
Part 4: First-Order Logic with Equality

Equality is the most important relation in mathematics and

functional programming.

In principle, problems in first-order logic with equality can be

handled by any prover for first-order logic without equality:
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4.1 Handling Equality Naively

Proposition 4.1:

Let φ be a closed first-order formula with equality. Let ∼ /∈ Π be

a new predicate symbol. The set Eq(Σ) contains the formulas

∀x (x ∼ x)

∀x , y (x ∼ y → y ∼ x)

∀x , y , z (x ∼ y ∧ y ∼ z → x ∼ z)

∀~x ,~y (x1 ∼ y1 ∧ · · · ∧ xn ∼ yn → f (x1, . . . , xn) ∼ f (y1, . . . , yn))

∀~x ,~y (x1 ∼ y1 ∧ · · · ∧ xm ∼ ym ∧ P(x1, . . . , xm)→ P(y1, . . . , ym))

for every f ∈ Ω and P ∈ Π. Let φ̃ be the formula that one

obtains from φ if every occurrence of ≈ is replaced by ∼. Then

φ is satisfiable if and only if Eq(Σ) ∪ {φ̃} is satisfiable.
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Handling Equality Naively

By giving the equality axioms explicitly, first-order problems with

equality can in principle be solved by FSTP .

But this is unfortunately not efficient, mainly due to the

transitivity axiom.
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Handling Equality Naively

Equality is theoretically difficult: First-order functional program-

ming is Turing-complete.

But: FSTP cannot even solve equational problems that are

intuitively easy.

Consequence: to handle equality efficiently, knowledge must be

integrated into the theorem prover.
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Roadmap

How to proceed:

Term rewrite systems

Expressing semantic consequence syntactically

Knuth-Bendix-Completion

Entailment for equations

(Superposition for first-order clauses with equality)
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4.2 Term Rewrite Systems

Let E be a set of (implicitly universally quantified) equations.

The rewrite relation →E ⊆ TΣ(X )× TΣ(X ) is defined by

s →E t iff there exist (l ≈ r) ∈ E , p ∈ pos(s),

and σ : X → TΣ(X ),

such that s|p = lσ and t = s[rσ]p.

An instance of the lhs (left-hand side) of an equation is

called a redex (reducible expression). Contracting a redex

means replacing it with the corresponding instance of the rhs

(right-hand side) of the rule.
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Term Rewrite Systems

An equation l ≈ r is also called a rewrite rule, if l is not a

variable and vars(l) ⊇ vars(r).

Notation: l → r .

A set of rewrite rules is called a term rewrite system (TRS).
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Term Rewrite Systems

We say that a set of equations E or a TRS R is terminating, if

the rewrite relation →E or →R has this property.

(Analogously for other properties of (abstract) rewrite systems).

Note: If E is terminating, then it is a TRS.

345



Rewrite Relations

Corollary 4.2:

If E is convergent (i. e., terminating and confluent), then s ≈E t

if and only if s ↔∗
E t if and only if s↓E = t↓E .

Corollary 4.3:

If E is finite and convergent, then ≈E is decidable.

Reminder:

If E is terminating, then it is confluent if and only if it is locally

confluent.
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Rewrite Relations

Problems:

Show local confluence of E .

Show termination of E .

Transform E into an equivalent set of equations that is locally

confluent and terminating.
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E-Algebras

Let E be a set of universally quantified equations. A model of

E is also called an E -algebra.

If E |= ∀~x(s ≈ t), i. e., ∀~x(s ≈ t) is valid in all E -algebras, we

write this also as s ≈E t.

Goal:

Use the rewrite relation→E to express the semantic consequence

relation syntactically:

s ≈E t if and only if s ↔∗
E t.
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E-Algebras

Let E be a set of equations over TΣ(X ). The following inference

system allows to derive consequences of E :
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E-Algebras

I
t ≈ t

(Reflexivity)

I
t ≈ t′

t′ ≈ t
(Symmetry)

I
t ≈ t′ t′ ≈ t′′

t ≈ t′′
(Transitivity)

I
t1 ≈ t′1 . . . tn ≈ t′n

f (t1, . . . , tn) ≈ f (t′1, . . . , t
′

n)
for any f /n (Congruence)

I
t ≈ t′

tσ ≈ t′σ
for any substitution σ (Instance)
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E-Algebras

Lemma 4.4:

The following properties are equivalent:

(i) s ↔∗
E t

(ii) E ⇒∗ s ≈ t.

where E ⇒∗ s ≈ t is an abbreviation for E ⇒∗ E ′ and

s ≈ t ∈ E ′.

Recall that the before inference rules of the form I
A1 . . . Ak

B

are abbreviations for rewrite rules E ⊎ {A1, . . . ,Ak} ⇒

E ∪ {A1, . . .Ak ,B}.

351



E-Algebras

Constructing a quotient algebra:

Let X be a set of variables.

For t ∈ TΣ(X ) let [t] = { t′ ∈ TΣ(X ) | E ⇒∗ t ≈ t′ } be the

congruence class of t.

Define a Σ-algebra TΣ(X )/E (abbreviated by T ) as follows:

UT = { [t] | t ∈ TΣ(X ) }.

fT ([t1], . . . , [tn]) = [f (t1, . . . , tn)] for f ∈ Ω.
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E-Algebras

Lemma 4.5:

fT is well-defined: If [ti ] = [t′i ], then [f (t1, . . . , tn)] =

[f (t′1, . . . , t
′

n)].

Lemma 4.6:

T = TΣ(X )/E is an E -algebra.

Lemma 4.7:

Let X be a countably infinite set of variables; let s, t ∈ TΣ(X ).

If TΣ(X )/E |= ∀~x(s ≈ t), then E ⇒∗ s ≈ t.
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E-Algebras

Theorem 4.8 (“Birkhoff’s Theorem”):

Let X be a countably infinite set of variables, let E be a set of

(universally quantified) equations. Then the following properties

are equivalent for all s, t ∈ TΣ(X ):

(i) s ↔∗
E t.

(ii) E ⇒∗ s ≈ t.

(iii) s ≈E t, i. e., E |= ∀~x(s ≈ t).

(iv) TΣ(X )/E |= ∀~x(s ≈ t).
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Universal Algebra

TΣ(X )/E = TΣ(X )/≈E = TΣ(X )/↔∗
E is called the free

E -algebra with generating set X/≈E = { [x ] | x ∈ X }:

Every mapping ϕ : X/≈E → B for some E -algebra B can be

extended to a homomorphism ϕ̂ : TΣ(X )/E → B.

TΣ(∅)/E = TΣ(∅)/≈E = TΣ(∅)/↔
∗
E is called the initial

E -algebra.
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Universal Algebra

≈E = { (s, t) | E |= s ≈ t } is called the equational theory of E .

≈I
E = { (s, t) | TΣ(∅)/E |= s ≈ t } is called the inductive theory

of E .

Example:

Let E = {∀x(x + 0 ≈ x), ∀x∀y(x + s(y) ≈ s(x + y))}. Then

x + y ≈I
E y + x , but x + y 6≈E y + x .
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4.3 Critical Pairs

Showing local confluence (Sketch):

Problem: If t1 E← t0 →E t2, does there exist a term s such

that t1 →
∗
E s ∗

E← t2 ?

If the two rewrite steps happen in different subtrees (disjoint

redexes): yes.

If the two rewrite steps happen below each other (overlap at

or below a variable position): yes.

If the left-hand sides of the two rules overlap at a non-variable

position: needs further investigation.
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Critical Pairs

Showing local confluence (Sketch):

Question:

Are there rewrite rules l1 → r1 and l2 → r2 such that some

subterm l1|p and l2 have a common instance (l1|p)σ1 = l2σ2 ?

Observation:

If we assume w.o.l.o.g. that the two rewrite rules do not have

common variables, then only a single substitution is necessary:

(l1|p)σ = l2σ.

Further observation:

The mgu of l1|p and l2 subsumes all unifiers σ of l1|p and l2.
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Critical Pairs

Let li → ri (i = 1, 2) be two rewrite rules in a TRS R whose

variables have been renamed such that vars(l1) ∩ vars(l2) = ∅.

(Remember that vars(li ) ⊇ vars(ri ).)

Let p ∈ pos(l1) be a position such that l1|p is not a variable and

σ is an mgu of l1|p and l2.

Then r1σ ← l1σ → (l1σ)[r2σ]p.

〈r1σ, (l1σ)[r2σ]p〉 is called a critical pair of R.

The critical pair is joinable (or: converges), if r1σ ↓R (l1σ)[r2σ]p.
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Critical Pairs

Theorem 4.9 (“Critical Pair Theorem”):

A TRS R is locally confluent if and only if all its critical pairs

are joinable.

Proof:

“only if”: obvious, since joinability of a critical pair is a special

case of local confluence.
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Critical Pairs

“if”: Suppose s rewrites to t1 and t2 using rewrite rules

li → ri ∈ R at positions pi ∈ pos(s), where i = 1, 2. Without

loss of generality, we can assume that the two rules are variable

disjoint, hence s|pi = liθ and ti = s[riθ]pi .

We distinguish between two cases: Either p1 and p2 are in

disjoint subtrees (p1 || p2), or one is a prefix of the other

(w.o.l.o.g., p1 ≤ p2).
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Critical Pairs

Case 1: p1 || p2.

Then s = s[l1θ]p1 [l2θ]p2 , and therefore t1 = s[r1θ]p1 [l2θ]p2 and

t2 = s[l1θ]p1 [r2θ]p2 .

Let t0 = s[r1θ]p1 [r2θ]p2 . Then clearly t1 →R t0 using l2 → r2 and

t2 →R t0 using l1 → r1.
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Critical Pairs

Case 2: p1 ≤ p2.

Case 2.1: p2 = p1q1q2, where l1|q1 is some variable x .

In other words, the second rewrite step takes place at or below

a variable in the first rule. Suppose that x occurs m times in l1
and n times in r1 (where m ≥ 1 and n ≥ 0).

Then t1 →
∗
R t0 by applying l2 → r2 at all positions p1q

′q2,

where q′ is a position of x in r1.

Conversely, t2 →
∗
R t0 by applying l2 → r2 at all positions

p1qq2, where q is a position of x in l1 different from q1, and

by applying l1 → r1 at p1 with the substitution θ′, where

θ′ = θ[x 7→ (xθ)[r2θ]q2 ].

363



Critical Pairs

Case 2.2: p2 = p1p, where p is a non-variable position of l1.

Then s|p2 = l2θ and s|p2 = (s|p1)|p = (l1θ)|p = (l1|p)θ, so θ is a

unifier of l2 and l1|p.

Let σ be the mgu of l2 and l1|p, then θ = τ ◦ σ and

〈r1σ, (l1σ)[r2σ]p〉 is a critical pair.

By assumption, it is joinable, so r1σ →
∗
R v ←∗

R (l1σ)[r2σ]p.

Consequently, t1 = s[r1θ]p1 = s[r1στ ]p1 →
∗
R s[vτ ]p1 and

t2 = s[r2θ]p2 = s[(l1θ)[r2θ]p]p1 = s[(l1στ)[r2στ ]p]p1 =

s[((l1σ)[r2σ]p)τ ]p1 →
∗
R s[vτ ]p1 .

This completes the proof of the Critical Pair Theorem. 2
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Critical Pairs

Note: Critical pairs between a rule and (a renamed variant of)

itself must be considered – except if the overlap is at the root

(i. e., p = ε).
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Critical Pairs

Corollary 4.10:

A terminating TRS R is confluent if and only if all its critical

pairs are joinable.

Corollary 4.11:

For a finite terminating TRS, confluence is decidable.

366




