Part 4: First-Order Logic with Equality

Equality is the most important relation in mathematics and functional programming.

In principle, problems in first-order logic with equality can be handled by any prover for first-order logic without equality:

4.1 Handling Equality Naively

Proposition 4.1:

Let ϕ be a closed first-order formula with equality. Let $\sim \notin \Pi$ be a new predicate symbol. The set $E q(\Sigma)$ contains the formulas

$$
\begin{gathered}
\forall x(x \sim x) \\
\forall x, y(x \sim y \rightarrow y \sim x) \\
\forall x, y, z(x \sim y \wedge y \sim z \rightarrow x \sim z) \\
\forall \vec{x}, \vec{y}\left(x_{1} \sim y_{1} \wedge \cdots \wedge x_{n} \sim y_{n} \rightarrow f\left(x_{1}, \ldots, x_{n}\right) \sim f\left(y_{1}, \ldots, y_{n}\right)\right) \\
\forall \vec{x}, \vec{y}\left(x_{1} \sim y_{1} \wedge \cdots \wedge x_{m} \sim y_{m} \wedge P\left(x_{1}, \ldots, x_{m}\right) \rightarrow P\left(y_{1}, \ldots, y_{m}\right)\right)
\end{gathered}
$$

for every $f \in \Omega$ and $P \in \Pi$. Let $\tilde{\phi}$ be the formula that one obtains from ϕ if every occurrence of \approx is replaced by \sim. Then ϕ is satisfiable if and only if $E q(\Sigma) \cup\{\tilde{\phi}\}$ is satisfiable.

Handling Equality Naively

By giving the equality axioms explicitly, first-order problems with equality can in principle be solved by FSTP.

But this is unfortunately not efficient, mainly due to the transitivity axiom.

Handling Equality Naively

Equality is theoretically difficult: First-order functional programming is Turing-complete.

But: FSTP cannot even solve equational problems that are intuitively easy.

Consequence: to handle equality efficiently, knowledge must be integrated into the theorem prover.

Roadmap

How to proceed:
Term rewrite systems
Expressing semantic consequence syntactically
Knuth-Bendix-Completion
Entailment for equations
(Superposition for first-order clauses with equality)

4.2 Term Rewrite Systems

Let E be a set of (implicitly universally quantified) equations.
The rewrite relation $\rightarrow_{E} \subseteq \mathrm{~T}_{\Sigma}(X) \times \mathrm{T}_{\Sigma}(X)$ is defined by

$$
\begin{aligned}
s \rightarrow_{E} t \quad \text { iff } & \text { there exist }(I \approx r) \in E, p \in \operatorname{pos}(s), \\
& \text { and } \sigma: X \rightarrow \mathrm{~T}_{\Sigma}(X), \\
& \text { such that }\left.s\right|_{p}=I \sigma \text { and } t=s[r \sigma]_{p} .
\end{aligned}
$$

An instance of the lhs (left-hand side) of an equation is called a redex (reducible expression). Contracting a redex means replacing it with the corresponding instance of the rhs (right-hand side) of the rule.

Term Rewrite Systems

An equation $I \approx r$ is also called a rewrite rule, if I is not a variable and $\operatorname{vars}(I) \supseteq \operatorname{vars}(r)$.

Notation: $l \rightarrow r$.
A set of rewrite rules is called a term rewrite system (TRS).

Term Rewrite Systems

We say that a set of equations E or a TRS R is terminating, if the rewrite relation \rightarrow_{E} or \rightarrow_{R} has this property.
(Analogously for other properties of (abstract) rewrite systems).

Note: If E is terminating, then it is a TRS.

Rewrite Relations

Corollary 4.2:
If E is convergent (i. e., terminating and confluent), then $s \approx_{E} t$ if and only if $s \leftrightarrow_{E}^{*} t$ if and only if $s \downarrow_{E}=t \downarrow_{E}$.

Corollary 4.3:
If E is finite and convergent, then \approx_{E} is decidable.

Reminder:
If E is terminating, then it is confluent if and only if it is locally confluent.

Rewrite Relations

Problems:
Show local confluence of E.
Show termination of E.
Transform E into an equivalent set of equations that is locally confluent and terminating.

E-Algebras

Let E be a set of universally quantified equations. A model of E is also called an E-algebra.

If $E \models \forall \vec{x}(s \approx t)$, i. e., $\forall \vec{x}(s \approx t)$ is valid in all E-algebras, we write this also as $s \approx_{E} t$.

Goal:
Use the rewrite relation \rightarrow_{E} to express the semantic consequence relation syntactically:

$$
s \approx_{E} t \text { if and only if } s \leftrightarrow_{E}^{*} t .
$$

E-Algebras

Let E be a set of equations over $\mathrm{T}_{\Sigma}(X)$. The following inference system allows to derive consequences of E :

E-Algebras

$$
\begin{aligned}
& \mathcal{I} \frac{t}{t \approx t} \\
& \mathcal{I} \frac{t \approx t^{\prime}}{t^{\prime} \approx t} \\
& \mathcal{I} \frac{t \approx t^{\prime} \quad t^{\prime} \approx t^{\prime \prime}}{t \approx t^{\prime \prime}} \\
& \mathcal{I} \frac{t_{1} \approx t_{1}^{\prime} \quad \ldots \quad t_{n} \approx t_{n}^{\prime}}{f\left(t_{1}, \ldots, t_{n}\right) \approx f\left(t_{1}^{\prime}, \ldots, t_{n}^{\prime}\right)} \text { for any } f / n \\
& \mathcal{I} \frac{\text { (Sympexivity) }}{t \sigma \approx t^{\prime}} \text { (Congruence) } \\
& t \sigma \approx t^{\prime} \sigma
\end{aligned} \quad \text { (Transitivity) }
$$

E-Algebras

Lemma 4.4:
The following properties are equivalent:
(i) $s \leftrightarrow_{E}^{*} t$
(ii) $E \Rightarrow^{*} s \approx t$.
where $E \Rightarrow^{*} s \approx t$ is an abbreviation for $E \Rightarrow^{*} E^{\prime}$ and $s \approx t \in E^{\prime}$.

Recall that the before inference rules of the form $\mathcal{I} \frac{A_{1} \ldots A_{k}}{B}$
are abbreviations for rewrite rules $E \uplus\left\{A_{1}, \ldots, A_{k}\right\} \Rightarrow$ $E \cup\left\{A_{1}, \ldots A_{k}, B\right\}$.

E-Algebras

Constructing a quotient algebra:
Let X be a set of variables.
For $t \in \mathrm{~T}_{\Sigma}(X)$ let $[t]=\left\{t^{\prime} \in \mathrm{T}_{\Sigma}(X) \mid E \Rightarrow^{*} t \approx t^{\prime}\right\}$ be the congruence class of t.

Define a Σ-algebra $\mathrm{T}_{\Sigma}(X) / E$ (abbreviated by \mathcal{T}) as follows:

$$
\begin{aligned}
& U_{\mathcal{T}}=\left\{[t] \mid t \in \mathrm{~T}_{\Sigma}(X)\right\} . \\
& f_{\mathcal{T}}\left(\left[t_{1}\right], \ldots,\left[t_{n}\right]\right)=\left[f\left(t_{1}, \ldots, t_{n}\right)\right] \text { for } f \in \Omega
\end{aligned}
$$

E-Algebras

Lemma 4.5:
$f_{\mathcal{T}}$ is well-defined: If $\left[t_{i}\right]=\left[t_{i}^{\prime}\right]$, then $\left[f\left(t_{1}, \ldots, t_{n}\right)\right]=$ $\left[f\left(t_{1}^{\prime}, \ldots, t_{n}^{\prime}\right)\right]$.

Lemma 4.6:
$\mathcal{T}=\mathrm{T}_{\Sigma}(X) / E$ is an E-algebra.

Lemma 4.7:
Let X be a countably infinite set of variables; let $s, t \in \mathrm{~T}_{\Sigma}(X)$. If $\mathrm{T}_{\Sigma}(X) / E \models \forall \vec{x}(s \approx t)$, then $E \Rightarrow^{*} s \approx t$.

E-Algebras

Theorem 4.8 ("Birkhoff's Theorem"):
Let X be a countably infinite set of variables, let E be a set of (universally quantified) equations. Then the following properties are equivalent for all $s, t \in \mathrm{~T}_{\Sigma}(X)$:
(i) $s \leftrightarrow_{E}^{*} t$.
(ii) $E \Rightarrow^{*} s \approx t$.
(iii) $s \approx_{E} t$, i. e., $E \models \forall \vec{x}(s \approx t)$.
(iv) $\mathrm{T}_{\Sigma}(X) / E \models \forall \vec{x}(s \approx t)$.

Universal Algebra

$\mathrm{T}_{\Sigma}(X) / E=\mathrm{T}_{\Sigma}(X) / \approx_{E}=\mathrm{T}_{\Sigma}(X) / \leftrightarrow_{E}^{*}$ is called the free E-algebra with generating set $X / \approx_{E}=\{[x] \mid x \in X\}$:

Every mapping $\varphi: X / \approx_{E} \rightarrow \mathcal{B}$ for some E-algebra \mathcal{B} can be extended to a homomorphism $\hat{\varphi}: \mathrm{T}_{\Sigma}(X) / E \rightarrow \mathcal{B}$.
$\mathrm{T}_{\Sigma}(\emptyset) / E=\mathrm{T}_{\Sigma}(\emptyset) / \approx_{E}=\mathrm{T}_{\Sigma}(\emptyset) / \leftrightarrow_{E}^{*}$ is called the initial E-algebra.

Universal Algebra

$\approx_{E}=\{(s, t) \mid E \models s \approx t\}$ is called the equational theory of E.
$\approx_{E}^{\prime}=\left\{(s, t) \mid T_{\Sigma}(\emptyset) / E \models s \approx t\right\}$ is called the inductive theory of E.

Example:

$$
\begin{aligned}
& \text { Let } E=\{\forall x(x+0 \approx x), \forall x \forall y(x+s(y) \approx s(x+y))\} \text {. Then } \\
& x+y \approx_{E}^{\prime} y+x, \text { but } x+y \not \ddot{E}_{E} y+x .
\end{aligned}
$$

4.3 Critical Pairs

Showing local confluence (Sketch):
Problem: If $t_{1} E^{\leftarrow} \leftarrow t_{0} \rightarrow_{E} t_{2}$, does there exist a term s such that $t_{1} \rightarrow_{E}^{*} S_{E}^{*} \leftarrow t_{2}$?

If the two rewrite steps happen in different subtrees (disjoint redexes): yes.

If the two rewrite steps happen below each other (overlap at or below a variable position): yes.

If the left-hand sides of the two rules overlap at a non-variable position: needs further investigation.

Critical Pairs

Showing local confluence (Sketch):
Question:
Are there rewrite rules $I_{1} \rightarrow r_{1}$ and $I_{2} \rightarrow r_{2}$ such that some subterm $\left.I_{1}\right|_{p}$ and I_{2} have a common instance $\left(\left.I_{1}\right|_{p}\right) \sigma_{1}=I_{2} \sigma_{2}$?

Observation:
If we assume w.o.l.o.g. that the two rewrite rules do not have common variables, then only a single substitution is necessary: $\left(\left.I_{1}\right|_{p}\right) \sigma=I_{2} \sigma$.

Further observation:
The mgu of $\left.I_{1}\right|_{p}$ and I_{2} subsumes all unifiers σ of $\left.I_{1}\right|_{p}$ and I_{2}.

Critical Pairs

Let $I_{i} \rightarrow r_{i}(i=1,2)$ be two rewrite rules in a TRS R whose variables have been renamed such that $\operatorname{vars}\left(I_{1}\right) \cap \operatorname{vars}\left(I_{2}\right)=\emptyset$. (Remember that vars $\left(l_{i}\right) \supseteq \operatorname{vars}\left(r_{i}\right)$.)

Let $p \in \operatorname{pos}\left(l_{1}\right)$ be a position such that $\left.I_{1}\right|_{p}$ is not a variable and σ is an mgu of $\left.I_{1}\right|_{p}$ and I_{2}.

Then $r_{1} \sigma \leftarrow I_{1} \sigma \rightarrow\left(I_{1} \sigma\right)\left[r_{2} \sigma\right]_{p}$.
$\left\langle r_{1} \sigma,\left(l_{1} \sigma\right)\left[r_{2} \sigma\right]_{p}\right\rangle$ is called a critical pair of R.

The critical pair is joinable (or: converges), if $r_{1} \sigma \downarrow_{R}\left(l_{1} \sigma\right)\left[r_{2} \sigma\right]_{p}$.

Critical Pairs

Theorem 4.9 ("Critical Pair Theorem"):
A TRS R is locally confluent if and only if all its critical pairs are joinable.

Proof:
"only if": obvious, since joinability of a critical pair is a special case of local confluence.

Critical Pairs

"if": Suppose s rewrites to t_{1} and t_{2} using rewrite rules $I_{i} \rightarrow r_{i} \in R$ at positions $p_{i} \in \operatorname{pos}(s)$, where $i=1,2$. Without loss of generality, we can assume that the two rules are variable disjoint, hence $\left.s\right|_{p_{i}}=l_{i} \theta$ and $t_{i}=s\left[r_{i} \theta\right]_{p_{i}}$.

We distinguish between two cases: Either p_{1} and p_{2} are in disjoint subtrees $\left(p_{1} \| p_{2}\right)$, or one is a prefix of the other (w.o.l.o.g., $p_{1} \leq p_{2}$).

Critical Pairs

Case 1: $p_{1} \| p_{2}$.
Then $s=s\left[l_{1} \theta\right]_{p_{1}}\left[l_{2} \theta\right]_{p_{2}}$, and therefore $t_{1}=s\left[r_{1} \theta\right]_{p_{1}}\left[l_{2} \theta\right]_{p_{2}}$ and $t_{2}=s\left[l_{1} \theta\right]_{p_{1}}\left[r_{2} \theta\right]_{p_{2}}$.

Let $t_{0}=s\left[r_{1} \theta\right]_{p_{1}}\left[r_{2} \theta\right]_{p_{2}}$. Then clearly $t_{1} \rightarrow_{R} t_{0}$ using $l_{2} \rightarrow r_{2}$ and $t_{2} \rightarrow_{R} t_{0}$ using $I_{1} \rightarrow r_{1}$.

Critical Pairs

Case 2: $p_{1} \leq p_{2}$.
Case 2.1: $p_{2}=p_{1} q_{1} q_{2}$, where $\left.I_{1}\right|_{q_{1}}$ is some variable x.
In other words, the second rewrite step takes place at or below a variable in the first rule. Suppose that x occurs m times in I_{1} and n times in r_{1} (where $m \geq 1$ and $n \geq 0$).
Then $t_{1} \rightarrow_{R}^{*} t_{0}$ by applying $l_{2} \rightarrow r_{2}$ at all positions $p_{1} q^{\prime} q_{2}$, where q^{\prime} is a position of x in r_{1}.

Conversely, $t_{2} \rightarrow_{R}^{*} t_{0}$ by applying $t_{2} \rightarrow r_{2}$ at all positions $p_{1} q q_{2}$, where q is a position of x in I_{1} different from q_{1}, and by applying $I_{1} \rightarrow r_{1}$ at p_{1} with the substitution θ^{\prime}, where $\theta^{\prime}=\theta\left[x \mapsto(x \theta)\left[r_{2} \theta\right]_{q_{2}}\right]$.

Critical Pairs

Case 2.2: $p_{2}=p_{1} p$, where p is a non-variable position of I_{1}.
Then $\left.s\right|_{p_{2}}=I_{2} \theta$ and $\left.s\right|_{p_{2}}=\left.\left(\left.s\right|_{p_{1}}\right)\right|_{p}=\left.\left(I_{1} \theta\right)\right|_{p}=\left(\left.I_{1}\right|_{p}\right) \theta$, so θ is a unifier of I_{2} and $\left.I_{1}\right|_{p}$.

Let σ be the mgu of I_{2} and $\left.I_{1}\right|_{p}$, then $\theta=\tau \circ \sigma$ and $\left\langle r_{1} \sigma,\left(l_{1} \sigma\right)\left[r_{2} \sigma\right]_{p}\right\rangle$ is a critical pair.

By assumption, it is joinable, so $r_{1} \sigma \rightarrow_{R}^{*} v \leftarrow_{R}^{*}\left(l_{1} \sigma\right)\left[r_{2} \sigma\right]_{p}$.
Consequently, $t_{1}=s\left[r_{1} \theta\right]_{p_{1}}=s\left[r_{1} \sigma \tau\right]_{p_{1}} \rightarrow_{R}^{*} s[v \tau]_{p_{1}}$ and $t_{2}=s\left[r_{2} \theta\right]_{p_{2}}=s\left[\left(l_{1} \theta\right)\left[r_{2} \theta\right]_{p}\right]_{p_{1}}=s\left[\left(l_{1} \sigma \tau\right)\left[r_{2} \sigma \tau\right]_{p}\right]_{p_{1}}=$ $s\left[\left(\left(l_{1} \sigma\right)\left[r_{2} \sigma\right]_{p}\right) \tau\right]_{p_{1}} \rightarrow_{R}^{*} s[v \tau]_{p_{1}}$.

This completes the proof of the Critical Pair Theorem.

Critical Pairs

Note: Critical pairs between a rule and (a renamed variant of) itself must be considered - except if the overlap is at the root (i. e., $p=\varepsilon$).

Critical Pairs

Corollary 4.10:
A terminating TRS R is confluent if and only if all its critical pairs are joinable.

Corollary 4.11:
For a finite terminating TRS, confluence is decidable.

