Part 4: First-Order Logic with Equality

Equality is the most important relation in mathematics and

functional programming.

In principle, problems in first-order logic with equality can be
handled by any prover for first-order logic without equality:
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4.1 Handling Equality Naively

Proposition 4.1:

Let ¢ be a closed first-order formula with equality. Let ~ ¢ 1 be
a new predicate symbol. The set Eq(X) contains the formulas

Vx (x ~ x)
VX, y (x ~y =y ~X)
VX, y,z(x ~y ANy ~zZ— x~ Z)
VX,V (xg ~ Y1 A AXp~yn— f(xq,..., Xn) ~ f(y1, ..., Yn))
VX, ¥y (x1 ~ i AN  AXm ~ Ym AP, ..., Xm) = Py, - Ym))

for every f € Q and P € M. Let ¢ be the formula that one
obtains from ¢ if every occurrence of = is replaced by ~. Then
¢ is satisfiable if and only if Eq(X)U {¢} is satisfiable.
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Handling Equality Naively

By giving the equality axioms explicitly, first-order problems with
equality can in principle be solved by FSTP.

But this is unfortunately not efficient, mainly due to the

transitivity axiom.

340



Handling Equality Naively

Equality is theoretically difficult: First-order functional program-

ming is Turing-complete.

But: FSTP cannot even solve equational problems that are

Intuitively easy.

Consequence: to handle equality efficiently, knowledge must be

integrated into the theorem prover.
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Roadmap

How to proceed:

Term rewrite systems

Expressing semantic consequence syntactically
Knuth-Bendix-Completion

Entailment for equations

(Superposition for first-order clauses with equality)
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4.2 Term Rewrite Systems

Let E be a set of (implicitly universally quantified) equations.

The rewrite relation —g C Ty (X) x Tx(X) is defined by

s —»p t iff thereexist (I~ r)e€ E, p€ pos(s),
and 0 : X — Tx(X),
such that s|, = /o and t = s[ro],.

An instance of the lhs (left-hand side) of an equation is
called a redex (reducible expression). Contracting a redex
means replacing it with the corresponding instance of the rhs
(right-hand side) of the rule.
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Term Rewrite Systems

An equation | = r is also called a rewrite rule, if / is not a
variable and vars(/) D vars(r).

Notation: | — r.

A set of rewrite rules is called a term rewrite system (TRS).
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Term Rewrite Systems

We say that a set of equations E or a TRS R is terminating, if
the rewrite relation —g or — has this property.

(Analogously for other properties of (abstract) rewrite systems).

Note: If E is terminating, then it is a TRS.
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Rewrite Relations

Corollary 4.2:
If E is convergent (i.e., terminating and confluent), then s ~g t

if and only if s <% tif and only if s|g = t]E.

Corollary 4.3:
If E is finite and convergent, then =~ is decidable.

Reminder:
If E is terminating, then it is confluent if and only if it is locally

confluent.
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Rewrite Relations

Problems:
Show local confluence of E.
Show termination of E.

Transform E into an equivalent set of equations that is locally

confluent and terminating.
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E-Algebras

Let E be a set of universally quantified equations. A model of
E is also called an E-algebra.

If E =VX(s~t), ie, VX(s~t)is valid in all E-algebras, we

write this also as s ~¢ t.

Goal:
Use the rewrite relation — g to express the semantic consequence
relation syntactically:

s~ tifandonly if s <7 t.
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E-Algebras

Let E be a set of equations over Ty (X). The following inference
system allows to derive consequences of E:
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E-Algebras

A
t~t
t~ t’
i
t! ~ t
t%t, t,%t”
i
t%t”
- 1 ~ t] th
f(t].r 1tn) ~ f(t{1
t~t
Z

for any substitution o

for any f/n

(Reflexivity)

(Symmetry)

(Transitivity)

(Congruence)

(Instance)
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E-Algebras

Lemma 4.4:
The following properties are equivalent:

(i) s<Et
(i) E="s=~t.
where E =* s = t is an abbreviation for E =* E’ and
s~teE’
Ap ... Ay

B
are abbreviations for rewrite rules E W {Ay,..., Ax} =
EU{A;, ... A B}

Recall that the before inference rules of the form 7
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E-Algebras

Constructing a quotient algebra:

Let X be a set of variables.

Fort € Te(X) let [t] ={t/ € Tx(X) | E="t~ t'} be the
congruence class of t.

Define a ¥-algebra Ty (X)/E (abbreviated by 7) as follows:
Ur = 1lt] |t e T(X) ).
fr([t), ..., [ta]) = [f(t1, ..., t,)] for f € Q.
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E-Algebras

Lemma 4.5:

Lemma 4.6:
T = Tx(X)/E is an E-algebra.

Lemma 4.7:
Let X be a countably infinite set of variables; let s, t € Tx(X).
If Ts(X)/E =VX(s ~ t), then E =* s~ t.
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E-Algebras

Theorem 4.8 (“Birkhoff’s Theorem"):

Let X be a countably infinite set of variables, let E be a set of
(universally quantified) equations. Then the following properties
are equivalent for all s, t € Tx(X):

(i) s <F t.
(i) E="s~t.
(iii) s~g t,i.e., E =VX(s =~ t).

(iv) Ts(X)/E = V(s ~ t).
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Universal Algebra

Ts(X)/E = Tg(X)/~g = Tg(X)/<E is called the free
E-algebra with generating set X/~ ={[x] | x € X }:

Every mapping ¢ : X /~g — B for some E-algebra B can be
extended to a homomorphism ¢ : Tx(X)/E — B.

Ts(0)/E = Ts(0)/~g = Tx(0)/+>% is called the initial
E-algebra.
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Universal Algebra

Q

e={(s,t)| El=s~t}is called the equational theory of E.

L ={(s,t)| Tx(D)/E = s~ t} is called the inductive theory
E.

Q

O
*’

Example:

Let E = {Vx(x+ 0~ x), VxVy(x+s(y) = s(x+y))}. Then
Xx+y=~Ety+x but x+ysey+x
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4.3 Critical Pairs

Showing local confluence (Sketch):

Problem: If t; < ty — tp, does there exist a term s such
that t; —>>E S E*% tr ?

If the two rewrite steps happen in different subtrees (disjoint

redexes): yes.

If the two rewrite steps happen below each other (overlap at

or below a variable position): yes.

If the left-hand sides of the two rules overlap at a non-variable

position: needs further investigation.
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Critical Pairs

Showing local confluence (Sketch):

Question:
Are there rewrite rules [ — r and b — r such that some

subterm /1|, and /, have a common instance (/|,)o1 = hoy?

Observation:
If we assume w.o.l.o.g. that the two rewrite rules do not have

common variables, then only a single substitution is necessary:

(/1 ‘p)O' — /20'.

Further observation:
The mgu of /1|, and k subsumes all unifiers o of /1|, and k.

358



Critical Pairs

Let /; — r; (i = 1,2) be two rewrite rules in a TRS R whose
variables have been renamed such that vars(/y) Nvars(h) = 0.
(Remember that vars(/;) 2 vars(r;).)

Let p € pos(/) be a position such that /|, is not a variable and

o is an mgu of /|, and h.
Then o < ho — (ho)[rno],.

(no, (ho)[ro]p) is called a critical pair of R.

The critical pair is joinable (or: converges), if rno Lr (ho)[rol,.
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Critical Pairs

Theorem 4.9 (“Critical Pair Theorem”):
A TRS R is locally confluent if and only if all its critical pairs
are joinable.

Proof:
“only if": obvious, since joinability of a critical pair is a special

case of local confluence.
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Critical Pairs

“if": Suppose s rewrites to t; and t, using rewrite rules
I — r; € R at positions p; € pos(s), where i = 1,2. Without
loss of generality, we can assume that the two rules are variable

disjoint, hence s|, = ;0 and t; = s[r;0],,.

We distinguish between two cases: Either p; and p, are in
disjoint subtrees (p; || p2), or one is a prefix of the other

(w.o.l.o.g., p1 < p2).
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Critical Pairs

Case 1: p1 || p2.

Then s = s[h0]p,[0]s,, and therefore t; = s[r 0], k0], and
by = 5[/1(9]P1[r29],02'

Let ty = s[r 6], [0]s. Then clearly t; —g tp using b — r> and
to —R to using { — r.
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Critical Pairs

Case 2: p1 < p».
Case 2.1: py = p1q1 G2, where /1|4, is some variable x.

In other words, the second rewrite step takes place at or below
a variable in the first rule. Suppose that x occurs m times in f;
and n times in r; (where m > 1 and n > 0).

Then t; —% to by applying b — r» at all positions p; ¢’ go,
where g’ is a position of x in r.

Conversely, t» —% to by applying b — r> at all positions
p1qq>, where g is a position of x in /; different from ¢g;, and
by applying 1 — r1 at p; with the substitution 6’, where
0" = O0[x — (x0)[r0]4,]-
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Critical Pairs

Case 2.2: po = p1 p, where p is a non-variable position of /.

Then s|,, = h0 and s|,, = (s|p,)|p = (h0)|p = (h|p)0, so 0 is a
unifier of h, and /1 |,.

Let o be the mgu of h and /|,, then § = 7 00 and
(no, (ho)[rno]p) is a critical pair.

By assumption, it is joinable, so rno —5 v <5 (ho)|[no],.

Consequently, t1 = s[nf], = s|noTt], —% s[vT]y and
tr = s|Rblp, = s[(h0)[rblpl, = sl(hoT)[roT]plp =

s|((ho)lralp)Tle — & slvTlp-

This completes the proof of the Critical Pair Theorem. O
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Critical Pairs

Note: Critical pairs between a rule and (a renamed variant of)
itself must be considered — except if the overlap is at the root

(i.,e., p=-¢).
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Critical Pairs

Corollary 4.10:
A terminating TRS R is confluent if and only if all its critical
pairs are joinable.

Corollary 4.11:

For a finite terminating TRS, confluence is decidable.
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