Part 4: First-Order Logic with Equality

Equality is the most important relation in mathematics and functional programming.

In principle, problems in first-order logic with equality can be handled by any prover for first-order logic without equality:

4.1 Handling Equality Naively

Proposition 4.1:

Let ϕ be a closed first-order formula with equality. Let $\sim \notin \Pi$ be a new predicate symbol. The set $Eq(\Sigma)$ contains the formulas

$$\begin{array}{c} \forall x \, (x \sim x) \\ \forall x, y \, (x \sim y \rightarrow y \sim x) \\ \forall x, y, z \, (x \sim y \wedge y \sim z \rightarrow x \sim z) \\ \forall \vec{x}, \vec{y} \, (x_1 \sim y_1 \wedge \dots \wedge x_n \sim y_n \rightarrow f(x_1, \dots, x_n) \sim f(y_1, \dots, y_n)) \\ \forall \vec{x}, \vec{y} \, (x_1 \sim y_1 \wedge \dots \wedge x_m \sim y_m \wedge P(x_1, \dots, x_m) \rightarrow P(y_1, \dots, y_m)) \end{array}$$

for every $f \in \Omega$ and $P \in \Pi$. Let $\tilde{\phi}$ be the formula that one obtains from ϕ if every occurrence of \approx is replaced by \sim . Then ϕ is satisfiable if and only if $Eq(\Sigma) \cup \{\tilde{\phi}\}$ is satisfiable.

By giving the equality axioms explicitly, first-order problems with equality can in principle be solved by *FSTP*.

But this is unfortunately not efficient, mainly due to the transitivity axiom.

Equality is theoretically difficult: First-order functional programming is Turing-complete.

But: *FSTP* cannot even solve equational problems that are intuitively easy.

Consequence: to handle equality efficiently, knowledge must be integrated into the theorem prover.

Roadmap

How to proceed:

Term rewrite systems Expressing semantic consequence syntactically Knuth-Bendix-Completion Entailment for equations (Superposition for first-order clauses with equality) Let E be a set of (implicitly universally quantified) equations.

The rewrite relation $\rightarrow_E \subseteq \mathsf{T}_{\Sigma}(X) \times \mathsf{T}_{\Sigma}(X)$ is defined by

$$s \rightarrow_E t$$
 iff there exist $(I \approx r) \in E$, $p \in pos(s)$,
and $\sigma : X \rightarrow T_{\Sigma}(X)$,
such that $s|_p = I\sigma$ and $t = s[r\sigma]_p$.

An instance of the lhs (left-hand side) of an equation is called a redex (reducible expression). Contracting a redex means replacing it with the corresponding instance of the rhs (right-hand side) of the rule. An equation $l \approx r$ is also called a rewrite rule, if l is not a variable and vars $(l) \supseteq vars(r)$.

Notation: $I \rightarrow r$.

A set of rewrite rules is called a term rewrite system (TRS).

We say that a set of equations E or a TRS R is terminating, if the rewrite relation \rightarrow_E or \rightarrow_R has this property.

(Analogously for other properties of (abstract) rewrite systems).

Note: If E is terminating, then it is a TRS.

Rewrite Relations

Corollary 4.2: If *E* is convergent (i. e., terminating and confluent), then $s \approx_E t$ if and only if $s \leftrightarrow_E^* t$ if and only if $s \downarrow_E = t \downarrow_E$.

Corollary 4.3: If *E* is finite and convergent, then \approx_E is decidable.

Reminder:

If E is terminating, then it is confluent if and only if it is locally confluent.

Rewrite Relations

Problems:

- Show local confluence of E.
- Show termination of E.
- Transform E into an equivalent set of equations that is locally confluent and terminating.

Let E be a set of universally quantified equations. A model of E is also called an E-algebra.

If $E \models \forall \vec{x} (s \approx t)$, i.e., $\forall \vec{x} (s \approx t)$ is valid in all *E*-algebras, we write this also as $s \approx_E t$.

Goal:

Use the rewrite relation \rightarrow_E to express the semantic consequence relation syntactically:

 $s \approx_E t$ if and only if $s \leftrightarrow_E^* t$.

Let *E* be a set of equations over $T_{\Sigma}(X)$. The following inference system allows to derive consequences of *E*:

E-Algebras

$$\mathcal{I} - \frac{t \approx t}{t \approx t}$$
(Reflexivity)

$$\mathcal{I} - \frac{t \approx t'}{t' \approx t}$$
(Symmetry)

$$\mathcal{I} - \frac{t \approx t'}{t \approx t'} = \frac{t' \approx t''}{t \approx t''}$$
(Transitivity)

$$\mathcal{I} - \frac{t_1 \approx t'_1 \dots t_n \approx t'_n}{f(t_1, \dots, t_n) \approx f(t'_1, \dots, t'_n)}$$
for any f/n (Congruence)

$$\mathcal{I} - \frac{t \approx t'}{t\sigma \approx t'\sigma}$$
for any substitution σ (Instance)

E-Algebras

Lemma 4.4:

The following properties are equivalent:

(i) $s \leftrightarrow_E^* t$ (ii) $E \Rightarrow^* s \approx t$.

where $E \Rightarrow^* s \approx t$ is an abbreviation for $E \Rightarrow^* E'$ and $s \approx t \in E'$.

Recall that the before inference rules of the form $\mathcal{I} \frac{A_1 \dots A_k}{B}$ are abbreviations for rewrite rules $E \uplus \{A_1, \dots, A_k\} \Rightarrow$ $E \cup \{A_1, \dots, A_k, B\}.$ Constructing a quotient algebra:

Let X be a set of variables.

For $t \in T_{\Sigma}(X)$ let $[t] = \{ t' \in T_{\Sigma}(X) \mid E \Rightarrow^* t \approx t' \}$ be the congruence class of t.

Define a Σ -algebra $T_{\Sigma}(X)/E$ (abbreviated by \mathcal{T}) as follows:

$$U_{\mathcal{T}} = \{ [t] \mid t \in \mathsf{T}_{\Sigma}(X) \}.$$

 $f_{\mathcal{T}}([t_1], \ldots, [t_n]) = [f(t_1, \ldots, t_n)] \text{ for } f \in \Omega.$

E-Algebras

Lemma 4.5: $f_{\mathcal{T}}$ is well-defined: If $[t_i] = [t'_i]$, then $[f(t_1, \ldots, t_n)] = [f(t'_1, \ldots, t'_n)]$.

Lemma 4.6: $\mathcal{T} = T_{\Sigma}(X)/E$ is an *E*-algebra.

Lemma 4.7: Let X be a countably infinite set of variables; let $s, t \in T_{\Sigma}(X)$. If $T_{\Sigma}(X)/E \models \forall \vec{x}(s \approx t)$, then $E \Rightarrow^* s \approx t$.

E-Algebras

Theorem 4.8 ("Birkhoff's Theorem"):

Let X be a countably infinite set of variables, let E be a set of (universally quantified) equations. Then the following properties are equivalent for all $s, t \in T_{\Sigma}(X)$:

(i)
$$s \leftrightarrow_E^* t$$
.
(ii) $E \Rightarrow^* s \approx t$.
(iii) $s \approx_E t$, i.e., $E \models \forall \vec{x} (s \approx t)$.
(iv) $\mathsf{T}_{\Sigma}(X)/E \models \forall \vec{x} (s \approx t)$.

 $T_{\Sigma}(X)/E = T_{\Sigma}(X)/\approx_{E} = T_{\Sigma}(X)/\leftrightarrow_{E}^{*}$ is called the free *E*-algebra with generating set $X/\approx_{E} = \{ [x] \mid x \in X \}$:

Every mapping $\varphi : X / \approx_E \to \mathcal{B}$ for some *E*-algebra \mathcal{B} can be extended to a homomorphism $\hat{\varphi} : \mathsf{T}_{\Sigma}(X) / E \to \mathcal{B}$.

 $T_{\Sigma}(\emptyset)/E = T_{\Sigma}(\emptyset)/\approx_{E} = T_{\Sigma}(\emptyset)/\leftrightarrow_{E}^{*}$ is called the initial *E*-algebra.

 $\approx_E = \{ (s, t) \mid E \models s \approx t \}$ is called the equational theory of E.

 $\approx_E^{\prime} = \{ (s, t) \mid \mathsf{T}_{\Sigma}(\emptyset) / E \models s \approx t \}$ is called the inductive theory of *E*.

Example:

Let
$$E = \{ \forall x(x+0 \approx x), \forall x \forall y(x+s(y) \approx s(x+y)) \}$$
. Then $x + y \approx_E' y + x$, but $x + y \not\approx_E' y + x$.

Showing local confluence (Sketch):

Problem: If $t_1 \xrightarrow{E} t_0 \rightarrow_E t_2$, does there exist a term *s* such that $t_1 \rightarrow_E^* s \xrightarrow{*}_E t_2$?

If the two rewrite steps happen in different subtrees (disjoint redexes): yes.

If the two rewrite steps happen below each other (overlap at or below a variable position): yes.

If the left-hand sides of the two rules overlap at a non-variable position: needs further investigation.

Showing local confluence (Sketch):

Question:

Are there rewrite rules $l_1 \rightarrow r_1$ and $l_2 \rightarrow r_2$ such that some subterm $l_1|_p$ and l_2 have a common instance $(l_1|_p)\sigma_1 = l_2\sigma_2$?

Observation:

If we assume w.o.l.o.g. that the two rewrite rules do not have common variables, then only a single substitution is necessary: $(l_1|_p)\sigma = l_2\sigma.$

Further observation:

The mgu of $l_1|_p$ and l_2 subsumes all unifiers σ of $l_1|_p$ and l_2 .

Let $l_i \rightarrow r_i$ (i = 1, 2) be two rewrite rules in a TRS R whose variables have been renamed such that $vars(l_1) \cap vars(l_2) = \emptyset$. (Remember that $vars(l_i) \supseteq vars(r_i)$.)

Let $p \in pos(l_1)$ be a position such that $l_1|_p$ is not a variable and σ is an mgu of $l_1|_p$ and l_2 .

Then $r_1 \sigma \leftarrow l_1 \sigma \rightarrow (l_1 \sigma)[r_2 \sigma]_p$.

 $\langle r_1\sigma, (l_1\sigma)[r_2\sigma]_p \rangle$ is called a critical pair of R.

The critical pair is joinable (or: converges), if $r_1 \sigma \downarrow_R (l_1 \sigma)[r_2 \sigma]_p$.

Theorem 4.9 ("Critical Pair Theorem"):

A TRS R is locally confluent if and only if all its critical pairs are joinable.

Proof:

"only if": obvious, since joinability of a critical pair is a special case of local confluence.

"if": Suppose *s* rewrites to t_1 and t_2 using rewrite rules $l_i \rightarrow r_i \in R$ at positions $p_i \in pos(s)$, where i = 1, 2. Without loss of generality, we can assume that the two rules are variable disjoint, hence $s|_{p_i} = l_i\theta$ and $t_i = s[r_i\theta]_{p_i}$.

We distinguish between two cases: Either p_1 and p_2 are in disjoint subtrees $(p_1 || p_2)$, or one is a prefix of the other (w.o.l.o.g., $p_1 \leq p_2$).

Case 1: $p_1 || p_2$. Then $s = s[l_1\theta]_{p_1}[l_2\theta]_{p_2}$, and therefore $t_1 = s[r_1\theta]_{p_1}[l_2\theta]_{p_2}$ and $t_2 = s[l_1\theta]_{p_1}[r_2\theta]_{p_2}$. Let $t_0 = s[r_1\theta]_{p_1}[r_2\theta]_{p_2}$. Then clearly $t_1 \rightarrow_R t_0$ using $l_2 \rightarrow r_2$ and $t_2 \rightarrow_R t_0$ using $l_1 \rightarrow r_1$.

Case 2: $p_1 \le p_2$.

Case 2.1: $p_2 = p_1 q_1 q_2$, where $l_1|_{q_1}$ is some variable x.

In other words, the second rewrite step takes place at or below a variable in the first rule. Suppose that x occurs m times in l_1 and n times in r_1 (where $m \ge 1$ and $n \ge 0$).

Then $t_1 \rightarrow_R^* t_0$ by applying $l_2 \rightarrow r_2$ at all positions $p_1 q' q_2$, where q' is a position of x in r_1 .

Conversely, $t_2 \rightarrow_R^* t_0$ by applying $l_2 \rightarrow r_2$ at all positions $p_1 q q_2$, where q is a position of x in l_1 different from q_1 , and by applying $l_1 \rightarrow r_1$ at p_1 with the substitution θ' , where $\theta' = \theta[x \mapsto (x\theta)[r_2\theta]_{q_2}].$

Case 2.2: $p_2 = p_1 p$, where p is a non-variable position of l_1 .

Then $s|_{p_2} = l_2\theta$ and $s|_{p_2} = (s|_{p_1})|_p = (l_1\theta)|_p = (l_1|_p)\theta$, so θ is a unifier of l_2 and $l_1|_p$.

Let σ be the mgu of l_2 and $l_1|_p$, then $\theta = \tau \circ \sigma$ and $\langle r_1\sigma, (l_1\sigma)[r_2\sigma]_p \rangle$ is a critical pair.

By assumption, it is joinable, so $r_1\sigma \rightarrow^*_R v \leftarrow^*_R (l_1\sigma)[r_2\sigma]_p$.

Consequently, $t_1 = s[r_1\theta]_{p_1} = s[r_1\sigma\tau]_{p_1} \rightarrow^*_R s[v\tau]_{p_1}$ and $t_2 = s[r_2\theta]_{p_2} = s[(l_1\theta)[r_2\theta]_p]_{p_1} = s[(l_1\sigma\tau)[r_2\sigma\tau]_p]_{p_1} = s[((l_1\sigma)[r_2\sigma]_p)\tau]_{p_1} \rightarrow^*_R s[v\tau]_{p_1}.$

This completes the proof of the Critical Pair Theorem.

Note: Critical pairs between a rule and (a renamed variant of) itself must be considered – except if the overlap is at the root (i. e., $p = \varepsilon$).

Corollary 4.10: A terminating TRS R is confluent if and only if all its critical pairs are joinable.

Corollary 4.11: For a finite terminating TRS, confluence is decidable.