
6.4 Superposition

Goal:

Combine the ideas of superposition for first-order logic without equality (overlap maxi-
mal literals in a clause) and Knuth-Bendix completion (overlap maximal sides of equa-
tions) to get a calculus for equational clauses.

Observation

It is possible to encode an arbitrary predicate p using a function fp and a new constant
tt:

P (t1, . . . , tn) ; fP (t1, . . . , tn) ≈ tt
¬ P (t1, . . . , tn) ; ¬ fP (t1, . . . , tn) ≈ tt

In equational logic it is therefore sufficient to consider the case that Π = ∅, i. e., equality
is the only predicate symbol.

Abbreviation: s 6≈ t instead of ¬ s ≈ t.

The Superposition Calculus – Informally

Conventions:

From now on: Π = ∅ (equality is the only predicate).

Inference rules are to be read modulo symmetry of the equality symbol.

We will first explain the ideas and motivations behind the superposition calculus and
its completeness proof. Precise definitions will be given later.

Ground inference rules:

Superposition Right:
D′ ∨ t ≈ t′ C ′ ∨ s[t] ≈ s′

D′ ∨ C ′ ∨ s[t′] ≈ s′

Superposition Left:
D′ ∨ t ≈ t′ C ′ ∨ s[t] 6≈ s′

D′ ∨ C ′ ∨ s[t′] 6≈ s′

Equality Resolution:
C ′ ∨ s 6≈ s

C ′

(Note: We will need one further inference rule.)
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Ordering restrictions:

Some considerations:

The literal ordering must depend primarily on the larger term of an equation.

As in the resolution case, negative literals must be a bit larger than the corresponding
positive literals.

Additionally, we need the following property: If s ≻ t ≻ u, then s 6≈ u must be larger
than s ≈ t. In other words, we must compare first the larger term, then the polarity,
and finally the smaller term.

The following construction has the required properties:

Let ≻ be a reduction ordering that is total on ground terms.

To a positive literal s ≈ t, we assign the multiset {s, t}, to a negative literal s 6≈ t
the multiset {s, s, t, t}. The literal ordering ≻L compares these multisets using the
multiset extension of ≻.

The clause ordering ≻C compares clauses by comparing their multisets of literals using
the multiset extension of ≻L.

Ordering restrictions:

Ground inferences are necessary only if the following conditions are satisfied:

– In superposition inferences, the left premise is smaller than the right premise.

– The literals that are involved in the inferences are maximal in the respective
clauses (strictly maximal for positive literals in superposition inferences).

– In these literals, the lhs is greater than or equal to the rhs (in superposition
inferences: greater than the rhs).

Model construction:

We want to use roughly the same ideas as in the completenes proof for superposition on
first-order without equality.

But: a Herbrand interpretation does not work for equality: The equality symbol ≈ must
be interpreted by equality in the interpretation.

Solution: Define a set E of ground equations and take TΣ(∅)/E = TΣ(∅)/≈E as the
universe.

Then two ground terms s and t are equal in the interpretation, if and only if s ≈E t.
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If E is a terminating and confluent rewrite system R, then two ground terms s and t
are equal in the interpretation, if and only if s ↓R t.

One problem:

In the completeness proof for the resolution calculus, the following property holds:

If C = C ′ ∨ A with a strictly maximal and positive literal A is false in the current
interpretation, then adding A to the current interpretation cannot make any literal of
C ′ true.

This does not hold for superposition:

Let b ≻ c ≻ d. Assume that the current rewrite system (representing the current
interpretation) contains the rule c→ d. Now consider the clause b ≈ c ∨ b ≈ d.

We need a further inference rule to deal with clauses of this kind, either the “Merging
Paramodulation” rule of Bachmair and Ganzinger or the following “Equality Factoring”
rule due to Nieuwenhuis:

Equality Factoring:
C ′ ∨ s ≈ t′ ∨ s ≈ t

C ′ ∨ t 6≈ t′ ∨ s ≈ t′

Note: This inference rule subsumes the usual factoring rule.

How do the non-ground versions of the inference rules for superposition look like?

Main idea as in non-equational first-order case:

Replace identity by unifiability. Apply the mgu to the resulting clause. In the ordering
restrictions, replace ≻ by 6�.

However:

As in Knuth-Bendix completion, we do not want to consider overlaps at or below a
variable position.

Consequence: there are inferences between ground instances Dθ and Cθ of clauses D
and C which are not ground instances of inferences between D and C.

Such inferences have to be treated in a special way in the completeness proof.
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The Superposition Calculus – Formally

Until now, we have seen most of the ideas behind the superposition calculus and its
completeness proof.

We will now start again from the beginning giving precise definitions and proofs.

Inference rules are applied with respect to the commutativity of equality ≈.

Inference rules:

Superposition Right:
D′ ∨ t ≈ t′ C ′ ∨ s[u] ≈ s′

(D′ ∨ C ′ ∨ s[t′] ≈ s′)σ

where σ = mgu(t, u) and
u is not a variable.

Superposition Left:
D′ ∨ t ≈ t′ C ′ ∨ s[u] 6≈ s′

(D′ ∨ C ′ ∨ s[t′] 6≈ s′)σ

where σ = mgu(t, u) and
u is not a variable.

Equality Resolution:
C ′ ∨ s 6≈ s′

C ′σ

where σ = mgu(s, s′).

Equality Factoring:
C ′ ∨ s′ ≈ t′ ∨ s ≈ t

(C ′ ∨ t 6≈ t′ ∨ s ≈ t′)σ

where σ = mgu(s, s′).

Theorem 6.4 All inference rules of the superposition calculus are correct, i. e., for every
rule

Cn, . . . , C1

C0

we have {C1, . . . , Cn} |= C0.

Proof. Exercise. 2
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Orderings:

Let ≻ be a reduction ordering that is total on ground terms.

To a positive literal s ≈ t, we assign the multiset {s, t}, to a negative literal s 6≈ t
the multiset {s, s, t, t}. The literal ordering ≻L compares these multisets using the
multiset extension of ≻.

The clause ordering ≻C compares clauses by comparing their multisets of literals using
the multiset extension of ≻L.

Inferences have to be computed only if the following ordering restrictions are satisfied:

– In superposition inferences, after applying the unifier to both premises, the left
premise is not greater than or equal to the right one.

– The last literal in each premise is maximal in the respective premise, i. e., there
exists no greater literal (strictly maximal for positive literals in superposition in-
ferences, i. e., there exists no greater or equal literal).

– In these literals, the lhs is not smaller than the rhs (in superposition inferences:
neither smaller nor equal).

Superposition Left in Detail:

D′ ∨ t ≈ t′ C ′ ∨ s[u] 6≈ s′

(D′ ∨ C ′ ∨ s[t′] 6≈ s′)σ

where σ = mgu(t, u),
u is not a variable,
tσ 6� t′σ, sσ 6� s′σ
(t ≈ t′)σ strictly maximal in (D′ ∨ t ≈ t′)σ, nothing selected
(s 6≈ s′)σ maximal in (C ′ ∨ s 6≈ s′)σ or selected

Superposition Right in Detail:

D′ ∨ t ≈ t′ C ′ ∨ s[u] ≈ s′

(D′ ∨ C ′ ∨ s[t′] ≈ s′)σ

where σ = mgu(t, u),
u is not a variable,
tσ 6� t′σ, sσ 6� s′σ
(t ≈ t′)σ strictly maximal in (D′ ∨ t ≈ t′)σ, nothing selected
(s ≈ s′)σ strictly maximal in (C ′ ∨ s ≈ s′)σ, nothing selected
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Equality Resolution in Detail:

C ′ ∨ s 6≈ s′

C ′σ

where σ = mgu(s, s′),
(s 6≈ s′)σ maximal in (C ′ ∨ s ≈ s′)σ or selected

Equality Factoring in Detail:

C ′ ∨ s′ ≈ t′ ∨ s ≈ t

(C ′ ∨ t 6≈ t′ ∨ s ≈ t′)σ

where σ = mgu(s, s′),
s′σ 6� t′σ, sσ 6� tσ
(s ≈ t)σ maximal in (C ′ ∨ s′ ≈ t′ ∨ s ≈ t)σ, nothing selected

A ground clause C is called redundant w. r. t. a set of ground clauses N , if it follows
from clauses in N that are smaller than C.

A clause is redundant w. r. t. a set of clauses N , if all its ground instances are redundant
w. r. t. GΣ(N).

The set of all clauses that are redundant w. r. t. N is denoted by Red(N).

N is called saturated up to redundancy, if the conclusion of every inference from clauses
in N \Red(N) is contained in N ∪Red(N).

Superposition: Refutational Completeness

For a set E of ground equations, TΣ(∅)/E is an E-interpretation (or E-algebra) with
universe { [t] | t ∈ TΣ(∅) }.

One can show (similar to the proof of Birkhoff’s Theorem) that for every ground equation
s ≈ t we have TΣ(∅)/E |= s ≈ t if and only if s↔∗

E t.

In particular, if E is a convergent set of rewrite rules R and s ≈ t is a ground equation,
then TΣ(∅)/R |= s ≈ t if and only if s ↓R t. By abuse of terminology, we say that an
equation or clause is valid (or true) in R if and only if it is true in TΣ(∅)/R.
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Construction of candidate interpretations (Bachmair & Ganzinger 1990):

Let N be a set of clauses not containing ⊥. Using induction on the clause ordering we
define sets of rewrite rules EC and RC for all C ∈ GΣ(N) as follows:

Assume that ED has already been defined for all D ∈ GΣ(N) with D ≺C C. Then
RC =

⋃
D≺CC ED.

The set EC contains the rewrite rule s→ t, if

(a) C = C ′ ∨ s ≈ t.

(b) s ≈ t is strictly maximal in C.

(c) s ≻ t.

(d) C is false in RC .

(e) C ′ is false in RC ∪ {s→ t}.

(f) s is irreducible w. r. t. RC .

In this case, C is called productive. Otherwise EC = ∅.

Finally, R∞ =
⋃

D∈GΣ(N)ED.

Lemma 6.5 If EC = {s→ t} and ED = {u→ v}, then s ≻ u if and only if C ≻C D.

Corollary 6.6 The rewrite systems RC and R∞ are convergent.

Proof. Obviously, s ≻ t for all rules s→ t in RC and R∞.

Furthermore, it is easy to check that there are no critical pairs between any two rules:
Assume that there are rules u → v in ED and s → t in EC such that u is a subterm
of s. As ≻ is a reduction ordering that is total on ground terms, we get u ≺ s and
therefore D ≺C C and ED ⊆ RC . But then s would be reducible by RC , contradicting
condition (f). 2

Lemma 6.7 If D �C C and EC = {s→ t}, then s ≻ u for every term u occurring in a
negative literal in D and s � v for every term v occurring in a positive literal in D.

Corollary 6.8 If D ∈ GΣ(N) is true in RD, then D is true in R∞ and RC for all
C ≻C D.

Proof. If a positive literal of D is true in RD, then this is obvious.

Otherwise, some negative literal s 6≈ t of D must be true in RD, hence s 6 ↓RD
t. As the

rules in R∞ \RD have left-hand sides that are larger than s and t, they cannot be used
in a rewrite proof of s ↓ t, hence s 6 ↓RC

t and s 6 ↓R∞
t. 2

143



Corollary 6.9 If D = D′ ∨ u ≈ v is productive, then D′ is false and D is true in R∞

and RC for all C ≻C D.

Proof. Obviously, D is true in R∞ and RC for all C ≻C D.

Since all negative literals of D′ are false in RD, it is clear that they are false in R∞ and
RC . For the positive literals u′ ≈ v′ of D′, condition (e) ensures that they are false in
RD ∪ {u → v}. Since u′ � u and v′ � u and all rules in R∞ \ RD have left-hand sides
that are larger than u, these rules cannot be used in a rewrite proof of u′ ↓ v′, hence
u′ 6 ↓RC

v′ and u′ 6 ↓R∞
v′. 2

Lemma 6.10 (“Lifting Lemma”) Let C be a clause and let θ be a substitution such
that Cθ is ground. Then every equality resolution or equality factoring inference from
Cθ is a ground instance of an inference from C.

Proof. Exercise. 2

Lemma 6.11 (“Lifting Lemma”) Let D = D′ ∨ u ≈ v and C = C ′ ∨ [¬] s ≈ t be
two clauses (without common variables) and let θ be a substitution such that Dθ and
Cθ are ground.

If there is a superposition inference between Dθ and Cθ where uθ and some subterm of
sθ are overlapped, and uθ does not occur in sθ at or below a variable position of s, then
the inference is a ground instance of a superposition inference from D and C.

Proof. Exercise. 2

Theorem 6.12 (“Model Construction”) Let N be a set of clauses that is saturated
up to redundancy and does not contain the empty clause. Then we have for every ground
clause Cθ ∈ GΣ(N):

(i) ECθ = ∅ if and only if Cθ is true in RCθ.

(ii) If Cθ is redundant w. r. t. GΣ(N), then it is true in RCθ.

(iii) Cθ is true in R∞ and in RD for every D ∈ GΣ(N) with D ≻C Cθ.

Proof. We use induction on the clause ordering ≻C and assume that (i)–(iii) are already
satisfied for all clauses in GΣ(N) that are smaller than Cθ. Note that the “if” part of
(i) is obvious from the construction and that condition (iii) follows immediately from (i)
and Corollaries 6.8 and 6.9. So it remains to show (ii) and the “only if” part of (i).
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