Given a clause set N and an ordering \prec we can construct a (partial) model $N_{\mathcal{I}}$ for N as follows:

$$N_C := igcup_{D \prec C} \delta_D$$

 $\delta_D := iggl\{ egin{array}{c} \{P\} & ext{if } D = D' \lor P, P ext{ strictly maximal and } N_D
ext{ } E D \ \emptyset & ext{otherwise} \end{array}$

 $N_{\mathcal{I}} := \bigcup_{C \in N} \delta_C$

Clauses C with $\delta_C \neq \emptyset$ are called productive. Some properties of the partial model construction.

Proposition 2.12:

1. For every D with $(C \vee \neg P) \prec D$ we have $\delta_D \neq \{P\}$.

2. If
$$\delta_C = \{P\}$$
 then $N_C \cup \delta_C \models C$.

3. If $N_C \models D$ then for all C' with $C \prec C'$ we have $N_{C'} \models D$ and in particular $N_{\mathcal{I}} \models D$. Please properly distinguish:

- *N* is a set of clauses intepreted as the conjunction of all clauses.
- N^{≺C} is of set of clauses from N strictly smaller than C with respect to ≺.
- $N_{\mathcal{I}}$, N_C are sets of atoms, often called Herbrand Interpretations. $N_{\mathcal{I}}$ is the overall (partial) model for N, whereas N_C is generated from all clauses from N strictly smaller than C.
- Validity is defined by N_I ⊨ P if P ∈ N_I and N_I ⊨ ¬P if P ∉ N_I, accordingly for N_C.

Superposition

The superposition calculus consists of the inference rules superposition left and factoring:

Superposition Left

 $(N \uplus \{C_1 \lor P, C_2 \lor \neg P\}) \quad \Rightarrow \quad (N \cup \{C_1 \lor P, C_2 \lor \neg P\} \cup \{C_1 \lor C_2\})$

where P is strictly maximal in $C_1 \lor P$ and $\neg P$ is maximal in $C_2 \lor \neg P$

Factoring

 $(N \uplus \{C \lor P \lor P\}) \quad \Rightarrow \quad (N \cup \{C \lor P \lor P\} \cup \{C \lor P\})$

where P is maximal in $C \lor P \lor P$

Superposition

examples for specific redundancy rules are

Subsumption

 $(N \uplus \{C_1, C_2\}) \Rightarrow (N \cup \{C_1\})$ provided $C_1 \subset C_2$

Tautology Deletion $(N \uplus \{C \lor P \lor \neg P\}) \Rightarrow (N)$

Subsumption Resolution

 $(N \uplus \{C_1 \lor L, C_2 \lor \overline{L}\}) \Rightarrow (N \cup \{C_1 \lor L, C_2\})$ where $C_1 \subseteq C_2$ Theorem 2.13:

If from a clause set N all possible superposition inferences are redundant and $\perp \notin N$ then N is satisfiable and $N_{\mathcal{I}} \models N$.

So the proof actually tells us that at any point in time we need only to consider either a superposition left inference between a minimal false clause and a productive clause or a factoring inference on a minimal false clause.

A Superposition Theorem Prover *STP*

3 clause sets:

N(ew) containing new inferred clauses U(sable) containing reduced new inferred clauses clauses get into W(orked) O(ff) once their inferences have been computed

Strategy:

Inferences will only be computed when there are no possibilities for simplification

Tautology Deletion

 $(N \uplus \{C\}; U; WO) \Rightarrow_{STP} (N; U; WO)$

if C is a tautology

Forward Subsumption

 $(N \uplus \{C\}; U; WO) \Rightarrow_{STP} (N; U; WO)$

if some $D \in (U \cup WO)$ subsumes C

Backward Subsumption U

 $(N \uplus \{C\}; U \uplus \{D\}; WO) \implies_{STP} (N \cup \{C\}; U; WO)$

if C strictly subsumes D ($C \subset D$)

Backward Subsumption WO $(N \uplus \{C\}; U; WO \uplus \{D\}) \Rightarrow_{STP} (N \cup \{C\}; U; WO)$ if C strictly subsumes $D (C \subset D)$

Forward Subsumption Resolution $(N \uplus \{C_1 \lor L\}; U; WO) \Rightarrow_{STP} (N \cup \{C_1\}; U; WO)$ if there exists $C_2 \lor \overline{L} \in (UP \cup WO)$ such that $C_2 \subseteq C_1$

Backward Subsumption Resolution U

 $(N \uplus \{C_1 \lor L\}; U \uplus \{C_2 \lor \overline{L}\}; WO) \implies_{STP} (N \cup \{C_1 \lor L\}; U \uplus \{C_2\}; WO)$

 $\text{ if } C_1 \subseteq C_2$

Backward Subsumption Resolution *WO* $(N \uplus \{C_1 \lor L\}; U; WO \uplus \{C_2 \lor \overline{L}\}) \Rightarrow_{STP} (N \cup \{C_1 \lor L\}; U; WO \uplus \{C_2\})$ if $C_1 \subseteq C_2$

Clause Processing $(N \uplus \{C\}; U; WO) \Rightarrow_{STP} (N; U \cup \{C\}; WO)$

Inference Computation

 $(\emptyset; U \uplus \{C\}; WO) \implies_{STP} (N; U; WO \cup \{C\})$

where N is the set of clauses derived by superposition inferences from C and clauses in WO.

Theorem 2.14:

$$N \models \bot \quad \Leftrightarrow \quad (N; \emptyset; \emptyset) \quad \Rightarrow_{STP}^* \quad (N' \cup \{\bot\}; U; WO)$$

Proof in L. Bachmair, H. Ganzinger: Resolution Theorem Proving appeared in the Handbook of Automated Reasoning, 2001

Termination

Theorem 2.15:

For finite *N* and a strategy where the reduction rules Tautology Deletion, the two Subsumption and two Subsumption Resolution rules are always exhaustively applied before Clause Processing and Inference Computation, the rewrite relation \Rightarrow_{STP} is terminating on $(N; \emptyset; \emptyset)$.

Proof: think of it (more later on).

Fairness

Problem:

If *N* is inconsistent, then $(N; \emptyset; \emptyset) \Rightarrow_{STP}^* (N' \cup \{\bot\}; U; WO)$.

Does this imply that *every* derivation starting from an inconsistent set N eventually produces \perp ?

No: a clause could be kept in U without ever being used for an inference.

We need in addition a fairness condition:

- If an inference is possible forever (that is, none of its premises is ever deleted), then it must be computed eventually.
- One possible way to guarantee fairness: Implement U as a queue (there are other techniques to guarantee fairness).
- With this additional requirement, we get a stronger result: If N is inconsistent, then every *fair* derivation will eventually produce \perp .