
2.5 Superposition for PROP(Σ)

Superposition for PROP(Σ) is:

• resolution (Robinson 1965) +

• ordering restrictions (Bachmair & Ganzinger 1990) +

• abstract redundancy critrion (B&G 1990) +

• partial model construction (B & G 1990) +

• partial-model based inference restriction (Weidenbach)
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Resolution for PROP(Σ)

A calculus is a set of inference and reduction rules for a given

logic (here PROP(Σ)).

We only consider calculi operating on a set of clauses N.

Inference rules add new clauses to N whereas reduction rules

remove clauses from N or replace clauses by “simpler” ones.

We are only interested in unsatisfiability, i.e., the considered

calculi test whether a clause set N is unsatisfiable. So, in order

to check validity of a formula φ we check unsatisfiability of the

clauses generated from ¬φ.
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Resolution for PROP(Σ)

For clauses we switch between the notation as a disjunction,

e.g., P ∨ Q ∨ P ∨ ¬R, and the notation as a multiset, e.g.,

{P ,Q,P ,¬R}. This makes no difference as we consider ∨ in the

context of clauses always modulo AC. Note that ⊥, the empty

disjunction, corresponds to ∅, the empty multiset.

For literals we write L, possibly with subscript.. If L = P then

L̄ = ¬P and if L = ¬P then L̄ = P , so the bar flips the negation

of a literal.

Clauses are typically denoted by letters C , D, possibly with

subscript.
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Resolution for PROP(Σ)

The resolution calculus consists of the inference rules resolution

and factoring:

Resolution Factoring

I
C1 ∨ P C2 ∨ ¬P

C1 ∨ C2

I
C ∨ L ∨ L

C ∨ L

where C1, C2, C always stand for clauses, all inference/reduction

rules are applied with respect to AC of ∨. Given a clause set

N the schema above the inference bar is mapped to N and the

resulting clauses below the bar are then added to N.
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Resolution for PROP(Σ)

and the reduction rules subsumption and tautology deletion:

Subsumption Tautology Deletion

R
C1 C2

C1

R
C ∨ P ∨ ¬P

where for subsumption we assume C1 ⊆ C2. Given a clause set

N the schema above the reduction bar is mapped to N and the

resulting clauses below the bar replace the clauses above the bar

in N.

Clauses that can be removed are called redundant.
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Resolution for PROP(Σ)

So, if we consider clause sets N as states, ⊎ is disjoint union, we

get the rules

Resolution (N ⊎ {C1 ∨ P ,C2 ∨ ¬P}) ⇒ (N ∪ {C1 ∨

P ,C2 ∨ ¬P} ∪ {C1 ∨ C2})

Factoring (N ⊎ {C ∨ L ∨ L}) ⇒ (N ∪ {C ∨ L ∨

L} ∪ {C ∨ L})
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Resolution for PROP(Σ)

Subsumption (N ⊎ {C1,C2}) ⇒ (N ∪ {C1})

provided C1 ⊆ C2

Tautology

Deletion
(N ⊎ {C ∨ P ∨ ¬P}) ⇒ (N)

We need more structure than just (N) in order to define a useful

rewrite system. We fix this later on.
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Resolution for PROP(Σ)

Theorem 2.11:

The resolution calculus is sound and complete:

N is unsatisfiable iff N ⇒∗ {⊥}

Proof:

Will be a consequence of soundness and completeness of

superposition. 2
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Ordering restrictions

Let ≺ be a total ordering on Σ.

We lift ≺ to a total ordering on literals by ≺⊆≺L and P ≺L ¬P

and ¬P ≺L Q for all P ≺ Q.

We further lift ≺L to a total ordering on clauses ≺C by

considering the multiset extension of ≺L for clauses.

Eventually, we overload ≺ with ≺L and ≺C .

We define N≺C = {D ∈ N | D ≺ C}.
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Ordering restrictions

Eventually we will restrict inferences to maximal literals with

respect to ≺.
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Abstract Redundancy

A clause C is redundant with respect to a clause set N if

N≺C |= C .

Tautologies are redundant. Subsumed clauses are redundant if

⊆ is strict.

Remark: Note that for finite N, N≺C |= C can be decided for

PROP(Σ) but is as hard as testing unsatisfiability for a clause

set N.
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Partial Model Construction

Given a clause set N and an ordering ≺ we can construct a

(partial) model NI for N as follows:

NC :=
⋃

D≺C δD

δD :=




{P} if D = D′ ∨ P and P maximal and ND 6|= D

∅ otherwise

NI :=
⋃

C∈N δC
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Superposition

The superposition calculus consists of the inference rules

superposition left and factoring:

Superposition

Left
(N ⊎ {C1 ∨ P ,C2 ∨ ¬P}) ⇒ (N ∪ {C1 ∨

P ,C2 ∨ ¬P} ∪ {C1 ∨ C2})

where P is strictly maximal in C1 ∨ P and ¬P is maximal in

C2 ∨ ¬P

Factoring (N ⊎ {C ∨ P ∨ P}) ⇒ (N ∪ {C ∨ P ∨

P} ∪ {C ∨ P})

where P is maximal in C ∨ P ∨ P
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Superposition

examples for specific redundancy rules are

Subsumption (N ⊎ {C1,C2}) ⇒ (N ∪ {C1})

provided C1 ⊂ C2

Tautology

Deletion
(N ⊎ {C ∨ P ∨ ¬P}) ⇒ (N)

Subsumption

Resolution
(N ⊎ {C1 ∨ L,C2 ∨ L̄}) ⇒ (N ∪ {C1 ∨

L,C2})

where C1 ⊆ C2
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Superposition

Theorem 2.12:

If from a clause set N all possible superposition inferences are

redundant and ⊥ /∈ N then N is satisfiable and NI |= N.
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