
Automated Reasoning I

Marek Kosta Christoph Weidenbach

Summer Term 2012

1



What is Computer Science about?

Theory

Graphics

Data Bases

Programming Languages

Algorithms

Hardware

Bioinformatics

Verification

2



What is Automated Deduction about?

Generic Problem Solving by a Computer Program.

3



Introductory Example: Solving 4× 4 Sudoku

2 1

3 1

1 2

Start

4



Introductory Example: Solving 4× 4 Sudoku

2 1 4 3

3 4 1 2

4 2 3 1

1 3 2 4

Solution

5



Formal Model

Represent board by a function f (x , y) mapping cells to their

value.

2 1

3 1

1 2

Start

N = f (1, 1) ≈ 2 ∧ f (1, 2) ≈ 1∧

f (3, 3) ≈ 3 ∧ f (3, 4) ≈ 1∧

f (4, 1) ≈ 1 ∧ f (4, 3) ≈ 2

∧ is conjunction and ⊤ the empty conjunction.

6



Formal Model

A state is described by a triple (N;D; r) where

• N contains the equations for the starting Sudoku

• D a conjunction of further equations computed by the

algorithm

• r ∈ {⊤,⊥}

Initial state is (N;⊤;⊤).

7



Formal Model

A square f (x , y) where x , y ∈ {1, 2, 3, 4} is called defined by

N ∧ D if there is an equation f (x , y) ≈ z , z ∈ {1, 2, 3, 4} in N

or D. For otherwise f (x , y) it is called undefined.

8



Rule-Based Algorithm

Deduce (N;D;⊤) → (N;D ∧ f (x , y) ≈ 1;⊤)

provided f (x , y) is undefined in N ∧D, for any x , y ∈ {1, 2, 3, 4}.

Conflict (N;D;⊤) → (N;D;⊥)

provided for y 6= z (i) f (x , y) = f (x , z) for f (x , y), f (x , z)

defined in N ∧ D for some x , y , z or (ii) f (y , x) = f (z , x)

for f (y , x), f (z , x) defined in N ∧ D for some x , y , z or

(iii) f (x , y) = f (x ′, y ′) for f (x , y), f (x ′, y ′) defined in N ∧ D

and [x , x ′ ∈ {1, 2} or x , x ′ ∈ {3, 4}] and [y , y ′ ∈ {1, 2} or

y , y ′ ∈ {3, 4}] and x 6= x ′ or y 6= y ′.

9



Rule-Based Algorithm

Backtrack (N;D′ ∧ f (x , y) ≈ z ∧ D′′;⊥) →

(N;D′ ∧ f (x , y) ≈ z + 1;⊤)

provided z < 4 and D′′ = ⊤ or D′′ contains only equations of

the form f (x ′, y ′) ≈ 4.

Fail (N;D;⊥) → (N;⊤;⊥)

provided D 6= ⊤ and D contains only equations of the form

f (x , y) ≈ 4.

10



Rule-Based Algorithm

Properties: Rules are applied don’t care non-deterministically.

An algorithm (set of rules) is sound if whenever it declares

having found a solution it actually has computed a solution.

It is complete if it finds a solution if one exists.

It is terminating if it never runs forever.

11



Rule-Based Algorithm

Proposition 0.1 (Soundness):

The rules Deduce, Conflict, Backtrack and Fail are sound.

Starting from an initial state (N;⊤;⊤):

(i) for any final state (N;D;⊤), the equations in N ∧ D are a

solution, and,

(ii) for any final state (N;⊤;⊥) there is no solution to the initial

problem.

12



Rule-Based Algorithm

Proposition 0.2 (Completeness):

The rules Deduce, Conflict, Backtrack and Fail are complete.

For any solution N ∧ D of the Sudoku there is a sequence of

rule applications such that (N;D;⊤) is a final state.

13



Rule-Based Algorithm

Proposition 0.3 (Termination):

The rules Deduce, Conflict, Backtrack and Fail terminate on

any input state (N;⊤;⊤).

14



Confluence

Another important property for don’t care non-deterministic rule

based definitions of algorithms is confluence.

It means that whenever several sequences of rules are applicable

to a given states, the respective results can be rejoined by

further rule applications to a common problem state.

15


