
Partial Model Construction

Given a clause set N and an ordering ≺ we can construct a

(partial) model NI for N as follows:

NC :=
⋃

D≺C δD

δD :=

{P} if D = D′ ∨ P ,P strictly maximal and ND 6|= D

∅ otherwise

NI :=
⋃

C∈N δC

121

Partial Model Construction

Clauses C with δC 6= ∅ are called productive. Some properties

of the partial model construction.

Proposition 2.12:

1. For every D with (C ∨ ¬P) ≺ D we have δD 6= {P}.

2. If δC = {P} then NC ∪ δC |= C .

3. If NC |= D then for all C ′ with C ≺ C ′ we have NC ′ |= D

and in particular NI |= D.

122

Notation: N, N≺C , NI, NC

Please properly distinguish:

• N is a set of clauses intepreted as the conjunction of all

clauses.

• N≺C is of set of clauses from N strictly smaller than C with

respect to ≺.

• NI , NC are sets of atoms, often called Herbrand Interpreta-

tions. NI is the overall (partial) model for N, whereas NC

is generated from all clauses from N strictly smaller than C .

• Validity is defined by NI |= P if P ∈ NI and NI |= ¬P if

P 6∈ NI , accordingly for NC .

123

Superposition

The superposition calculus consists of the inference rules

superposition left and factoring:

Superposition Left

(N ⊎ {C1 ∨ P ,C2 ∨ ¬P}) ⇒ (N ∪ {C1 ∨ P ,C2 ∨ ¬P} ∪

{C1 ∨ C2})

where P is strictly maximal in C1 ∨ P and ¬P is maximal in

C2 ∨ ¬P

Factoring

(N ⊎ {C ∨ P ∨ P}) ⇒ (N ∪ {C ∨ P ∨ P} ∪ {C ∨ P})

where P is maximal in C ∨ P ∨ P

124

Superposition

examples for specific redundancy rules are

Subsumption

(N ⊎ {C1,C2}) ⇒ (N ∪ {C1})

provided C1 ⊂ C2

Tautology Deletion

(N ⊎ {C ∨ P ∨ ¬P}) ⇒ (N)

Subsumption Resolution

(N ⊎ {C1 ∨ L,C2 ∨ L̄}) ⇒ (N ∪ {C1 ∨ L,C2})

where C1 ⊆ C2

125

Superposition

Theorem 2.13:

If from a clause set N all possible superposition inferences are

redundant and ⊥ /∈ N then N is satisfiable and NI |= N.

126

Superposition

So the proof actually tells us that at any point in time we need

only to consider either a superposition left inference between

a minimal false clause and a productive clause or a factoring

inference on a minimal false clause.

127

A Superposition Theorem Prover STP

3 clause sets:

N(ew) containing new inferred clauses

U(sable) containing reduced new inferred clauses

clauses get into W(orked) O(ff) once their inferences have

been computed

Strategy:

Inferences will only be computed when there are no

possibilities for simplification

128

Rewrite Rules for STP

Tautology Deletion

(N ⊎ {C};U;WO) ⇒STP (N;U;WO)

if C is a tautology

Forward Subsumption

(N ⊎ {C};U;WO) ⇒STP (N;U;WO)

if some D ∈ (U ∪WO) subsumes C

Backward Subsumption U

(N ⊎ {C};U ⊎ {D};WO) ⇒STP (N ∪ {C};U;WO)

if C strictly subsumes D (C ⊂ D)

129

Rewrite Rules for STP

Backward Subsumption WO

(N ⊎ {C};U;WO ⊎ {D}) ⇒STP (N ∪ {C};U;WO)

if C strictly subsumes D (C ⊂ D)

Forward Subsumption Resolution

(N ⊎ {C1 ∨ L};U;WO) ⇒STP (N ∪ {C1};U;WO)

if there exists C2 ∨ L̄ ∈ (UP ∪WO) such that C2 ⊆ C1

Backward Subsumption Resolution U

(N ⊎ {C1 ∨ L};U ⊎ {C2 ∨ L̄};WO) ⇒STP (N ∪ {C1 ∨

L};U ⊎ {C2};WO)

if C1 ⊆ C2

130

Rewrite Rules for STP

Backward Subsumption Resolution WO

(N ⊎ {C1 ∨ L};U;WO ⊎ {C2 ∨ L̄}) ⇒STP (N ∪ {C1 ∨

L};U;WO ⊎ {C2})

if C1 ⊆ C2

Clause Processing

(N ⊎ {C};U;WO) ⇒STP (N;U ∪ {C};WO)

Inference Computation

(∅;U ⊎ {C};WO) ⇒STP (N;U;WO ∪ {C})

where N is the set of clauses derived by superposition inferences

from C and clauses in WO.
131

Soundness and Completeness

Theorem 2.14:

N |= ⊥ ⇔ (N; ∅; ∅) ⇒∗
STP (N′ ∪ {⊥};U;WO)

Proof in L. Bachmair, H. Ganzinger: Resolution Theorem

Proving appeared in the Handbook of Automated Reasoning,

2001

132

Termination

Theorem 2.15:

For finite N and a strategy where the reduction rules Tautology

Deletion, the two Subsumption and two Subsumption Resolution

rules are always exhaustively applied before Clause Processing

and Inference Computation, the rewrite relation ⇒STP is

terminating on (N; ∅; ∅).

Proof: think of it (more later on).

133

Fairness

Problem:

If N is inconsistent, then (N; ∅; ∅) ⇒∗
STP (N′ ∪ {⊥};U;WO) .

Does this imply that every derivation starting from an

inconsistent set N eventually produces ⊥ ?

No: a clause could be kept in U without ever being used for

an inference.

134

Fairness

We need in addition a fairness condition:

If an inference is possible forever (that is, none of its premises

is ever deleted), then it must be computed eventually.

One possible way to guarantee fairness: Implement U as a

queue (there are other techniques to guarantee fairness).

With this additional requirement, we get a stronger result: If

N is inconsistent, then every fair derivation will eventually

produce ⊥.

135

