
Atoms

Atoms (also called atomic formulas) over Σ are formed according

to this syntax:

A,B ::= P(s1, . . . , sm) , P/m ∈ Π (non-equational atom)[
| (s ≈ t) (equation)

]

Whenever we admit equations as atomic formulas we are in

the realm of first-order logic with equality. Admitting equality

does not really increase the expressiveness of first-order logic,

(cf. exercises). But deductive systems where equality is treated

specifically are much more efficient.

185



Literals

L ::= A (positive literal)

| ¬A (negative literal)

186



Clauses

C ,D ::= ⊥ (empty clause)

| L1 ∨ . . . ∨ Lk , k ≥ 1 (non-empty clause)

187



General First-Order Formulas

FΣ(X ) is the set of first-order formulas over Σ defined as follows:

φ,ψ,χ ::= ⊥ (falsum)

| ⊤ (verum)

| A (atomic formula)

| ¬φ (negation)

| (φ ∧ ψ) (conjunction)

| (φ ∨ ψ) (disjunction)

| (φ→ ψ) (implication)

| (φ↔ ψ) (equivalence)

| ∀x φ (universal quantification)

| ∃x φ (existential quantification)

188



Notational Conventions

We omit brackets according to the conventions for propositional

logic.

Furthermore, ∀x1, . . . , xn φ (∃x1, . . . , xn φ) abbreviates ∀x1 . . . ∀xn φ

(∃x1 . . . ∃xn φ).

189



Notational Conventions

We use infix-, prefix-, postfix-, or mixfix-notation with the usual

operator precedences.

Examples:

s + t ∗ u for +(s, ∗(t, u))

s ∗ u ≤ t + v for ≤ (∗(s, u),+(t, v))

−s for −(s)

0 for 0()

190



Example: Peano Arithmetic

ΣPA = (ΩPA, ΠPA)

ΩPA = {0/0, +/2, ∗/2, s/1}

ΠPA = {≤/2, </2}

+, ∗, <, ≤ infix; ∗ >p + >p < >p ≤

Examples of formulas over this signature are:

∀x , y (x ≤ y ↔ ∃z(x + z ≈ y))

∃x∀y (x + y ≈ y)

∀x , y (x ∗ s(y) ≈ x ∗ y + x)

∀x , y (s(x) ≈ s(y)→ x ≈ y)

∀x∃y (x < y ∧ ¬∃z(x < z ∧ z < y))

191



Remarks About the Example

We observe that the symbols ≤, <, 0, s are redundant as they

can be defined in first-order logic with equality just with the

help of +. The first formula defines ≤, while the second defines

zero. The last formula, respectively, defines s.

Eliminating the existential quantifiers by Skolemization

(cf. below) reintroduces the “redundant” symbols.

Consequently there is a trade-off between the complexity of the

quantification structure and the complexity of the signature.

192



Positions in Terms and Formulas

The set of positions is extended from propositional logic to

first-order logic:

The Positions of a term s (formula φ):

pos(x) = {ε},

pos(f (s1, . . . , sn)) = {ε} ∪
⋃n

i=1{ i p | p ∈ pos(si ) }.

pos(P(t1, . . . , tn)) = {ε} ∪
⋃n

i=1{ i p | p ∈ pos(ti ) },

pos(∀x φ) = {ε} ∪ { 1p | p ∈ pos(φ) },

pos(∃x φ) = {ε} ∪ { 1p | p ∈ pos(φ) }.

193



Positions in Terms and Formulas

The prefix order ≤, the subformula (subterm) operator, the

formula (term) replacement operator and the size operator are

extended accordingly. See the definitions in the propositional

logic section.

194



Bound and Free Variables

In Qx φ, Q ∈ {∃, ∀}, we call φ the scope of the quantifier Qx .

An occurrence of a variable x is called bound, if it is inside the

scope of a quantifier Qx . Any other occurrence of a variable is

called free.

Formulas without free variables are also called closed formulas

or sentential forms.

Formulas without variables are called ground.

195



Bound and Free Variables

Example:

∀

scope︷ ︸︸ ︷

y (∀

scope︷ ︸︸ ︷
x P(x) → Q(x , y))

The occurrence of y is bound, as is the first occurrence of x .

The second occurrence of x is a free occurrence.

196



Substitutions

Substitution is a fundamental operation on terms and formulas

that occurs in all inference systems for first-order logic.

In general, substitutions are mappings

σ : X → TΣ(X )

such that the domain of σ, that is, the set

dom(σ) = { x ∈ X | σ(x) 6= x },

is finite. The set of variables introduced by σ, that is, the set of

variables occurring in one of the terms σ(x), with x ∈ dom(σ),

is denoted by codom(σ).

197



Substitutions

Substitutions are often written as {x1 7→ s1, . . . , xn 7→ sn}, with

xi pairwise distinct, and then denote the mapping

{x1 7→ s1, . . . , xn 7→ sn}(y) =




si , if y = xi

y , otherwise

We also write xσ for σ(x).

The modification of a substitution σ at x is defined as follows:

σ[x 7→ t](y) =




t, if y = x

σ(y), otherwise

198



Why Substitution is Complicated

We define the application of a substitution σ to a term t or

formula φ by structural induction over the syntactic structure of

t or φ by the equations depicted on the next page.

In the presence of quantification it is surprisingly complex: We

need to make sure that the (free) variables in the codomain

of σ are not captured upon placing them into the scope of a

quantifier Qy , hence the bound variable must be renamed into

a “fresh”, that is, previously unused, variable z .

Why this definition of substitution is well-defined will be

discussed below.

199



Application of a Substitution

“Homomorphic” extension of σ to terms and formulas:

f (s1, . . . , sn)σ = f (s1σ, . . . , snσ)

⊥σ = ⊥

⊤σ = ⊤

P(s1, . . . , sn)σ = P(s1σ, . . . , snσ)

(u ≈ v)σ = (uσ ≈ vσ)

¬φσ = ¬(φσ)

(φρψ)σ = (φσ ρψσ) ; for each binary connective ρ

(Qx φ)σ = Qz (φσ[x 7→ z ]) ; with z a fresh variable

200



Structural Induction

Proposition 3.1:

Let G = (N,T ,P ,S) be a context-free grammar (possibly

infinite) and let q be a property of T ∗ (the words over the

alphabet T of terminal symbols of G ).

q holds for all words w ∈ L(G ), whenever one can prove the

following two properties:

201



Structural Induction

1. (base cases)

q(w ′) holds for each w ′ ∈ T ∗ such that X ::= w ′ is a rule

in P .

2. (step cases)

If X ::= w0X0w1 . . .wnXnwn+1 is in P with Xi ∈ N,

wi ∈ T ∗, n ≥ 0, then for all w ′

i ∈ L(G ,Xi ), whenever q(w
′

i )

holds for 0 ≤ i ≤ n, then also q(w0w
′

0w1 . . .wnw
′

nwn+1)

holds.

Here L(G ,Xi ) ⊆ T ∗ denotes the language generated by the

grammar G from the nonterminal Xi .

202



Structural Recursion

Proposition 3.2:

Let G = (N,T ,P ,S) be a unambiguous (why?) context-

free grammar. A function f is well-defined on L(G ) (that is,

unambiguously defined) whenever these 2 properties are satisfied:

1. (base cases)

f is well-defined on the words w ′ ∈ T ∗ for each rule

X ::= w ′ in P .

2. (step cases)

If X ::= w0X0w1 . . .wnXnwn+1 is a rule in P then

f (w0w
′

0w1 . . .wnw
′

nwn+1) is well-defined, assuming that

each of the f (w ′

i ) is well-defined.

203



Substitution Revisited

Q: Does Proposition 3.2 justify that our homomorphic extension

apply : FΣ(X )× (X → TΣ(X )) → FΣ(X ),

with apply(φ,σ) denoted by φσ, of a substitution is well-defined?

A: We have two problems here. One is that “fresh” is

(deliberately) left unspecified. That can be easily fixed by

adding an extra variable counter argument to the apply function.

204



Substitution Revisited

The second problem is that Proposition 3.2 applies to unary

functions only. The standard solution to this problem is to

curryfy, that is, to consider the binary function as a unary

function producing a unary (residual) function as a result:

apply : FΣ(X ) → ((X → TΣ(X ))→ FΣ(X ))

where we have denoted (apply(φ))(σ) as φσ.

205



3.2 Semantics

To give semantics to a logical system means to define a notion

of truth for the formulas. The concept of truth that we will now

define for first-order logic goes back to Tarski.

As in the propositional case, we use a two-valued logic with

truth values “true” and “false” denoted by 1 and 0, respectively.

206



Structures

A Σ-algebra (also called Σ-interpretation or Σ-structure) is a

triple

A = (UA, (fA : Un
A → UA)f /n∈Ω, (PA ⊆ Um

A)P/m∈Π)

where UA 6= ∅ is a set, called the universe of A.

By Σ-Alg we denote the class of all Σ-algebras.

207



Assignments

A variable has no intrinsic meaning. The meaning of a variable

has to be defined externally (explicitly or implicitly in a given

context) by an assignment.

A (variable) assignment, also called a valuation (over a given

Σ-algebra A), is a map β : X → UA.

Variable assignments are the semantic counterparts of substitu-

tions.

208



Value of a Term in A with Respect to β

By structural induction we define

A(β) : TΣ(X )→ UA

as follows:

A(β)(x) = β(x), x ∈ X

A(β)(f (s1, . . . , sn)) = fA(A(β)(s1), . . . ,A(β)(sn)), f /n ∈ Ω

209



Value of a Term in A with Respect to β

In the scope of a quantifier we need to evaluate terms with respect

to modified assignments. To that end, let β[x 7→ a] : X → UA,

for x ∈ X and a ∈ A, denote the assignment

β[x 7→ a](y) =




a if x = y

β(y) otherwise

210



Truth Value of a Formula in A with Respect to β

A(β) : FΣ(X )→ {0, 1} is defined inductively as follows:

A(β)(⊥) = 0

A(β)(⊤) = 1

A(β)(P(s1, . . . , sn)) = 1 ⇔ (A(β)(s1), . . . ,A(β)(sn)) ∈ PA

A(β)(s ≈ t) = 1 ⇔ A(β)(s) = A(β)(t)

A(β)(¬φ) = 1 ⇔ A(β)(φ) = 0

A(β)(φρψ) = Bρ(A(β)(φ),A(β)(ψ))

with Bρ the Boolean function associated with ρ

A(β)(∀xφ) = min
a∈U
{A(β[x 7→ a])(φ)}

A(β)(∃xφ) = max
a∈U
{A(β[x 7→ a])(φ)}

211



Example

The “Standard” Interpretation for Peano Arithmetic:

UN = {0, 1, 2, . . .}

0N = 0

sN : n 7→ n + 1

+N : (n,m) 7→ n +m

∗N : (n,m) 7→ n ∗m

≤N = { (n,m) | n less than or equal to m }

<N = { (n,m) | n less than m }

Note that N is just one out of many possible ΣPA-interpretations.

212



Example

Values over N for Sample Terms and Formulas:

Under the assignment β : x 7→ 1, y 7→ 3 we obtain

N(β)(s(x) + s(0)) = 3

N(β)(x + y ≈ s(y)) = 1

N(β)(∀x , y(x + y ≈ y + x)) = 1

N(β)(∀z z ≤ y) = 0

N(β)(∀x∃y x < y) = 1

213


