Superposition for $PROP(\Sigma)$ is:

- resolution (Robinson 1965) +
- ordering restrictions (Bachmair & Ganzinger 1990) +
- abstract redundancy critrion (B&G 1990) +
- partial model construction (B & G 1990) +
- partial-model based inference restriction (Weidenbach)

A calculus is a set of inference and reduction rules for a given logic (here $PROP(\Sigma)$).

We only consider calculi operating on a set of clauses N. Inference rules *add* new clauses to N whereas reduction rules *remove* clauses from N or *replace* clauses by "simpler" ones.

We are only interested in unsatisfiability, i.e., the considered calculi test whether a clause set N is unsatisfiable. So, in order to check validity of a formula ϕ we check unsatisfiability of the clauses generated from $\neg \phi$.

For clauses we switch between the notation as a disjunction, e.g., $P \lor Q \lor P \lor \neg R$, and the notation as a multiset, e.g., $\{P, Q, P, \neg R\}$. This makes no difference as we consider \lor in the context of clauses always modulo AC. Note that \bot , the empty disjunction, corresponds to \emptyset , the empty multiset.

For literals we write L, possibly with subscript. If L = P then $\overline{L} = \neg P$ and if $L = \neg P$ then $\overline{L} = P$, so the bar flips the negation of a literal.

Clauses are typically denoted by letters C, D, possibly with subscript.

The resolution calculus consists of the inference rules resolution and factoring:

ResolutionFactoring $\mathcal{I} = \begin{array}{c} C_1 \lor P & C_2 \lor \neg P \\ \hline C_1 \lor C_2 \end{array}$ $\mathcal{I} = \begin{array}{c} C \lor L \lor L \\ \hline C \lor L \end{array}$

where C_1 , C_2 , C always stand for clauses, all inference/reduction rules are applied with respect to AC of \lor . Given a clause set N the schema above the inference bar is mapped to N and the resulting clauses below the bar are then *added* to N. and the reduction rules subsumption and tautology deletion:

where for subsumption we assume $C_1 \subseteq C_2$. Given a clause set N the schema above the reduction bar is mapped to N and the resulting clauses below the bar *replace* the clauses above the bar in N.

Clauses that can be removed are called redundant.

So, if we consider clause sets N as states, \uplus is disjoint union, we get the rules

Resolution $(N \uplus \{C_1 \lor P, C_2 \lor \neg P\}) \Rightarrow (N \cup \{C_1 \lor P, C_2 \lor \neg P\}) \Rightarrow (N \cup \{C_1 \lor P, C_2 \lor \neg P\})$

Factoring $(N \uplus \{C \lor L \lor L\}) \Rightarrow (N \cup \{C \lor L \lor L\})$ $L\} \cup \{C \lor L\})$

Resolution for $PROP(\Sigma)$

Subsumption $(N \uplus \{C_1, C_2\}) \Rightarrow (N \cup \{C_1\})$ provided $C_1 \subseteq C_2$

Tautology $(N \uplus \{C \lor P \lor \neg P\}) \Rightarrow (N)$ Deletion

We need more structure than just (N) in order to define a useful rewrite system. We fix this later on.

Resolution for $PROP(\Sigma)$

Theorem 2.11:

The resolution calculus is sound and complete:

N is unsatisfiable iff $N \Rightarrow^* \{\bot\}$

Proof:

Will be a consequence of soundness and completeness of superposition.

Let \prec be a total ordering on $\Sigma.$

We lift \prec to a total ordering on literals by $\prec \subseteq \prec_L$ and $P \prec_L \neg P$ and $\neg P \prec_L Q$ for all $P \prec Q$.

We further lift \prec_L to a total ordering on clauses \prec_C by considering the multiset extension of \prec_L for clauses.

Eventually, we overload \prec with \prec_L and \prec_C .

We define $N^{\prec C} = \{D \in N \mid D \prec C\}.$

Eventually we will restrict inferences to maximal literals with respect to \prec .

A clause *C* is redundant with respect to a clause set *N* if $N^{\prec C} \models C$.

Tautologies are redundant. Subsumed clauses are redundant if \subseteq is strict.

Remark: Note that for finite N, $N^{\prec C} \models C$ can be decided for PROP(Σ) but is as hard as testing unsatisfiability for a clause set N.

Given a clause set N and an ordering \prec we can construct a (partial) model $N_{\mathcal{I}}$ for N as follows:

$$N_{C} := \bigcup_{D \prec C} \delta_{D}$$

$$\delta_{D} := \begin{cases} \{P\} & \text{if } D = D' \lor P \text{ and } P \text{ maximal and } N_{D} \not\models D \\ \emptyset & \text{otherwise} \end{cases}$$

 $N_{\mathcal{I}} := \bigcup_{C \in N} \delta_C$

Superposition

The superposition calculus consists of the inference rules superposition left and factoring:

Superposition

 $\begin{array}{l} \text{Superposition} \\ (N \uplus \{C_1 \lor P, C_2 \lor \neg P\}) \quad \Rightarrow \quad (N \cup \{C_1 \lor P, C_2 \lor \neg P\}) \\ P, C_2 \lor \neg P\} \cup \{C_1 \lor C_2\}) \end{array}$

where P is strictly maximal in $C_1 \lor P$ and $\neg P$ is maximal in $C_2 \lor \neg P$

Factoring $(N \uplus \{C \lor P \lor P\}) \Rightarrow (N \cup \{C \lor P \lor P\})$ $P\} \cup \{C \lor P\})$

where P is maximal in $C \lor P \lor P$

Superposition

examples for specific redundancy rules are **Subsumption** $(N \uplus \{C_1, C_2\}) \Rightarrow (N \cup \{C_1\})$ provided $C_1 \subset C_2$ Tautology $(N \uplus \{ C \lor P \lor \neg P \}) \quad \Rightarrow \quad (N)$ Deletion **Subsumption** $(N \uplus \{C_1 \lor L, C_2 \lor \overline{L}\}) \quad \Rightarrow \quad (N \cup \{C_1 \lor U\})$ Resolution $L, C_2\})$

where $C_1 \subseteq C_2$

Theorem 2.12:

If from a clause set N all possible superposition inferences are redundant and $\perp \notin N$ then N is satisfiable and $N_{\mathcal{I}} \models N$.