2.2 Semantics

In classical logic (dating back to Aristoteles) there are “only” two truth values “true” and “false” which we shall denote, respectively, by 1 and 0.

There are multi-valued logics having more than two truth values.
Valuations

A propositional variable has no intrinsic meaning. The meaning of a propositional variable has to be defined by a valuation.

A Σ-valuation is a map

$$A : \Sigma \rightarrow \{0, 1\}.$$

where $\{0, 1\}$ is the set of truth values.
Truth Value of a Formula in \mathcal{A}

Given a Σ-valuation \mathcal{A}, the function can be extended to $\mathcal{A} : \text{PROP}(\Sigma) \rightarrow \{0, 1\}$ by:

- $\mathcal{A}(\bot) = 0$
- $\mathcal{A}(\top) = 1$
- $\mathcal{A}(\neg \phi) = 1 - \mathcal{A}(\phi)$
- $\mathcal{A}(\phi \land \psi) = \min(\{\mathcal{A}(\phi), \mathcal{A}(\psi)\})$
- $\mathcal{A}(\phi \lor \psi) = \max(\{\mathcal{A}(\phi), \mathcal{A}(\psi)\})$
- $\mathcal{A}(\phi \rightarrow \psi) = \max(\{(1 - \mathcal{A}(\phi)), \mathcal{A}(\psi)\})$
- $\mathcal{A}(\phi \leftrightarrow \psi) = \text{if } \mathcal{A}(\phi) = \mathcal{A}(\psi) \text{ then } 1 \text{ else } 0$
2.3 Models, Validity, and Satisfiability

\(\phi \) is valid in \(\mathcal{A} \) (\(\mathcal{A} \) is a model of \(\phi \); \(\phi \) holds under \(\mathcal{A} \)):

\[
\mathcal{A} \models \phi \iff \mathcal{A}(\phi) = 1
\]

\(\phi \) is valid (or is a tautology):

\[
\models \phi \iff \mathcal{A} \models \phi \text{ for all } \Sigma\text{-valuations } \mathcal{A}
\]

\(\phi \) is called satisfiable if there exists an \(\mathcal{A} \) such that \(\mathcal{A} \models \phi \). Otherwise \(\phi \) is called unsatisfiable (or contradictory).
Entailment and Equivalence

\(\phi \) entails (implies) \(\psi \) (or \(\psi \) is a consequence of \(\phi \)), written \(\phi \models \psi \), if for all \(\Sigma \)-valuations \(\mathcal{A} \) we have \(\mathcal{A} \models \phi \Rightarrow \mathcal{A} \models \psi \).

\(\phi \) and \(\psi \) are called equivalent, written \(\phi \equiv \psi \), if for all \(\Sigma \)-valuations \(\mathcal{A} \) we have \(\mathcal{A} \models \phi \iff \mathcal{A} \models \psi \).

Proposition 2.3:
\(\phi \models \psi \) if and only if \(\models (\phi \rightarrow \psi) \).

Proposition 2.4:
\(\phi \equiv \psi \) if and only if \(\models (\phi \leftrightarrow \psi) \).
Entailment and Equivalence

Entailment is extended to sets of formulas N in the “natural way”:

$N \models \phi$ if for all Σ-valuations A:

if $A \models \psi$ for all $\psi \in N$, then $A \models \phi$.

Note: formulas are always finite objects; but sets of formulas may be infinite. Therefore, it is in general not possible to replace a set of formulas by the conjunction of its elements.
Validity vs. Unsatisfiability

Validity and unsatisfiability are just two sides of the same medal as explained by the following proposition.

Proposition 2.5:
\(\phi \) is valid if and only if \(\neg \phi \) is unsatisfiable.

Hence in order to design a theorem prover (validity checker) it is sufficient to design a checker for unsatisfiability.
Validity vs. Unsatisfiability

In a similar way, entailment $N \models \phi$ can be reduced to unsatisfiability:

Proposition 2.6:
$N \models \phi$ if and only if $N \cup \{\neg \phi\}$ is unsatisfiable.
Every formula ϕ contains only finitely many propositional variables. Obviously, $A(\phi)$ depends only on the values of those finitely many variables in ϕ under A.

If ϕ contains n distinct propositional variables, then it is sufficient to check 2^n valuations to see whether ϕ is satisfiable or not. \(\Rightarrow\) truth table.

So the satisfiability problem is clearly decidable (but, by Cook’s Theorem, NP-complete).

Nevertheless, in practice, there are (much) better methods than truth tables to check the satisfiability of a formula. (later more)
Truth Table

Let ϕ be a propositional formula over variables P_1, \ldots, P_n and $k = |\text{pos}(\phi)|$. Then a complete truth table for ϕ is a table with $n + k$ columns and $2^n + 1$ rows of the form

| P_1 | \ldots | P_n | $\phi|_{p_1}$ | \ldots | $\phi|_{p_k}$ |
|-------|----------|-------|---------------|----------|---------------|
| 0 | \ldots| 0 | $A_1(\phi|_{p_1})$ | \ldots| $A_1(\phi|_{p_k})$ |
| | | | \vdots | | \vdots |
| 1 | \ldots| 1 | $A_{2^n}(\phi|_{p_1})$ | \ldots| $A_{2^n}(\phi|_{p_k})$ |

such that the A_i are exactly the 2^n different valuations for P_1, \ldots, P_n and either $p_i \parallel p_{i+j}$ or $p_i \geq p_{i+j}$, in particular $p_k = \epsilon$ and $\phi|_{p_k} = \phi$ for all $i, j \geq 0$, $i + j \leq k$.
Truth Table

Truth tables can be used to check validity, satisfiability or unsatisfiability of a formula in a systematic way.

They have the nice property that if the rows are filled from left to right, then in order to compute $A_i(\phi|_{p_j})$ the values for A_i of $\phi|_{p_j,h}$ are already computed, $h \in \{1, 2\}$.