3.3 Models, Validity, and Satisfiability

ϕ is valid in \mathcal{A} under assignment β:

$\mathcal{A}, \beta \models \phi \iff \mathcal{A}(\beta)(\phi) = 1$

ϕ is valid in \mathcal{A} (\mathcal{A} is a model of ϕ):

$\mathcal{A} \models \phi \iff \mathcal{A}, \beta \models \phi$, for all $\beta \in X \rightarrow U_\mathcal{A}$

ϕ is valid (or is a tautology):

$\models \phi \iff \mathcal{A} \models \phi$, for all $\mathcal{A} \in \Sigma$-Alg

ϕ is called satisfiable iff there exist \mathcal{A} and β such that $\mathcal{A}, \beta \models \phi$. Otherwise ϕ is called unsatisfiable.
Substitution Lemma

The following propositions, to be proved by structural induction, hold for all Σ-algebras \mathcal{A}, assignments β, and substitutions σ.

Lemma 3.3:
For any Σ-term t

$$\mathcal{A}(\beta)(t\sigma) = \mathcal{A}(\beta \circ \sigma)(t),$$

where $\beta \circ \sigma : X \rightarrow \mathcal{A}$ is the assignment $\beta \circ \sigma(x) = \mathcal{A}(\beta)(x\sigma)$.

Proposition 3.4:
For any Σ-formula ϕ, $\mathcal{A}(\beta)(\phi\sigma) = \mathcal{A}(\beta \circ \sigma)(\phi)$.
Corollary 3.5:
\[\mathcal{A}, \beta \models \phi \sigma \iff \mathcal{A}, \beta \circ \sigma \models \phi \]

These theorems basically express that the syntactic concept of substitution corresponds to the semantic concept of an assignment.
Entailment and Equivalence

φ entails (implies) ψ (or ψ is a consequence of φ), written $\phi \models \psi$, if for all $A \in \Sigma$-Alg and $\beta \in X \to U_A$, whenever $A, \beta \models \phi$, then $A, \beta \models \psi$.

φ and ψ are called equivalent, written $\phi \equiv \psi$, if for all $A \in \Sigma$-Alg and $\beta \in X \to U_A$ we have $A, \beta \models \phi \iff A, \beta \models \psi$.
Entailment and Equivalence

Proposition 3.6:
\(\phi \) entails \(\psi \) iff \((\phi \rightarrow \psi) \) is valid

Proposition 3.7:
\(\phi \) and \(\psi \) are equivalent iff \((\phi \leftrightarrow \psi) \) is valid.

Extension to sets of formulas \(N \) in the “natural way”, e.g.,
\(N \models \phi \)

\[\iff \quad \text{for all } A \in \Sigma\text{-Alg and } \beta \in X \rightarrow U_A: \text{ if } A, \beta \models \psi, \text{ for all } \psi \in N, \text{ then } A, \beta \models \phi. \]
Validity vs. Unsatisfiability

Validity and unsatisfiability are just two sides of the same medal as explained by the following proposition.

Proposition 3.8:
Let ϕ and ψ be formulas, let N be a set of formulas. Then

(i) ϕ is valid if and only if $\neg \phi$ is unsatisfiable.

(ii) $\phi \models \psi$ if and only if $\phi \land \neg \psi$ is unsatisfiable.

(iii) $N \models \psi$ if and only if $N \cup \{\neg \psi\}$ is unsatisfiable.

Hence in order to design a theorem prover (validity checker) it is sufficient to design a checker for unsatisfiability.
Theory of a Structure

Let $\mathcal{A} \in \Sigma$-Alg. The (first-order) theory of \mathcal{A} is defined as

$$Th(\mathcal{A}) = \{ \psi \in F_\Sigma(X) | \mathcal{A} \models \psi \}$$

Problem of axiomatizability:

For which structures \mathcal{A} can one axiomatize $Th(\mathcal{A})$, that is, can one write down a formula ϕ (or a recursively enumerable set ϕ of formulas) such that

$$Th(\mathcal{A}) = \{ \psi | \phi \models \psi \}?$$

Analogously for sets of structures.
Two Interesting Theories

Let $\Sigma_{Pres} = (\{0/0, s/1, +/2\}, \emptyset)$ and $\mathbb{Z}_+ = (\mathbb{Z}, 0, s, +)$ its standard interpretation on the integers. $Th(\mathbb{Z}_+)$ is called \textbf{Presburger arithmetic} (M. Presburger, 1929). (There is no essential difference when one, instead of \mathbb{Z}, considers the natural numbers \mathbb{N} as standard interpretation.)

Presburger arithmetic is decidable in 3EXPTIME (D. Oppen, JCSS, 16(3):323–332, 1978), and in 2EXPSPACE, using automata-theoretic methods (and there is a constant $c \geq 0$ such that $Th(\mathbb{Z}_+) \not\in \text{NTIME}(2^{2^{cn}})$).
Two Interesting Theories

However, \(\mathbb{N}_* = (\mathbb{N}, 0, s, +, \cdot) \), the standard interpretation of \(\Sigma_{PA} = (\{0/0, s/1, +/2, \cdot/2\}, \emptyset) \), has as theory the so-called Peano arithmetic which is undecidable, not even recursively enumerable.

Note: The choice of signature can make a big difference with regard to the computational complexity of theories.
3.4 Algorithmic Problems

Validity(ϕ): $\models \phi$?

Satisfiability(ϕ): ϕ satisfiable?

Entailment(ϕ, ψ): does ϕ entail ψ?

Model(A, ϕ): $A \models \phi$?

Solve(A, ϕ): find an assignment β such that $A, \beta \models \phi$.

Solve(ϕ): find a substitution σ such that $\models \phi\sigma$.

Abduce(ϕ): find ψ with “certain properties” such that $\psi \models \phi$.
Gödel’s Famous Theorems

1. For most signatures Σ, validity is undecidable for Σ-formulas. (Later by Turing: Encode Turing machines as Σ-formulas.)

2. For each signature Σ, the set of valid Σ-formulas is recursively enumerable. (We will prove this by giving complete deduction systems.)

3. For $\Sigma = \Sigma_{PA}$ and $\mathbb{N}_* = (\mathbb{N}, 0, s, +, \cdot)$, the theory $Th(\mathbb{N}_*)$ is not recursively enumerable.

These complexity results motivate the study of subclasses of formulas (fragments) of first-order logic

Q: Can you think of any fragments of first-order logic for which validity is decidable?
Some Decidable Fragments

Some decidable fragments:

- **Monadic class**: no function symbols, all predicates unary; validity is NEXPTIME-complete.

- Variable-free formulas without equality: satisfiability is NP-complete. (why?)

- Variable-free Horn clauses (clauses with at most one positive atom): entailment is decidable in linear time.

- Finite model checking is decidable in time polynomial in the size of the structure and the formula.
Plan

Lift superposition from propositional logic to first-order logic.
3.5 Normal Forms and Skolemization

Study of normal forms motivated by

- reduction of logical concepts,
- efficient data structures for theorem proving,
- satisfiability preserving transformations (renaming),
- Skolem’s and Herbrand’s theorem.

The main problem in first-order logic is the treatment of quantifiers. The subsequent normal form transformations are intended to eliminate many of them.
Prenex Normal Form (Traditional)

Prenex formulas have the form

\[Q_1 x_1 \ldots Q_n x_n \phi, \]

where \(\phi \) is quantifier-free and \(Q_i \in \{\forall, \exists\} \); we call \(Q_1 x_1 \ldots Q_n x_n \phi \) the quantifier prefix and \(\phi \) the matrix of the formula.
Prenex Normal Form (Traditional)

Computing prenex normal form by the rewrite system \Rightarrow_P:

\[
(\phi \leftrightarrow \psi) \quad \Rightarrow_P \quad (\phi \rightarrow \psi) \land (\psi \rightarrow \phi)
\]

\[
\neg Qx\phi \quad \Rightarrow_P \quad \overline{Q}x\neg\phi
\]

\[
(((Qx\phi) \ \rho \ \psi) \quad \Rightarrow_P \quad Qy(\phi\{x \mapsto y\} \ \rho \ \psi), \ \rho \in \{\land, \lor\}
\]

\[
(((Qx\phi) \ \rightarrow \ \psi) \quad \Rightarrow_P \quad \overline{Q}y(\phi\{x \mapsto y\} \ \rightarrow \ \psi),
\]

\[
(\phi \ \rho \ (Qx\psi)) \quad \Rightarrow_P \quad Qy(\phi \ \rho \ \psi\{x \mapsto y\}), \ \rho \in \{\land, \lor, \rightarrow\}
\]

Here y is always assumed to be some fresh variable and \overline{Q} denotes the quantifier dual to Q, i.e., $\overline{\forall} = \exists$ and $\overline{\exists} = \forall$.
Skolemization

Intuition: replacement of $\exists y$ by a concrete choice function computing y from all the arguments y depends on.

Transformation \Rightarrow_S (to be applied outermost, not in subformulas):

$$\forall x_1, \ldots, x_n \exists y \phi \Rightarrow_S \forall x_1, \ldots, x_n \phi\{y \mapsto f(x_1, \ldots, x_n)\}$$

where f / n is a new function symbol (Skolem function).
Theorem 3.9:
Let ϕ, ψ, and χ as defined above and closed. Then

(i) ϕ and ψ are equivalent.

(ii) $\chi \models \psi$ but the converse is not true in general.

(iii) ψ satisfiable (Σ-Alg) \iff χ satisfiable (Σ^\prime-Alg) where $\Sigma^\prime = (\Omega \cup SKF, \Pi)$, if $\Sigma = (\Omega, \Pi)$.

Skolemization

Together: $\phi \Rightarrow^*_P \psi \Rightarrow^*_S \chi$

prenex

prenex, no \exists
The Complete Picture

\[\phi \Rightarrow^*_{P} Q_1 y_1 \cdots Q_n y_n \psi \quad (\psi \text{ quantifier-free}) \]

\[\Rightarrow^*_{S} \forall x_1, \ldots, x_m \chi \quad (m \leq n, \chi \text{ quantifier-free}) \]

\[\Rightarrow^*_{OCNF} \forall x_1, \ldots, x_m \left(\bigwedge_{i=1}^{k} \bigvee_{j=1}^{n_i} L_{ij} \right) \]

\[\phi' \]

\[N = \{ C_1, \ldots, C_k \} \] is called the clausal (normal) form (CNF) of \(\phi \).

Note: the variables in the clauses are implicitly universally quantified.
The Complete Picture

Theorem 3.10:
Let ϕ be closed. Then $\phi' \models \phi$. (The converse is not true in general.)

Theorem 3.11:
Let ϕ be closed. Then ϕ is satisfiable iff ϕ' is satisfiable iff $\neg \phi$ is satisfiable
Optimization

The normal form algorithm described so far leaves lots of room for optimization. Note that we only can preserve satisfiability anyway due to Skolemization.

- size of the CNF is exponential when done naively; the transformations we introduced already for propositional logic avoid this exponential growth;
- we want to preserve the original formula structure;
- we want small arity of Skolem functions (see next section).
3.6 Getting Small Skolem Functions

A clause set that is better suited for automated theorem proving can be obtained using the following steps:

- produce a negation normal form (NNF)
- apply miniscoping
- rename all variables
- skolemize
Negation Normal Form (NNF)

Apply the rewrite system \Rightarrow_{NNF}:

$$\phi[\psi_1 \leftrightarrow \psi_2]_p \Rightarrow_{\text{NNF}} \phi[(\psi_1 \rightarrow \psi_2) \land (\psi_2 \rightarrow \psi_1)]_p$$

if $\text{pol}(\phi, p) = 1$ or $\text{pol}(\phi, p) = 0$

$$\phi[\psi_1 \leftrightarrow \psi_2]_p \Rightarrow_{\text{NNF}} \phi[(\psi_1 \land \psi_2) \lor (\neg \psi_2 \land \neg \psi_1)]_p$$

if $\text{pol}(\phi, p) = -1$
Negation Normal Form (NNF)

\[\neg Qx \phi \implies_{\text{NNF}} \overline{Qx} \neg \phi \]
\[\neg (\phi \lor \psi) \implies_{\text{NNF}} \neg \phi \land \neg \psi \]
\[\neg (\phi \land \psi) \implies_{\text{NNF}} \neg \phi \lor \neg \psi \]
\[\phi \rightarrow \psi \implies_{\text{NNF}} \neg \phi \lor \psi \]
\[\neg \neg \phi \implies_{\text{NNF}} \phi \]
Apply the rewrite relation \Rightarrow_{MS}. For the rules below we assume that x occurs freely in ψ, χ, but x does not occur freely in ϕ:

- $Qx (\psi \land \phi) \Rightarrow_{\text{MS}} (Qx \psi) \land \phi$
- $Qx (\psi \lor \phi) \Rightarrow_{\text{MS}} (Qx \psi) \lor \phi$
- $\forall x (\psi \land \chi) \Rightarrow_{\text{MS}} (\forall x \psi) \land (\forall x \chi)$
- $\exists x (\psi \lor \chi) \Rightarrow_{\text{MS}} (\exists x \psi) \lor (\exists x \chi)$
Variable Renaming

Rename all variables in ϕ such that there are no two different positions p, q with $\phi|_p = Q\times \psi$ and $\phi|_q = Q'\times \chi$.
Standard Skolemization

Apply the rewrite rule:

\[\phi[\exists x \psi]_p \Rightarrow_{SK} \phi[\psi\{x \mapsto f(y_1, \ldots, y_n)\}]_p \]

where \(p \) has minimal length,
\(\{y_1, \ldots, y_n\} \) are the free variables in \(\exists x \psi \),
\(f/n \) is a new function symbol to \(\phi \)