Confluence

Another important property for don’t care non-deterministic rule based definitions of algorithms is confluence.

It means that whenever several sequences of rules are applicable to a given states, the respective results can be rejoined by further rule applications to a common problem state.
Proposition 0.4 (Deduce and Conflict are Locally Confluent):
Given a state \((N; D; \top) \) out of which two different states
\((N; D_1; \top) \) and \((N; D_2; \bot) \) can be generated by Deduce and
Conflict in one step, respectively, then the two states can be
rejoined to a state \((N; D'; *) \) via further rule applications.
Result

It works.

But: It looks like a lot of effort for a problem that one can solve with a little bit of thinking.

Reason: Our approach is very general, it can actually be used to “potentially solve” any problem in computer science.
This difference is also important for automated reasoning:

- For problems that are well-known and frequently used, we can develop optimal specialized methods.
 ⇒ Algorithms & Data-structures

- For new/unknown/changing problems, we have to develop generic methods that do “something useful”.
 ⇒ this lecture: Logic + Calculus + Implementation

- Combining the two approaches
 ⇒ Automated Reasoning II (next semester): Logic modulo Theory + Calculus + Implementation
Topics of the Course

Preliminaries

- math repetition
- computer science repetition
- orderings
- induction (repetition)
- rewrite systems

Propositional logic

- logic: syntax, semantics
- calculi: superposition, CDCL
- implementation: 2-watched literal, clause learning
Topics of the Course

First-order predicate logic
 logic: syntax, semantics, model theory
 calculus: superposition
 implementation: sharing, indexing

First-order predicate logic with equality
 equational logic: unit equations
 calculus: term rewriting systems, Knuth-Bendix completion
 implementation: dependency pairs
 first-order logic with equality
 calculus: superposition
 implementation: rewriting
Literature

Is a big problem, actually you are the “guinea-pigs” for a new textbook.

Franz Baader and Tobias Nipkow: *Term rewriting and all that*, Cambridge Univ. Press, 1998. (Textbook on equational reasoning)

Part 1: Preliminaries

- math repetition
- computer science repetition
- orderings
- induction (repetition)
- rewrite systems
1.1 Mathematical Prerequisites

\[\mathbb{N} = \{0, 1, 2, \ldots \} \] is the set of natural numbers

\[\mathbb{N}^+ \] is the set of positive natural numbers without 0

\[\mathbb{Z}, \mathbb{Q}, \mathbb{R} \] denote the integers, rational numbers and the real numbers, respectively.
Multisets

Given a set M, a multi-set S over M is a mapping $S : M \rightarrow \mathbb{N}$, where S specifies the number of occurrences of elements m of the base set M within the multiset S.

We use the standard set notations \in, \subset, \subseteq, \cup, \cap with the analogous meaning for multisets, e.g., $(S_1 \cup S_2)(m) = S_1(m) + S_2(m)$.

We also write multi-sets in a set like notation, e.g., the multi-set $S = \{1, 2, 2, 4\}$ denotes a multi-set over the set $\{1, 2, 3, 4\}$ where $S(1) = 1$, $S(2) = 2$, $S(3) = 0$, and $S(4) = 1$.

A multi-set S over a set M is finite if $\{m \in M \mid S(m) > 0\}$ is finite. In this lecture we only consider finite multi-sets.
Relations

An n-ary relation R over some set M is a subset of M^n: $R \subseteq M^n$.

For two n-ary relations R, Q over some set M, their union (\bigcup) or intersection (\cap) is again an n-ary relation, where

$R \cup Q := \{(m_1, \ldots, m_n) \in M \mid (m_1, \ldots, m_n) \in R \text{ or } (m_1, \ldots, m_n) \in Q\}$

$R \cap Q := \{(m_1, \ldots, m_n) \in M \mid (m_1, \ldots, m_n) \in R \text{ and } (m_1, \ldots, m_n) \in Q\}$.

A relation Q is a subrelation of a relation R if $Q \subseteq R$.
The **characteristic function** of a relation R or sometimes called **predicate** indicates membership. In addition of writing $(m_1, \ldots, m_n) \in R$ we also write $R(m_1, \ldots, m_n)$. So the predicate $R(m_1, \ldots, m_n)$ holds or is true if in fact (m_1, \ldots, m_n) belongs to the relation R.
Words

Given a nonempty alphabet Σ the set Σ^* of finite words over Σ is defined by

(i) the empty word $\epsilon \in \Sigma^*$

(ii) for each letter $a \in \Sigma$ also $a \in \Sigma^*$

(iii) if $u, v \in \Sigma^*$ so $uv \in \Sigma^*$ where uv denotes the concatenation of u and v.
Words

The length $|u|$ of a word $u \in \Sigma^*$ is defined by

(i) $|\epsilon| := 0,$

(ii) $|a| := 1$ for any $a \in \Sigma$ and

(iii) $|uv| := |u| + |v|$ for any $u, v \in \Sigma^*.$