Partial Model Construction

Given a clause set N and an ordering < we can construct a
(partial) model Nz for N as follows:

Nc = UD<C 0p

)
{P} if D= D’V P, P strictly maximal and Np }= D

0 otherwise

121



Partial Model Construction

Clauses C with d¢ # () are called productive. Some properties

of the partial model construction.
Proposition 2.12:
1. For every D with (CV —P) < D we have dp # {P}.
2. If ¢ = {P} then Nc Udc = C.
3. If Nc = D then for all ¢’ with C < C” we have N¢» =D

and in particular Nz = D.

122



Notation: N, N=¢, N7, N¢

Please properly distinguish:

e /N is a set of clauses intepreted as the conjunction of all

clauses.

o N=C is of set of clauses from N strictly smaller than C with

respect to <.

o Nz, N¢ are sets of atoms, often called Herbrand Interpreta-
tions. Nz is the overall (partial) model for N, whereas N¢
Is generated from all clauses from N strictly smaller than C.

e Validity is defined by Nz = P if P € Nz and Nz = =P if
P & Nz, accordingly for Nc.

123



Superposition

The superposition calculus consists of the inference rules
superposition left and factoring:

Superposition Left
(N {C VP GV-P}) = (NU{GVP CV-P}U
{Cl V CQ})

where P is strictly maximal in C(; V P and =P is maximal in
G Vv =P

Factoring
(N&J{C\/P\/P}) — (NU{C\/P\/P}U{C\/P})
where P is maximalin CV PV P

124



Superposition

examples for specific redundancy rules are

Subsumption
(INW{C, G}) = (NU{G})

provided C; C G

Tautology Deletion
(Nw{CVPV-P}) = (N)

Subsumption Resolution
(INW{C, VL GVL) = (NU{GVLG))

where Cl g C2

125



Superposition

Theorem 2.13:
If from a clause set N all possible superposition inferences are
redundant and L ¢ N then N is satisfiable and Nz = N.

126



Superposition

So the proof actually tells us that at any point in time we need
only to consider either a superposition left inference between
a minimal false clause and a productive clause or a factoring

inference on a minimal false clause.

127



A Superposition Theorem Prover STP

3 clause sets:
N(ew) containing new inferred clauses
U(sable) containing reduced new inferred clauses
clauses get into W/(orked) O(ff) once their inferences have
been computed

Strategy:
Inferences will only be computed when there are no
possibilities for simplification

128



Rewrite Rules for STP

Tautology Deletion
(NW{C}; U;WO) =gs1p (N;U; WO)

if C is a tautology

Forward Subsumption
(NW{C}; U, WO) =stp (N;U;WO)

if some D € (UU WO) subsumes C

Backward Subsumption U
(NU{C}; Uw{D}; WO) =srp (NU{C}; U; WO)

if C strictly subsumes D (C C D)

129



Rewrite Rules for STP

Backward Subsumption WO
(Nw{C}, U;WOWwW{D}) =stp (NU{C}, U; WO)

if C strictly subsumes D (C C D)

Forward Subsumption Resolution
(Nw{CG VL};UWO) =srp (NU{G};U; WO)

if there exists G, V L € (UP U WO) such that G, C G
Backward Subsumption Resolution U

(NHJ{Cl\/L};UH‘J{CQ\/Z};WO) —>STP (NU{Cl\/
L}; Uy {Cz}; WO)

it C; C G

130



Rewrite Rules for STP

Backward Subsumption Resolution WO
(NHJ{Cl\/L};U; WOH‘J{CQ\/Z}) —>STP (NU{Cl\/
L}, U WO W{G})

if C; C G

Clause Processing
(NW{C}; U, WO) =s1p (N;UU{C}; WO)

Inference Computation

(@,U&J{C},WO) —STP (N; U; WOU{C})
where N is the set of clauses derived by superposition inferences
from C and clauses in WO.

131



Soundness and Completeness

Theorem 2.14:

NEL < (N;0;0) =%p (N U{L} U, WO)

Proof in L. Bachmair, H. Ganzinger: Resolution Theorem

Proving appeared in the Handbook of Automated Reasoning,
2001

132



Termination

Theorem 2.15:

For finite N and a strategy where the reduction rules Tautology
Deletion, the two Subsumption and two Subsumption Resolution
rules are always exhaustively applied before Clause Processing

and Inference Computation, the rewrite relation =g7p is
terminating on (N; ;D).

Proof: think of it (more later on).

133



Fairness

Problem:
If N is inconsistent, then (N; 0;0) =%t (N'U{L}; U; WO).

Does this imply that every derivation starting from an

inconsistent set N eventually produces L 7

No: a clause could be kept in U without ever being used for

an inference.

134



Fairness

We need in addition a fairness condition:

If an inference is possible forever (that is, none of its premises
is ever deleted), then it must be computed eventually.

One possible way to guarantee fairness: Implement U as a
queue (there are other techniques to guarantee fairness).

With this additional requirement, we get a stronger result: If
N is inconsistent, then every fair derivation will eventually
produce L.

135



