
3.7 Herbrand Interpretations

From now on we shall consider FOL without equality. We

assume that Ω contains at least one constant symbol.

A Herbrand interpretation (over Σ) is a Σ-algebra A such that

• UA = TΣ (= the set of ground terms over Σ)

• fA : (s1, . . . , sn) 7→ f (s1, . . . , sn), f /n ∈ Ω

f

fA(△, . . . ,△) =

△ . . . △
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Herbrand Interpretations

In other words, values are fixed to be ground terms and functions

are fixed to be the term constructors. Only predicate symbols

P/m ∈ Π may be freely interpreted as relations PA ⊆ Tm
Σ .

Proposition 3.12:

Every set of ground atoms I uniquely determines a Herbrand

interpretation A via

(s1, . . . , sn) ∈ PA :⇔ P(s1, . . . , sn) ∈ I

Thus we shall identify Herbrand interpretations (over Σ) with

sets of Σ-ground atoms.
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Herbrand Interpretations

Example: ΣPres = ({0/0, s/1,+/2}, {</2,≤/2})

N as Herbrand interpretation over ΣPres :

I = { 0 ≤ 0, 0 ≤ s(0), 0 ≤ s(s(0)), . . . ,

0 + 0 ≤ 0, 0 + 0 ≤ s(0), . . . ,

. . . , (s(0) + 0) + s(0) ≤ s(0) + (s(0) + s(0))

. . .

s(0) + 0 < s(0) + 0 + 0 + s(0)

. . .}
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Existence of Herbrand Models

A Herbrand interpretation I is called a Herbrand model of φ, if

I |= φ.

Theorem 3.13 (Herbrand):

Let N be a set of Σ-clauses.

N satisfiable ⇔ N has a Herbrand model (over Σ)

⇔ GΣ(N) has a Herbrand model (over Σ)

where GΣ(N) = {Cσ ground clause | C ∈ N, σ : X → TΣ } is

the set of ground instances of N.

[The proof will be given below in the context of the completeness

proof for superposition.]
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Example of a GΣ

For ΣPres one obtains for

C = (x < y) ∨ (y ≤ s(x))

the following ground instances:

(0 < 0) ∨ (0 ≤ s(0))

(s(0) < 0) ∨ (0 ≤ s(s(0)))

. . .

(s(0) + s(0) < s(0) + 0) ∨ (s(0) + 0 ≤ s(s(0) + s(0)))

. . .
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3.8 Inference Systems and Proofs

Inference systems Γ (proof calculi) are sets of tuples

(φ1, . . . ,φn,φn+1), n ≥ 0,

called inferences, and written

premises︷ ︸︸ ︷
φ1 . . . φn

φn+1︸︷︷︸
conclusion

.

Clausal inference system: premises and conclusions are clauses.

One also considers inference systems over other data structures.
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Inference Systems

Inference systems Γ are short hands for rewrite systems over sets

of formulas. If N is a set of formulas, then

premises︷ ︸︸ ︷
φ1 . . . φn

φn+1︸︷︷︸
conclusion

side condition

is a shorthand for

N ∪ {φ1 . . . φn} ⇒Γ N ∪ {φ1 . . . φn} ∪ {φn+1}

if side condition
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Proofs

A proof in Γ of a formula φ from a a set of formulas N (called

assumptions) is a sequence φ1, . . . ,φk of formulas where

(i) φk = φ,

(ii) for all 1 ≤ i ≤ k : φi ∈ N, or else there exists an inference

φi1 . . . φini
φi

in Γ, such that 0 ≤ ij < i , for 1 ≤ j ≤ ni .
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Soundness and Completeness

Provability ⊢Γ of φ from N in Γ: N ⊢Γ φ if there exists a proof

Γ of φ from N.

Γ is called sound

φ1 . . . φn

φ
∈ Γ implies φ1, . . . ,φn |= φ

Γ is called complete

N |= φ implies N ⊢Γ φ

Γ is called refutationally complete

N |= ⊥ implies N ⊢Γ ⊥
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Soundness and Completeness

Proposition 3.14:

(i) Let Γ be sound. Then N ⊢Γ φ implies N |= φ

(ii) N ⊢Γ φ implies there exist finitely many clauses

φ1, . . . ,φn ∈ N such that φ1, . . . ,φn ⊢Γ φ
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Proofs as Trees

markings =̂ formulas

leaves =̂ assumptions and axioms

other nodes =̂ inferences: conclusion =̂ ancestor

premises =̂ direct descendants

P(f (c))

P(f (c)) ∨ Q(b)

P(f (c)) ∨ Q(b) ¬P(f (c)) ∨ ¬P(f (c)) ∨ Q(b)

¬P(f (c)) ∨ Q(b) ∨ Q(b)

¬P(f (c)) ∨ Q(b)

Q(b) ∨ Q(b)

Q(b) ¬P(f (c)) ∨ ¬Q(b)

¬P(f (c))

⊥
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3.9 Ground Superposition

We observe that propositional clauses and ground clauses are

essentially the same, as long as we do not consider equational

atoms.

In this section we only deal with ground clauses and recall partly

the material from Section 2.5 for first-order ground clauses.
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The Resolution Calculus Res

Resolution inference rule:

D ∨ A ¬A ∨ C

D ∨ C

Terminology: D ∨ C : resolvent; A: resolved atom For

Superposition (Sup): A strictly maximal, ¬A maximal

(Positive) factorization inference rule:

C ∨ A ∨ A

C ∨ A

For Superposition (Sup): A maximal
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The Resolution Calculus Res

These are schematic inference rules; for each substitution of the

schematic variables C , D, and A, by ground clauses and ground

atoms, respectively, we obtain an inference.

We treat “∨” as associative and commutative, hence A and ¬A

can occur anywhere in the clauses; moreover, when we write

C ∨ A, etc., this includes unit clauses, that is, C = ⊥.
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Sample Refutation

1. ¬P(f (c)) ∨ ¬P(f (c)) ∨ Q(b) (given)

2. P(f (c)) ∨ Q(b) (given)

3. ¬P(g(b, c)) ∨ ¬Q(b) (given)

4. P(g(b, c)) (given)

5. ¬P(f (c)) ∨Q(b) ∨Q(b) (Res. 2. into 1.)

6. ¬P(f (c)) ∨Q(b) (Fact. 5.)

7. Q(b) ∨ Q(b) (Res. 2. into 6.)

8. Q(b) (Fact. 7.)

9. ¬P(g(b, c)) (Res. 8. into 3.)

10. ⊥ (Res. 4. into 9.)
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Soundness of Resolution

Theorem 3.15:

Propositional resolution is sound.

Proof:

Let B ∈ Σ-Alg. To be shown:

(i) for resolution: B |= D ∨ A, B |= C ∨ ¬A ⇒ B |= D ∨ C

(ii) for factorization: B |= C ∨ A ∨ A ⇒ B |= C ∨ A

(i): Assume premises are valid in B. Two cases need to be

considered:

If B |= A, then B |= C , hence B |= D ∨ C .

Otherwise, B |= ¬A, then B |= D, and again B |= D ∨ C .

(ii): even simpler. 2
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Soundness of Resolution

Note: In propositional logic (ground clauses) we have:

1. B |= L1 ∨ . . . ∨ Ln iff there exists i : B |= Li .

2. B |= A or B |= ¬A.

This does not hold for formulas with variables!
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Closure of Clause Sets under Res

Res(N) = {C | C is conclusion of an inference in Res

with premises in N }

Res0(N) = N

Resn+1(N) = Res(Resn(N)) ∪ Resn(N), for n ≥ 0

Res∗(N) =
⋃

n≥0 Res
n(N)

N is called saturated (w. r. t. resolution), if Res(N) ⊆ N.
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Closure of Clause Sets under Res

Proposition 3.16:

(i) Res∗(N) is saturated.

(ii) Res is refutationally complete, iff for each set N of ground

clauses:

N |= ⊥ iff ⊥ ∈ Res∗(N)
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Construction of Interpretations

Done the same way as for propositional logic: ground atoms

play the rôle of propositional variables.
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Model Existence Theorem

Theorem 3.17 (Bachmair & Ganzinger 1990):

Let ≻ be a clause ordering, let N be saturated w. r. t. Res (or

Sup), and suppose that ⊥ 6∈ N. Then N≻
I |= N.

Corollary 3.18:

Let N be saturated w. r. t. Res. Then N |= ⊥ ⇔ ⊥ ∈ N.
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Compactness of Propositional Logic

Theorem 3.19 (Compactness):

Let N be a set of propositional (or first-order ground) formulas.

Then N is unsatisfiable, if and only if some finite subset M ⊆ N

is unsatisfiable.

Proof:

“⇐”: trivial. “⇒”: Let N be unsatisfiable.

⇒ Res∗(N) unsatisfiable

⇒ ⊥ ∈ Res∗(N) by refutational completeness of resolution

⇒ ∃n ≥ 0 : ⊥ ∈ Resn(N)

⇒ ⊥ has a finite resolution proof P ;

choose M as the set of assumptions in P . 2
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3.10 General Resolution

Propositional (ground) resolution:

refutationally complete,

in its most naive version: not guaranteed to terminate for

satisfiable sets of clauses, (improved versions do terminate,

however)

inferior to the DPLL procedure.

But: in contrast to the DPLL procedure, resolution can be easily

extended to non-ground clauses.
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General Resolution through Instantiation

Idea: instantiate clauses appropriately:

P(z ′, z ′) ∨ ¬Q(z) ¬P(a, y) P(x ′, b) ∨ Q(f (x ′, x))

P(a, a) ∨ ¬Q(f (a, b)) ¬P(a, a) ¬P(a, b) P(a, b) ∨ Q(f (a, b))

¬Q(f (a, b)) Q(f (a, b))

⊥

[a/z ′, f (a, b)/z] [a/y ] [b/y ] [a/x ′, b/x ]
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General Resolution through Instantiation

Problems:

More than one instance of a clause can participate in a proof.

Even worse: There are infinitely many possible instances.

Observation:

Instantiation must produce complementary literals (so that

inferences become possible).

Idea:

Do not instantiate more than necessary to get complementary

literals.
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General Resolution through Instantiation

P(z ′, z ′) ∨ ¬Q(z) ¬P(a, y) P(x ′, b) ∨ Q(f (x ′, x))

P(a, a) ∨ ¬Q(z) ¬P(a, a) ¬P(a, b) P(a, b) ∨ Q(f (a, x))

¬Q(z) Q(f (a, x))

¬Q(f (a, x)) Q(f (a, x))

⊥

[a/z ′] [a/y ] [b/y ] [a/x ′]

[f (a, x)/z]
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Lifting Principle

Problem: Make saturation of infinite sets of clauses as they

arise from taking the (ground) instances of finitely many

general clauses (with variables) effective and efficient.

Idea (Robinson 1965):

• Resolution for general clauses:

• Equality of ground atoms is generalized to unifiability of

general atoms;

• Only compute most general (minimal) unifiers (mgu).
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Lifting Principle

Significance: The advantage of the method in (Robinson 1965)

compared with (Gilmore 1960) is that unification enumerates

only those instances of clauses that participate in an

inference. Moreover, clauses are not right away instantiated

into ground clauses. Rather they are instantiated only as

far as required for an inference. Inferences with non-ground

clauses in general represent infinite sets of ground inferences

which are computed simultaneously in a single step.

269



Resolution for General Clauses

General binary resolution Res:

D ∨ B C ∨ ¬A

(D ∨ C )σ
if σ = mgu(A,B) [resolution]

C ∨ A ∨ B

(C ∨ A)σ
if σ = mgu(A,B) [factorization]
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Resolution for General Clauses

For inferences with more than one premise, we assume that the

variables in the premises are (bijectively) renamed such that

they become different to any variable in the other premises. We

do not formalize this. Which names one uses for variables is

otherwise irrelevant.
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Unification

Let E = {s1
.
= t1, . . . , sn

.
= tn} (si , ti terms or atoms) a multiset

of equality problems. A substitution σ is called a unifier of E if

siσ = tiσ for all 1 ≤ i ≤ n.

If a unifier of E exists, then E is called unifiable.
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Unification

A substitution σ is called more general than a substitution τ ,

denoted by σ ≤ τ , if there exists a substitution ρ such that

ρ ◦ σ = τ , where (ρ ◦ σ)(x) := (xσ)ρ is the composition of σ

and ρ as mappings. (Note that ρ ◦ σ has a finite domain as

required for a substitution.)

If a unifier of E is more general than any other unifier of E , then

we speak of a most general unifier of E , denoted by mgu(E ).
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Unification

Proposition 3.20:

(i) ≤ is a quasi-ordering on substitutions, and ◦ is associative.

(ii) If σ ≤ τ and τ ≤ σ (we write σ ∼ τ in this case), then xσ

and xτ are equal up to (bijective) variable renaming, for

any x in X .

A substitution σ is called idempotent, if σ ◦ σ = σ.

Proposition 3.21:

σ is idempotent iff dom(σ) ∩ codom(σ) = ∅.
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Rule-Based Naive Standard Unification

t
.
= t,E ⇒SU E

f (s1, . . . , sn)
.
= f (t1, . . . , tn),E ⇒SU s1

.
= t1, . . . , sn

.
= tn,E

f (. . .)
.
= g(. . .),E ⇒SU ⊥

x
.
= t,E ⇒SU x

.
= t,E{t 7→ x}

if x ∈ var(E ), x 6∈ var(t)

x
.
= t,E ⇒SU ⊥

if x 6= t, x ∈ var(t)

t
.
= x ,E ⇒SU x

.
= t,E

if t 6∈ X
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SU: Main Properties

If E = x1
.
= u1, . . . , xk

.
= uk , with xi pairwise distinct,

xi 6∈ var(uj ), then E is called an (equational problem in) solved

form representing the solution σE = {x1 7→ u1, . . . , xk 7→ uk}.

Proposition 3.22:

If E is a solved form then σE is an mgu of E .
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SU: Main Properties

Theorem 3.23:

1. If E ⇒SU E ′ then σ is a unifier of E iff σ is a unifier of E ′

2. If E
∗
⇒SU ⊥ then E is not unifiable.

3. If E
∗
⇒SU E ′ with E ′ in solved form, then σE ′ is an mgu of E .

Proof:

(1) We have to show this for each of the rules. Let’s treat the

case for the 4th rule here. Suppose σ is a unifier of x
.
= t, that is,

xσ = tσ. Thus, σ ◦ {x 7→ t} = σ[x 7→ tσ] = σ[x 7→ xσ] = σ.

Therefore, for any equation u
.
= v in E : uσ = vσ, iff

u{x 7→ t}σ = v{x 7→ t}σ. (2) and (3) follow by induction from

(1) using Proposition 3.22. 2
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Main Unification Theorem

Theorem 3.24:

E is unifiable if and only if there is a most general unifier σ of E ,

such that σ is idempotent and dom(σ) ∪ codom(σ) ⊆ var(E ).
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