting well-foundedness. 2

The idea can be extended to SCCs in the same way as for the subterm criterion:

Search for a reduction pair (%,≻) such that l % r for all l → r ∈ R and l % r or l ≻ r for
all DPs l → r in the SCC. Delete all DPs in the SCC for which l ≻ r. Then re-compute
SCCs for the remaining graph and re-start.

Example: Consider the following TRS R from [Arts and Giesl]:

minus(x, 0)→ x (1)

minus(s(x), s(y))→ minus(x, y) (2)

quot(0, s(y))→ 0 (3)

quot(s(x), s(y))→ s(quot(minus(x, y), s(y))) (4)

(R is not contained in any simplification ordering, since the left-hand side of rule (4) is
embedded in the right-hand side after instantiating y by s(x).)

R has three dependency pairs:

minus♯(s(x), s(y))→ minus♯(x, y) (5)

quot ♯(s(x), s(y))→ quot ♯(minus(x, y), s(y)) (6)

quot ♯(s(x), s(y))→ minus♯(x, y) (7)

The dependency graph of R is

(5) (7) (6)
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There are exactly two SCCs (and also two cycles). The cycle at (5) can be handled using
the subterm criterion with π(minus♯) = 1. For the cycle at (6) we can use an argument
filtering π that mapsminus to 1 and leaves all other function symbols unchanged (that is,
π(g) = [1, . . . , arity(g)] for every g different from minus .) After applying the argument
filtering, we compare left and right-hand sides using an LPO with precedence quot > s
(the precedence of other symbols is irrelevant). We obtain l ≻ r for (6) and l % r for
(1), (2), (3), (4), so the previous theorem can be applied.

DP Processors

The methods described so far are particular cases of DP processors:

A DP processor

(G,R)

(G1, R1), . . . , (Gn, Rn)

takes a graph G and a TRS R as input and produces a set of pairs consisting of a graph
and a TRS.

It is sound and complete if there are K-minimal infinite sequences for G and R if and
only if there are K-minimal infinite sequences for at least one of the pairs (Gi, Ri).

Examples:

(G,R)

(SCC1, R), . . . , (SCCn, R)

where SCC1, . . . , SCCn are the strongly connected components of G.

(G,R)

(G \N,R)

if there is an SCC of G and a simple projection π such that π(l) D π(r) for all DPs
l → r in the SCC, and N is the set of DPs of the SCC for which π(l) ⊲ π(r).

(and analogously for reduction pairs)

Innermost Termination

The dependency method can also be used for proving termination of innermost rewriting:
s

i
−→R t if s →R t at position p and no rule of R can be applied at a position strictly

below p. (DP processors for innermost termination are more powerful than for ordinary
termination, and for program analysis, innermost termination is usually sufficient.)
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6.4 Superposition

Goal:

Combine the ideas of superposition for first-order logic without equality (overlap maxi-
mal literals in a clause) and Knuth-Bendix completion (overlap maximal sides of equa-
tions) to get a calculus for equational clauses.

Observation

It is possible to encode an arbitrary predicate p using a function fp and a new constant
tt:

P (t1, . . . , tn) ; fP (t1, . . . , tn) ≈ tt
¬ P (t1, . . . , tn) ; ¬ fP (t1, . . . , tn) ≈ tt

In equational logic it is therefore sufficient to consider the case that Π = ∅, i. e., equality
is the only predicate symbol.

Abbreviation: s 6≈ t instead of ¬ s ≈ t.

The Superposition Calculus – Informally

Conventions:

From now on: Π = ∅ (equality is the only predicate).

Inference rules are to be read modulo symmetry of the equality symbol.

We will first explain the ideas and motivations behind the superposition calculus and
its completeness proof. Precise definitions will be given later.

Ground inference rules:

Pos. Superposition:
D′ ∨ t ≈ t′ C ′ ∨ s[t] ≈ s′

D′ ∨ C ′ ∨ s[t′] ≈ s′

Neg. Superposition:
D′ ∨ t ≈ t′ C ′ ∨ s[t] 6≈ s′

D′ ∨ C ′ ∨ s[t′] 6≈ s′

Equality Resolution:
C ′ ∨ s 6≈ s

C ′

(Note: We will need one further inference rule.)
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Ordering restrictions:

Some considerations:

The literal ordering must depend primarily on the larger term of an equation.

As in the resolution case, negative literals must be a bit larger than the corresponding
positive literals.

Additionally, we need the following property: If s ≻ t ≻ u, then s 6≈ u must be larger
than s ≈ t. In other words, we must compare first the larger term, then the polarity,
and finally the smaller term.

The following construction has the required properties:

Let ≻ be a reduction ordering that is total on ground terms.

To a positive literal s ≈ t, we assign the multiset {s, t}, to a negative literal s 6≈ t
the multiset {s, s, t, t}. The literal ordering ≻L compares these multisets using the
multiset extension of ≻.

The clause ordering ≻C compares clauses by comparing their multisets of literals using
the multiset extension of ≻L.

Ordering restrictions:

Ground inferences are necessary only if the following conditions are satisfied:

– In superposition inferences, the left premise is smaller than the right premise.

– The literals that are involved in the inferences are maximal in the respective
clauses (strictly maximal for positive literals in superposition inferences).

– In these literals, the lhs is greater than or equal to the rhs (in superposition
inferences: greater than the rhs).

Model construction:

We want to use roughly the same ideas as in the completenes proof for superposition on
first-order without equality.

But: a Herbrand interpretation does not work for equality: The equality symbol ≈ must
be interpreted by equality in the interpretation.

Solution: Define a set E of ground equations and take TΣ(∅)/E = TΣ(∅)/≈E as the
universe.

Then two ground terms s and t are equal in the interpretation, if and only if s ≈E t.
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If E is a terminating and confluent rewrite system R, then two ground terms s and t
are equal in the interpretation, if and only if s ↓R t.

One problem:

In the completeness proof for the resolution calculus, the following property holds:

If C = C ′ ∨ A with a strictly maximal and positive literal A is false in the current
interpretation, then adding A to the current interpretation cannot make any literal of
C ′ true.

This does not hold for superposition:

Let b ≻ c ≻ d. Assume that the current rewrite system (representing the current
interpretation) contains the rule c→ d. Now consider the clause b ≈ c ∨ b ≈ d.

We need a further inference rule to deal with clauses of this kind, either the “Merging
Paramodulation” rule of Bachmair and Ganzinger or the following “Equality Factoring”
rule due to Nieuwenhuis:

Equality Factoring:
C ′ ∨ s ≈ t′ ∨ s ≈ t

C ′ ∨ t 6≈ t′ ∨ s ≈ t′

Note: This inference rule subsumes the usual factoring rule.

How do the non-ground versions of the inference rules for superposition look like?

Main idea as in non-equational first-order case:

Replace identity by unifiability. Apply the mgu to the resulting clause. In the ordering
restrictions, replace ≻ by 6�.

However:

As in Knuth-Bendix completion, we do not want to consider overlaps at or below a
variable position.

Consequence: there are inferences between ground instances Dθ and Cθ of clauses D
and C which are not ground instances of inferences between D and C.

Such inferences have to be treated in a special way in the completeness proof.
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The Superposition Calculus – Formally

Until now, we have seen most of the ideas behind the superposition calculus and its
completeness proof.

We will now start again from the beginning giving precise definitions and proofs.

Inference rules are applied with respect to the commutativity of equality ≈.

Inference rules:

Pos. Superposition:
D′ ∨ t ≈ t′ C ′ ∨ s[u] ≈ s′

(D′ ∨ C ′ ∨ s[t′] ≈ s′)σ

where σ = mgu(t, u) and
u is not a variable.

Neg. Superposition:
D′ ∨ t ≈ t′ C ′ ∨ s[u] 6≈ s′

(D′ ∨ C ′ ∨ s[t′] 6≈ s′)σ

where σ = mgu(t, u) and
u is not a variable.

Equality Resolution:
C ′ ∨ s 6≈ s′

C ′σ

where σ = mgu(s, s′).

Equality Factoring:
C ′ ∨ s′ ≈ t′ ∨ s ≈ t

(C ′ ∨ t 6≈ t′ ∨ s ≈ t′)σ

where σ = mgu(s, s′).

Theorem 6.4 All inference rules of the superposition calculus are correct, i. e., for every
rule

Cn, . . . , C1

C0

we have {C1, . . . , Cn} |= C0.

Proof. Exercise. 2
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Orderings:

Let ≻ be a reduction ordering that is total on ground terms.

To a positive literal s ≈ t, we assign the multiset {s, t}, to a negative literal s 6≈ t
the multiset {s, s, t, t}. The literal ordering ≻L compares these multisets using the
multiset extension of ≻.

The clause ordering ≻C compares clauses by comparing their multisets of literals using
the multiset extension of ≻L.

Inferences have to be computed only if the following ordering restrictions are satisfied:

– In superposition inferences, after applying the unifier to both premises, the left
premise is not greater than or equal to the right one.

– The last literal in each premise is maximal in the respective premise, i. e., there
exists no greater literal (strictly maximal for positive literals in superposition in-
ferences, i. e., there exists no greater or equal literal).

– In these literals, the lhs is not smaller than the rhs (in superposition inferences:
neither smaller nor equal).

A ground clause C is called redundant w. r. t. a set of ground clauses N , if it follows
from clauses in N that are smaller than C.

A clause is redundant w. r. t. a set of clauses N , if all its ground instances are redundant
w. r. t. GΣ(N).

The set of all clauses that are redundant w. r. t. N is denoted by Red(N).

N is called saturated up to redundancy, if the conclusion of every inference from clauses
in N \Red(N) is contained in N ∪Red(N).

Superposition: Refutational Completeness

For a set E of ground equations, TΣ(∅)/E is an E-interpretation (or E-algebra) with
universe { [t] | t ∈ TΣ(∅) }.

One can show (similar to the proof of Birkhoff’s Theorem) that for every ground equation
s ≈ t we have TΣ(∅)/E |= s ≈ t if and only if s↔∗

E t.

In particular, if E is a convergent set of rewrite rules R and s ≈ t is a ground equation,
then TΣ(∅)/R |= s ≈ t if and only if s ↓R t. By abuse of terminology, we say that an
equation or clause is valid (or true) in R if and only if it is true in TΣ(∅)/R.
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