
Words

The length |u| of a word u ∈ Σ∗ is defined by

(i) |ǫ| := 0,

(ii) |a| := 1 for any a ∈ Σ and

(iii) |uv | := |u|+ |v | for any u, v ∈ Σ∗.
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1.2 Computer Science Prerequisites

A little bit on computational complexity theory.

Big O

Let f (n) and g(n) be functions from the naturals into the

non-negative reals. Then

O(f (n)) = {g(n) | ∃ c > 0∃ n0 ∈ N+ ∀ n ≥ n0 g(n) ≤ c · f (n)}

We use ∀, reads “for all”, and ∃, reads “exists”, on the object

and meta level.
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Decision Problem

A decision problem is a subset L ⊆ Σ∗ for some fixed finite

alphabet Σ. The function chr(L, x) denotes the characteristic

function for some decision problem L and is defined by

chr(L, u) = 1 if u ∈ L and chr(L, u) = 0 otherwise.

A decision problem is solvable in polynomial-time iff its

characteristic function can be computed in polynomial-time.

The class P denotes all polynomial-time decision problems.
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NP

A decision problem L is in NP iff there is a predicate Q(x , y)

and a polynomial p(n) such that for all u ∈ Σ∗ we have

(i) u ∈ L iff there is an v ∈ Σ∗ with |v | ≤ p(|u|) and Q(u, v)

holds, and

(ii) the predicate Q is in P.

31



Reducible,NP-Hard, NP-Complete

A decision problem L is polynomial-time reducible to a decision

problem L′ if there is a function g ∈ P such that for all u ∈ Σ∗

we have u ∈ L iff g(u) ∈ L′.

For example, if L is reducible to L′ and L′ ∈ P then L ∈ P.

A decision problem is NP-hard if every problem in NP is

polynomial-time reducible to it.

A decision problem is NP-complete if it is NP-hard and in NP.
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1.3 Ordering

Termination of rewrite systems and proof theory is strongly

related to the concept of (well-founded) orderings.

An ordering R is a binary relation on some set M .
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Ordering

Relevant properties of orderings are: Depending on particular

properties such as

(reflexivity) ∀ x ∈ M R(x , x)

(irreflexivity) ∀ x ∈ M ¬R(x , x)

(antisymmetry) ∀ x , y ∈ M (R(x , y) ∧ R(y , x)→ x = y)

(transitivity) ∀ x , y , z ∈ M (R(x , y) ∧ R(y , z)→ R(x , z))

(totality) ∀ x , y ∈ M (R(x , y) ∨ R(y , x))

where = is the identity relation on M . The boolean connectives

∧, ∨, and → read “and”, “or”, and “implies”, respectively.
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Partial Ordering

A strict partial ordering ≻ on a set M is a transitive and

irreflexive binary relation on M .

An a ∈ M is called minimal, if there is no b in M such that

a ≻ b.

An a ∈ M is called smallest, if b ≻ a for all b ∈ M different

from a.

Notation:

≺ for the inverse relation ≻−1

� for the reflexive closure (≻ ∪=) of ≻
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Well-Foundedness

A strict partial ordering ≻ on M is called well-founded

(Noetherian), if there is no infinite descending chain

a0 ≻ a1 ≻ a2 ≻ . . . with ai ∈ M .
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Well-Foundedness and Termination

Let →, > be binary relations on the same set.

Lemma 1.1:

If > is a well-founded partial ordering and → ⊆ >,

then → is terminating.

Lemma 1.2:

If → is a terminating binary relation over A,

then →+ is a well-founded partial ordering.
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Well-Founded Orderings: Examples

Natural numbers. (N,>)

Lexicographic orderings. Let (M1,≻1), (M2,≻2) be well-

founded orderings. Then let their lexicographic combination

≻ = (≻1,≻2)lex

on M1 ×M2 be defined as

(a1, a2) ≻ (b1, b2) :⇔

a1 ≻1 b1 or (a1 = b1 and a2 ≻2 b2)

(analogously for more than two orderings)

This again yields a well-founded ordering (proof below).
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Well-Founded Orderings: Examples

Length-based ordering on words. For alphabets Σ with a

well-founded ordering >Σ, the relation ≻ defined as

w ≻ w ′ :⇔

|w | > |w ′| or (|w | = |w ′| and w >Σ,lex w ′)

is a well-founded ordering on Σ∗ (Exercise).

Counterexamples:

(Z,>)

(N,<)

the lexicographic ordering on Σ∗
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Basic Properties of Well-Founded Orderings

Lemma 1.3:

(M ,≻) is well-founded if and only if every ∅ ⊂ M ′ ⊆ M has a

minimal element.

Lemma 1.4:

(M1,≻1) and (M2,≻2) are well-founded if and only if

(M1 ×M2, ≻) with ≻ = (≻1,≻2)lex is well-founded.
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Monotone Mappings

Let (M1,>1) and (M2,>2) be strict partial orderings.

A mapping ϕ : M1 → M2 is called monotone,

if a >1 b implies ϕ(a) >2 ϕ(b) for all a, b ∈ M1.

Lemma 1.5:

If ϕ is a monotone mapping from (M1,>1) to (M2,>2)

and (M2,>2) is well-founded, then (M1,>1) is well-founded.
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Multiset Orderings

Lemma 1.6 (König’s Lemma):

Every finitely branching tree with infinitely many nodes contains

an infinite path.
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Multiset Orderings

Let (M ,≻) be a strict partial ordering. The multiset extension

of ≻ to multisets over M is defined by

S1 ≻mul S2 ⇔

S1 6= S2 and

∀m ∈ M :
(
S2(m) > S1(m)

⇒ ∃m′ ∈ M : m′ ≻ m and S1(m
′) > S2(m

′)
)
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1.4 Induction

More or less all sets of objects in computer science or logic are

defined inductively. Typically, this is done in a bottom-up way,

where starting with some definite set, it is closed under a given

set of operations.
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Induction

Example 1.7 (Inductive Sets):

1. The set of all Sudoku problem states, consists of the set of

start states (N;⊤;⊤) for consistent assignments N plus all

states that can be derived from the start states by the rules

Deduce, Conflict, Backtrack, and Fail. This is a finite set.

2. The set N of the natural numbers, consists of 0 plus all

numbers that can be computed from 0 by adding 1. This is

an infinite set.

3. The set of all strings Σ∗ over a finite alphabet Σ where all

letters of Σ are contained in Σ∗ and if u and v are words

out of Σ∗ so is the word uv . This is an infinite set.

45



Induction

All the previous examples have in common that there is an

underlying well-founded ordering on the sets induced by the

construction. The minimal elements for the Sudoku are the

problem states (N;⊤;⊤), for the natural numbers it is 0 and for

the set of strings the empty word.

Now if we want to prove a property of an inductive set it

is sufficient to prove it (i) for the minimal element(s) and

(ii) assuming the property for an arbitrary set of elements, to

prove that it holds for all elements that can be constructed “in

one step” out those elements. This is the principle of Noetherian

Induction.
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Induction

Theorem 1.8 (Noetherian Induction):

Let (M ,≻) be a well-founded ordering, let Q be a property of

elements of M .

If for all m ∈ M the implication

if Q(m′) for all m′ ∈ M such that m ≻ m′,a

then Q(m).b

is satisfied, then the property Q(m) holds for all m ∈ M .

ainduction hypothesis
binduction step
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Induction

Theorem 1.9 (Properties Multi-Set Ordering):

(a) ≻mul is a strict partial ordering.

(b) ≻ well-founded ⇒ ≻mul well-founded.

(c) ≻ total ⇒ ≻mul total.
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1.5 Rewrite Systems

A rewrite system is a pair (A,→), where

A is a set,

→ ⊆ A× A is a binary relation on A.

The relation → is usually written in infix notation, i. e.,

a→ b instead of (a, b) ∈ →.
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Rewrite Systems

Let →′ ⊆ A × B and →′′ ⊆ B × C be two binary relations.

Then the binary relation (→′ ◦→′′) ⊆ A× C is defined by

a (→′ ◦ →′′) c if and only if

a→′ b and b →′′ c for some b ∈ B .
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Rewrite Systems

→0 = { (a, a) | a ∈ A } identity

→i+1 = →i ◦→ i + 1-fold composition

→+ =
⋃

i>0→
i transitive closure

→∗ =
⋃

i≥0→
i = →+ ∪→0 reflexive transitive closure

→= = →∪→0 reflexive closure

→−1 = ← = { (b, c) | c → b } inverse

↔ = →∪← symmetric closure

↔+ = (↔)+ transitive symmetric closure

↔∗ = (↔)∗ refl. trans. symmetric closure

51



Rewrite Systems

b ∈ A is reducible, if there is a c such that b → c .

b is in normal form (irreducible), if it is not reducible.

c is a normal form of b, if b →∗ c and c is in normal form.

Notation: c = b↓ (if the normal form of b is unique).
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Rewrite Systems

A relation → is called

terminating, if there is no infinite descending chain

b0 → b1 → b2 → . . . .

normalizing, if every b ∈ A has a normal form.
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Rewrite Systems

Lemma 1.10:

If → is terminating, then it is normalizing.

Note: The reverse implication does not hold.
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