
2.2 Semantics

In classical logic (dating back to Aristoteles) there are “only”

two truth values “true” and “false” which we shall denote,

respectively, by 1 and 0.

There are multi-valued logics having more than two truth values.
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Valuations

A propositional variable has no intrinsic meaning. The meaning

of a propositional variable has to be defined by a valuation.

A Σ-valuation is a map

A : Σ→ {0, 1}.

where {0, 1} is the set of truth values.
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Truth Value of a Formula in A

Given a Σ-valuation A, the function can be extened to

A : PROP(Σ)→ {0, 1} by:

A(⊥) = 0

A(⊤) = 1

A(¬φ) = 1−A(φ)

A(φ ∧ ψ) = min({A(φ),A(ψ)})

A(φ ∨ ψ) = max({A(φ),A(ψ)})

A(φ→ ψ) = max({(1−A(φ)),A(ψ)})

A(φ↔ ψ) = if A(φ) = A(ψ) then 1 else 0
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2.3 Models, Validity, and Satisfiability

φ is valid in A (A is a model of φ; φ holds under A):

A |= φ :⇔ A(φ) = 1

φ is valid (or is a tautology):

|= φ :⇔ A |= φ for all Σ-valuations A

φ is called satisfiable if there exists an A such that A |= φ.

Otherwise φ is called unsatisfiable (or contradictory).
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Entailment and Equivalence

φ entails (implies) ψ (or ψ is a consequence of φ), written

φ |= ψ, if for all Σ-valuations A we have A |= φ ⇒ A |= ψ.

φ and ψ are called equivalent, written φ |=| ψ, if for all

Σ-valuations A we have A |= φ ⇔ A |= ψ.

Proposition 2.3:

φ |= ψ if and only if |= (φ→ ψ).

Proposition 2.4:

φ |=| ψ if and only if |= (φ↔ ψ).
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Entailment and Equivalence

Entailment is extended to sets of formulas N in the “natural

way”:

N |= φ if for all Σ-valuations A:

if A |= ψ for all ψ ∈ N, then A |= φ.

Note: formulas are always finite objects; but sets of formulas

may be infinite. Therefore, it is in general not possible to replace

a set of formulas by the conjunction of its elements.
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Validity vs. Unsatisfiability

Validity and unsatisfiability are just two sides of the same medal

as explained by the following proposition.

Proposition 2.5:

φ is valid if and only if ¬φ is unsatisfiable.

Hence in order to design a theorem prover (validity checker) it

is sufficient to design a checker for unsatisfiability.
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Validity vs. Unsatisfiability

In a similar way, entailment N |= φ can be reduced to

unsatisfiability:

Proposition 2.6:

N |= φ if and only if N ∪ {¬φ} is unsatisfiable.
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Checking Unsatisfiability

Every formula φ contains only finitely many propositional

variables. Obviously, A(φ) depends only on the values of those

finitely many variables in φ under A.

If φ contains n distinct propositional variables, then it is sufficient

to check 2n valuations to see whether φ is satisfiable or not.

⇒ truth table.

So the satisfiability problem is clearly deciadable (but, by Cook’s

Theorem, NP-complete).

Nevertheless, in practice, there are (much) better methods than

truth tables to check the satisfiability of a formula. (later more)
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Truth Table

Let φ be a propositional formula over variables P1, . . . ,Pn and

k = | pos(φ)|. Then a complete truth table for φ is a table with

n + k columns and 2n + 1 rows of the form

P1 . . . Pn φ|p1 . . . φ|pk

0 . . . 0 A1(φ|p1) . . . A1(φ|pk )
...

1 . . . 1 A2n(φ|p1) . . . A2n(φ|pk )

such that the Ai are exactly the 2n different valuations for

P1, . . . ,Pn and either pi ‖ pi+j or pi ≥ pi+j , in particular pk = ǫ

and φ|pk = φ for all i , j ≥ 0, i + j ≤ k .
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Truth Table

Truth tables can be used to check validity, satisfiablity or

unsatisfiability of a formula in a systematic way.

They have the nice property that if the rows are filled from left

to right, then in order to compute Ai (φ|pj ) the values for Ai of

φ|pjh are already computed, h ∈ {1, 2}.
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