In classical logic (dating back to Aristoteles) there are "only" two truth values "true" and "false" which we shall denote, respectively, by 1 and 0.

There are multi-valued logics having more than two truth values.

Valuations

A propositional variable has no intrinsic meaning. The meaning of a propositional variable has to be defined by a valuation.

A Σ -valuation is a map

 $\mathcal{A}:\Sigma
ightarrow\{0,1\}.$

where $\{0, 1\}$ is the set of truth values.

Given a Σ -valuation \mathcal{A} , the function can be extende to $\mathcal{A} : \mathsf{PROP}(\Sigma) \to \{0,1\}$ by:

$$\begin{split} \mathcal{A}(\bot) &= 0\\ \mathcal{A}(\top) = 1\\ \mathcal{A}(\neg \phi) &= 1 - \mathcal{A}(\phi)\\ \mathcal{A}(\phi \land \psi) &= \min(\{\mathcal{A}(\phi), \mathcal{A}(\psi)\})\\ \mathcal{A}(\phi \lor \psi) &= \max(\{\mathcal{A}(\phi), \mathcal{A}(\psi)\})\\ \mathcal{A}(\phi \rightarrow \psi) &= \max(\{(1 - \mathcal{A}(\phi)), \mathcal{A}(\psi)\})\\ \mathcal{A}(\phi \leftrightarrow \psi) &= \text{if } \mathcal{A}(\phi) = \mathcal{A}(\psi) \text{ then } 1 \text{ else } 0 \end{split}$$

2.3 Models, Validity, and Satisfiability

 ϕ is valid in \mathcal{A} (\mathcal{A} is a model of ϕ ; ϕ holds under \mathcal{A}):

$$\mathcal{A} \models \phi : \Leftrightarrow \mathcal{A}(\phi) = 1$$

 ϕ is valid (or is a tautology):

$$\models \phi \iff \mathcal{A} \models \phi \text{ for all } \Sigma \text{-valuations } \mathcal{A}$$

 ϕ is called satisfiable if there exists an \mathcal{A} such that $\mathcal{A} \models \phi$. Otherwise ϕ is called unsatisfiable (or contradictory). ϕ entails (implies) ψ (or ψ is a consequence of ϕ), written $\phi \models \psi$, if for all Σ -valuations \mathcal{A} we have $\mathcal{A} \models \phi \Rightarrow \mathcal{A} \models \psi$.

 ϕ and ψ are called equivalent, written $\phi \models \psi$, if for all Σ -valuations \mathcal{A} we have $\mathcal{A} \models \phi \Leftrightarrow \mathcal{A} \models \psi$.

Proposition 2.3: $\phi \models \psi$ if and only if $\models (\phi \rightarrow \psi)$.

Proposition 2.4: $\phi \models \psi$ if and only if $\models (\phi \leftrightarrow \psi)$. Entailment is extended to sets of formulas N in the "natural way":

 $N \models \phi$ if for all Σ -valuations \mathcal{A} : if $\mathcal{A} \models \psi$ for all $\psi \in N$, then $\mathcal{A} \models \phi$.

Note: formulas are always finite objects; but sets of formulas may be infinite. Therefore, it is in general not possible to replace a set of formulas by the conjunction of its elements. Validity and unsatisfiability are just two sides of the same medal as explained by the following proposition.

Proposition 2.5:

 ϕ is valid if and only if $\neg \phi$ is unsatisfiable.

Hence in order to design a theorem prover (validity checker) it is sufficient to design a checker for unsatisfiability.

Validity vs. Unsatisfiability

In a similar way, entailment $N \models \phi$ can be reduced to unsatisfiability:

Proposition 2.6: $N \models \phi$ if and only if $N \cup \{\neg \phi\}$ is unsatisfiable. Every formula ϕ contains only finitely many propositional variables. Obviously, $\mathcal{A}(\phi)$ depends only on the values of those finitely many variables in ϕ under \mathcal{A} .

If ϕ contains *n* distinct propositional variables, then it is sufficient to check 2^n valuations to see whether ϕ is satisfiable or not. \Rightarrow truth table.

So the satisfiability problem is clearly deciadable (but, by Cook's Theorem, NP-complete).

Nevertheless, in practice, there are (much) better methods than truth tables to check the satisfiability of a formula. (later more)

Truth Table

Let ϕ be a propositional formula over variables P_1, \ldots, P_n and $k = |pos(\phi)|$. Then a complete truth table for ϕ is a table with n + k columns and $2^n + 1$ rows of the form

$$\begin{array}{|c|c|c|c|c|} \hline P_1 & \dots & P_n & \phi|_{p_1} & \dots & \phi|_{p_k} \\ \hline 0 & \dots & 0 & \mathcal{A}_1(\phi|_{p_1}) & \dots & \mathcal{A}_1(\phi|_{p_k}) \\ & & \vdots \\ \hline 1 & \dots & 1 & \mathcal{A}_{2^n}(\phi|_{p_1}) & \dots & \mathcal{A}_{2^n}(\phi|_{p_k}) \end{array} \end{array}$$

such that the \mathcal{A}_i are exactly the 2^n different valuations for P_1, \ldots, P_n and either $p_i \parallel p_{i+j}$ or $p_i \ge p_{i+j}$, in particular $p_k = \epsilon$ and $\phi|_{p_k} = \phi$ for all $i, j \ge 0, i+j \le k$.

Truth tables can be used to check validity, satisfiablity or unsatisfiability of a formula in a systematic way.

They have the nice property that if the rows are filled from left to right, then in order to compute $\mathcal{A}_i(\phi|_{p_j})$ the values for \mathcal{A}_i of $\phi|_{p_jh}$ are already computed, $h \in \{1, 2\}$.