
Getting Better Backjump Clauses

By repeating this process, we will eventually obtain a clause

that consists only of complements of decision literals and can be

used in the “Backjump” rule.

Moreover, such a clause is a good candidate for learning.
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Learning Clauses

The DPLL system can be extended by two rules to learn and to

forget clauses:

Learn:

(M ;N) ⇒DPLL (M ;N ∪ {C})

if N |= C .

Forget:

(M ;N ⊎ {C}) ⇒DPLL (M ;N)

if N |= C .
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Learning Clauses

If we ensure that no clause is learned infinitely often, then

termination is guaranteed.

The other properties of the basic DPLL system hold also for the

extended system.
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Restart

Part of the CDCL system the restart rule:

Restart:

(M ;N) ⇒DPLL (nil;N)

The restart rule is typically applied after a certain number of

clauses have been learned or a unit is derived. It is closely

coupled with the variable order heuristic.

If Restart is only applied finitely often, termination is guaranteed.
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Variable Order Heuristic

For every propositional variable Pi there is a positive score ki .

At start ki may for example be the number of occurrences of Pi

in N.

The variable order is then the descending ordering of the Pi

according to the ki .

The scores ki are adjusted during a CDCL run.
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Variable Order Heuristic

• Every time a learned clause is computed after a conflict,

the involved propositional variables obtain a bonus b, i.e.,

ki = ki + b.

• After each restart, the variable order is recomputed, using

the new scores.

• After each j th restart, the scores a leveled: ki = ki/l for

some l .

The purpose of these mechanisms is to keep the search focused.

Parameter b directs the search around the conflict, parameter

j decides how many learned clauses are “sufficient” to move in

“speed ” of parameter l away from this conflict.
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Preprocessing

Before DPLL search, and computation of the variable order

heuristics, a number of preprocessing steps are performed:

(i) Subsumption

Non-strict version.

(ii) Purity Deletion

Delete all clauses containing a literal L where L does not

occur in the clause set.

(iii) Subsumption Resolution
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Preprocessing

(iv) Tautology Deletion

(v) Literal Elimination

do all possible resolution steps on a literal L and then throw

away all clauses containing L or L; repeat this as long as |N|

does not grow.
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Further Information

The ideas described so far have been implemented in all modern

SAT solvers: zChaff, miniSAT,picoSAT. Because of clause

learning the algorithm is now called CDCL: Conflict Driven

Clause Learning.

It has been shown in 2009 that CDCL can polynomially simulate

resolution, a long standing open question:

Knot Pipatsrisawat, Adnan Darwiche: On the Power of

Clause-Learning SAT Solvers with Restarts. CP 2009, 654-668
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2.8 Example: Sudoku

1 2 3 4 5 6 7 8 9

1 1

2 4

3 2

4 5 4 7

5 8 3

6 1 9

7 3 4 2

8 5 1

9 8 6

Idea: pd
i ,j=true iff

the value of

square i , j is d

For example:

p8
3,5 = true
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Coding Sudoku by Propositional Clauses

• Concrete values result in units: pdi ,j

• For every square (i , j) we generate p1i ,j ∨ . . . ∨ p9i ,j

• For every square (i , j) and pair of values d < d ′ we generate

¬pdi ,j ∨ ¬p
d′

i ,j

• For every value d and column i we generate pdi ,1 ∨ . . . ∨ pdi ,9
(Analogously for rows and 3× 3 boxes)

• For every value d , column i , and pair of rows j < j ′ we

generate ¬pdi ,j ∨ ¬p
d
i ,j′

(Analogously for rows and 3× 3 boxes)
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Constraint Propagation is Unit Propagation

1 2 3 4 5 6 7 8 9

1 1

2 4

3 2

4 5 4 7

5 8 3

6 1 9

7 3 4 7 2

8 5 1

9 8 6

From ¬p3
1,7 ∨ ¬p3

5,7 and p3
1,7 we obtain by unit propagating ¬p3

5,7

and further from p1
5,7 ∨ p2

5,7 ∨ p3
5,7 ∨ p4

5,7 ∨ . . . ∨ p9
5,7 we get

p1
5,7 ∨ p2

5,7 ∨ p4
5,7 ∨ . . . ∨ p9

5,7 (and finally p7
5,7).
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2.9 Other Calculi

OBDDs (Ordered Binary Decision Diagrams):

Minimized graph representation of decision trees, based on a

fixed ordering on propositional variables,

⇒ canonical representation of formulas.

see script of the Computational Logic course,

see Chapter 6.1/6.2 of Michael Huth and Mark Ryan: Logic in

Computer Science: Modelling and Reasoning about Systems,

Cambridge Univ. Press, 2000.
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Other Calculi

FRAIGs (Fully Reduced And-Inverter Graphs)

Minimized graph representation of boolean circuits.

⇒ semi-canonical representation of formulas.

Implementation needs DPLL (and OBDDs) as subroutines.
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Other Calculi

Tableau calculus

Hilbert calculus

Sequent calculus

Natural deduction
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Part 3: First-Order Logic

→First-order logic

• formalizes fundamental mathematical concepts

• is expressive (Turing-complete)

• is not too expressive (e. g. not axiomatizable: natural

numbers, uncountable sets)

• has a rich structure of decidable fragments

• has a rich model and proof theory

First-order logic is also called (first-order) predicate logic.
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3.1 Syntax

Syntax:

• non-logical symbols (domain-specific)

⇒ terms, atomic formulas

• logical connectives (domain-independent)

⇒ Boolean combinations, quantifiers
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Signature

A signature Σ = (Ω,Π) fixes an alphabet of non-logical symbols,

where

• Ω is a set of function symbols f with arity n ≥ 0, written

arity(f ) = n,

• Π is a set of predicate symbols P with arity m ≥ 0, written

arity(P) = m.

Function symbols are also called operator symbols.

If n = 0 then f is also called a constant (symbol).

If m = 0 then P is also called a propositional variable.
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Signature

We will usually use

b, c , d for constant symbols,

f , g , h for non-constant function symbols,

P , Q, R, S for predicate symbols.

Convention: We will usually write f /n ∈ Ω instead of f ∈ Ω,

arity(f ) = n (analogously for predicate symbols).
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Signature

Refined concept for practical applications:

many-sorted signatures (corresponds to simple type systems in

programming languages); not so interesting from a logical point

of view.
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Variables

Predicate logic admits the formulation of abstract, schematic

assertions. (Object) variables are the technical tool for

schematization.

We assume that X is a given countably infinite set of symbols

which we use to denote variables.
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Context-Free Grammars

We define many of our notions on the bases of context-free

grammars. Recall that a context-free grammar G = (N,T ,P ,S)

consists of:

• a set of non-terminal symbols N

• a set of terminal symbols T

• a set P of rules A ::= w where A ∈ N and w ∈ (N ∪ T )∗

• a start symbol S where S ∈ N

For rules A ::= w1, A ::= w2 we write A ::= w1 | w2
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Terms

Terms over Σ and X (Σ-terms) are formed according to these

syntactic rules:

s, t, u, v ::= x , x ∈ X (variable)

| f (s1, ..., sn) , f /n ∈ Ω (functional term)

By TΣ(X ) we denote the set of Σ-terms (over X ). A term

not containing any variable is called a ground term. By TΣ we

denote the set of Σ-ground terms.
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Terms

In other words, terms are formal expressions with well-balanced

brackets which we may also view as marked, ordered trees.

The markings are function symbols or variables. The nodes

correspond to the subterms of the term. A node v that is

marked with a function symbol f of arity n has exactly n

subtrees representing the n immediate subterms of v .

184


