
Getting Better Backjump Clauses

By repeating this process, we will eventually obtain a clause

that consists only of complements of decision literals and can be

used in the “Backjump” rule.

Moreover, such a clause is a good candidate for learning.

160

Learning Clauses

The DPLL system can be extended by two rules to learn and to

forget clauses:

Learn:

(M ;N) ⇒DPLL (M ;N ∪ {C})

if N |= C .

Forget:

(M ;N ⊎ {C}) ⇒DPLL (M ;N)

if N |= C .

161

Learning Clauses

If we ensure that no clause is learned infinitely often, then

termination is guaranteed.

The other properties of the basic DPLL system hold also for the

extended system.

162

Restart

Part of the CDCL system the restart rule:

Restart:

(M ;N) ⇒DPLL (nil;N)

The restart rule is typically applied after a certain number of

clauses have been learned or a unit is derived. It is closely

coupled with the variable order heuristic.

If Restart is only applied finitely often, termination is guaranteed.

163

Variable Order Heuristic

For every propositional variable Pi there is a positive score ki .

At start ki may for example be the number of occurrences of Pi

in N.

The variable order is then the descending ordering of the Pi

according to the ki .

The scores ki are adjusted during a CDCL run.

164

Variable Order Heuristic

• Every time a learned clause is computed after a conflict,

the involved propositional variables obtain a bonus b, i.e.,

ki = ki + b.

• After each restart, the variable order is recomputed, using

the new scores.

• After each j th restart, the scores a leveled: ki = ki/l for

some l .

The purpose of these mechanisms is to keep the search focused.

Parameter b directs the search around the conflict, parameter

j decides how many learned clauses are “sufficient” to move in

“speed ” of parameter l away from this conflict.

165

Preprocessing

Before DPLL search, and computation of the variable order

heuristics, a number of preprocessing steps are performed:

(i) Subsumption

Non-strict version.

(ii) Purity Deletion

Delete all clauses containing a literal L where L does not

occur in the clause set.

(iii) Subsumption Resolution

166

Preprocessing

(iv) Tautology Deletion

(v) Literal Elimination

do all possible resolution steps on a literal L and then throw

away all clauses containing L or L; repeat this as long as |N|

does not grow.

167

Further Information

The ideas described so far have been implemented in all modern

SAT solvers: zChaff, miniSAT,picoSAT. Because of clause

learning the algorithm is now called CDCL: Conflict Driven

Clause Learning.

It has been shown in 2009 that CDCL can polynomially simulate

resolution, a long standing open question:

Knot Pipatsrisawat, Adnan Darwiche: On the Power of

Clause-Learning SAT Solvers with Restarts. CP 2009, 654-668

168

Literature

Lintao Zhang and Sharad Malik: The Quest for Efficient Boolean

Satisfiability Solvers; Proc. CADE-18, LNAI 2392, pp. 295–312,

Springer, 2002.

Robert Nieuwenhuis, Albert Oliveras, Cesare Tinelli: Solving SAT

and SAT Modulo Theories; From an abstract Davis-Putnam-

Logemann-Loveland precedure to DPLL(T), pp. 937–977,

Journal of the ACM, 53(6), 2006.

Armin Biere, Marijn Heule, Hans van Maaren, Toby Walsh

(eds.): Handbook of Satisfiability; IOS Press, 2009

Daniel Le Berre’s slides at VTSA’09: http://www.mpi-inf.

mpg.de/vtsa09/.

169

2.8 Example: Sudoku

1 2 3 4 5 6 7 8 9

1 1

2 4

3 2

4 5 4 7

5 8 3

6 1 9

7 3 4 2

8 5 1

9 8 6

Idea: pd
i ,j=true iff

the value of

square i , j is d

For example:

p8
3,5 = true

170

Coding Sudoku by Propositional Clauses

• Concrete values result in units: pdi ,j

• For every square (i , j) we generate p1i ,j ∨ . . . ∨ p9i ,j

• For every square (i , j) and pair of values d < d ′ we generate

¬pdi ,j ∨ ¬p
d′

i ,j

• For every value d and column i we generate pdi ,1 ∨ . . . ∨ pdi ,9
(Analogously for rows and 3× 3 boxes)

• For every value d , column i , and pair of rows j < j ′ we

generate ¬pdi ,j ∨ ¬p
d
i ,j′

(Analogously for rows and 3× 3 boxes)

171

Constraint Propagation is Unit Propagation

1 2 3 4 5 6 7 8 9

1 1

2 4

3 2

4 5 4 7

5 8 3

6 1 9

7 3 4 7 2

8 5 1

9 8 6

From ¬p3
1,7 ∨ ¬p3

5,7 and p3
1,7 we obtain by unit propagating ¬p3

5,7

and further from p1
5,7 ∨ p2

5,7 ∨ p3
5,7 ∨ p4

5,7 ∨ . . . ∨ p9
5,7 we get

p1
5,7 ∨ p2

5,7 ∨ p4
5,7 ∨ . . . ∨ p9

5,7 (and finally p7
5,7).

172

2.9 Other Calculi

OBDDs (Ordered Binary Decision Diagrams):

Minimized graph representation of decision trees, based on a

fixed ordering on propositional variables,

⇒ canonical representation of formulas.

see script of the Computational Logic course,

see Chapter 6.1/6.2 of Michael Huth and Mark Ryan: Logic in

Computer Science: Modelling and Reasoning about Systems,

Cambridge Univ. Press, 2000.

173

Other Calculi

FRAIGs (Fully Reduced And-Inverter Graphs)

Minimized graph representation of boolean circuits.

⇒ semi-canonical representation of formulas.

Implementation needs DPLL (and OBDDs) as subroutines.

174

Other Calculi

Tableau calculus

Hilbert calculus

Sequent calculus

Natural deduction

175

Part 3: First-Order Logic

→First-order logic

• formalizes fundamental mathematical concepts

• is expressive (Turing-complete)

• is not too expressive (e. g. not axiomatizable: natural

numbers, uncountable sets)

• has a rich structure of decidable fragments

• has a rich model and proof theory

First-order logic is also called (first-order) predicate logic.

176

3.1 Syntax

Syntax:

• non-logical symbols (domain-specific)

⇒ terms, atomic formulas

• logical connectives (domain-independent)

⇒ Boolean combinations, quantifiers

177

Signature

A signature Σ = (Ω,Π) fixes an alphabet of non-logical symbols,

where

• Ω is a set of function symbols f with arity n ≥ 0, written

arity(f) = n,

• Π is a set of predicate symbols P with arity m ≥ 0, written

arity(P) = m.

Function symbols are also called operator symbols.

If n = 0 then f is also called a constant (symbol).

If m = 0 then P is also called a propositional variable.

178

Signature

We will usually use

b, c , d for constant symbols,

f , g , h for non-constant function symbols,

P , Q, R, S for predicate symbols.

Convention: We will usually write f /n ∈ Ω instead of f ∈ Ω,

arity(f) = n (analogously for predicate symbols).

179

Signature

Refined concept for practical applications:

many-sorted signatures (corresponds to simple type systems in

programming languages); not so interesting from a logical point

of view.

180

Variables

Predicate logic admits the formulation of abstract, schematic

assertions. (Object) variables are the technical tool for

schematization.

We assume that X is a given countably infinite set of symbols

which we use to denote variables.

181

Context-Free Grammars

We define many of our notions on the bases of context-free

grammars. Recall that a context-free grammar G = (N,T ,P ,S)

consists of:

• a set of non-terminal symbols N

• a set of terminal symbols T

• a set P of rules A ::= w where A ∈ N and w ∈ (N ∪ T)∗

• a start symbol S where S ∈ N

For rules A ::= w1, A ::= w2 we write A ::= w1 | w2

182

Terms

Terms over Σ and X (Σ-terms) are formed according to these

syntactic rules:

s, t, u, v ::= x , x ∈ X (variable)

| f (s1, ..., sn) , f /n ∈ Ω (functional term)

By TΣ(X) we denote the set of Σ-terms (over X). A term

not containing any variable is called a ground term. By TΣ we

denote the set of Σ-ground terms.

183

Terms

In other words, terms are formal expressions with well-balanced

brackets which we may also view as marked, ordered trees.

The markings are function symbols or variables. The nodes

correspond to the subterms of the term. A node v that is

marked with a function symbol f of arity n has exactly n

subtrees representing the n immediate subterms of v .

184

