
2.5 Superposition for PROP(Σ)

Superposition for PROP(Σ) is:

• resolution (Robinson 1965) +

• ordering restrictions (Bachmair & Ganzinger 1990) +

• abstract redundancy critrion (B&G 1990) +

• partial model construction (B & G 1990) +

• partial-model based inference restriction (Weidenbach)

110



Resolution for PROP(Σ)

A calculus is a set of inference and reduction rules for a given

logic (here PROP(Σ)).

We only consider calculi operating on a set of clauses N.

Inference rules add new clauses to N whereas reduction rules

remove clauses from N or replace clauses by “simpler” ones.

We are only interested in unsatisfiability, i.e., the considered

calculi test whether a clause set N is unsatisfiable. So, in order

to check validity of a formula φ we check unsatisfiability of the

clauses generated from ¬φ.

111



Resolution for PROP(Σ)

For clauses we switch between the notation as a disjunction,

e.g., P ∨ Q ∨ P ∨ ¬R, and the notation as a multiset, e.g.,

{P ,Q,P ,¬R}. This makes no difference as we consider ∨ in the

context of clauses always modulo AC. Note that ⊥, the empty

disjunction, corresponds to ∅, the empty multiset.

For literals we write L, possibly with subscript.. If L = P then

L̄ = ¬P and if L = ¬P then L̄ = P , so the bar flips the negation

of a literal.

Clauses are typically denoted by letters C , D, possibly with

subscript.

112



Resolution for PROP(Σ)

The resolution calculus consists of the inference rules resolution

and factoring:

Resolution Factoring

I
C1 ∨ P C2 ∨ ¬P

C1 ∨ C2

I
C ∨ L ∨ L

C ∨ L

where C1, C2, C always stand for clauses, all inference/reduction

rules are applied with respect to AC of ∨. Given a clause set

N the schema above the inference bar is mapped to N and the

resulting clauses below the bar are then added to N.

113



Resolution for PROP(Σ)

and the reduction rules subsumption and tautology deletion:

Subsumption Tautology Deletion

R
C1 C2

C1

R
C ∨ P ∨ ¬P

where for subsumption we assume C1 ⊆ C2. Given a clause set

N the schema above the reduction bar is mapped to N and the

resulting clauses below the bar replace the clauses above the bar

in N.

Clauses that can be removed are called redundant.

114



Resolution for PROP(Σ)

So, if we consider clause sets N as states, ⊎ is disjoint union, we

get the rules

Resolution (N ⊎ {C1 ∨ P ,C2 ∨ ¬P}) ⇒ (N ∪ {C1 ∨

P ,C2 ∨ ¬P} ∪ {C1 ∨ C2})

Factoring (N ⊎ {C ∨ L ∨ L}) ⇒ (N ∪ {C ∨ L ∨

L} ∪ {C ∨ L})

115



Resolution for PROP(Σ)

Subsumption (N ⊎ {C1,C2}) ⇒ (N ∪ {C1})

provided C1 ⊆ C2

Tautology

Deletion
(N ⊎ {C ∨ P ∨ ¬P}) ⇒ (N)

We need more structure than just (N) in order to define a useful

rewrite system. We fix this later on.

116



Resolution for PROP(Σ)

Theorem 2.11:

The resolution calculus is sound and complete:

N is unsatisfiable iff N ⇒∗ {⊥}

Proof:

Will be a consequence of soundness and completeness of

superposition. 2

117



Ordering restrictions

Let ≺ be a total ordering on Σ.

We lift ≺ to a total ordering on literals by ≺⊆≺L and P ≺L ¬P

and ¬P ≺L Q for all P ≺ Q.

We further lift ≺L to a total ordering on clauses ≺C by

considering the multiset extension of ≺L for clauses.

Eventually, we overload ≺ with ≺L and ≺C .

We define N≺C = {D ∈ N | D ≺ C}.

118



Ordering restrictions

Eventually we will restrict inferences to maximal literals with

respect to ≺.

119



Abstract Redundancy

A clause C is redundant with respect to a clause set N if

N≺C |= C .

Tautologies are redundant. Subsumed clauses are redundant if

⊆ is strict.

Remark: Note that for finite N, N≺C |= C can be decided for

PROP(Σ) but is as hard as testing unsatisfiability for a clause

set N.

120



Partial Model Construction

Given a clause set N and an ordering ≺ we can construct a

(partial) model NI for N as follows:

NC :=
⋃

D≺C δD

δD :=




{P} if D = D′ ∨ P and P maximal and ND 6|= D

∅ otherwise

NI :=
⋃

C∈N δC

121



Superposition

The superposition calculus consists of the inference rules

superposition left and factoring:

Superposition

Left
(N ⊎ {C1 ∨ P ,C2 ∨ ¬P}) ⇒ (N ∪ {C1 ∨

P ,C2 ∨ ¬P} ∪ {C1 ∨ C2})

where P is strictly maximal in C1 ∨ P and ¬P is maximal in

C2 ∨ ¬P

Factoring (N ⊎ {C ∨ P ∨ P}) ⇒ (N ∪ {C ∨ P ∨

P} ∪ {C ∨ P})

where P is maximal in C ∨ P ∨ P

122



Superposition

examples for specific redundancy rules are

Subsumption (N ⊎ {C1,C2}) ⇒ (N ∪ {C1})

provided C1 ⊂ C2

Tautology

Deletion
(N ⊎ {C ∨ P ∨ ¬P}) ⇒ (N)

Subsumption

Resolution
(N ⊎ {C1 ∨ L,C2 ∨ L̄}) ⇒ (N ∪ {C1 ∨

L,C2})

where C1 ⊆ C2

123



Superposition

Theorem 2.12:

If from a clause set N all possible superposition inferences are

redundant and ⊥ /∈ N then N is satisfiable and NI |= N.

124


