
4.4 Termination

Termination problems:

Given a finite TRS R and a term t, are all R-reductions

starting from t terminating?

Given a finite TRS R, are all R-reductions terminating?

367



Termination

Proposition 4.12:

Both termination problems for TRSs are undecidable in general.

Consequence:

Decidable criteria for termination are not complete.

368



Reduction Orderings

Goal:

Given a finite TRS R, show termination of R by looking at

finitely many rules l → r ∈ R, rather than at infinitely many

possible replacement steps s →R s′.

369



Reduction Orderings

A binary relation ⊐ over TΣ(X ) is called compatible

with Σ-operations, if s ⊐ s′ implies f (t1, . . . , s, . . . , tn) ⊐

f (t1, . . . , s
′, . . . , tn) for all f ∈ Ω and s, s′, ti ∈ TΣ(X ).

Lemma 4.13:

The relation ⊐ is compatible with Σ-operations, if and only

if s ⊐ s′ implies t[s]p ⊐ t[s′]p for all s, s′, t ∈ TΣ(X ) and

p ∈ pos(t).

Note: compatible with Σ-operations = compatible with contexts.

370



Reduction Orderings

A binary relation ⊐ over TΣ(X ) is called stable under

substitutions, if s ⊐ s′ implies sσ ⊐ s′σ for all s, s′ ∈ TΣ(X )

and substitutions σ.

371



Reduction Orderings

A binary relation ⊐ is called a rewrite relation, if it is compatible

with Σ-operations and stable under substitutions.

Example: If R is a TRS, then →R is a rewrite relation.

A strict partial ordering over TΣ(X ) that is a rewrite relation is

called rewrite ordering.

A well-founded rewrite ordering is called reduction ordering.

372



Reduction Orderings

Theorem 4.14:

A TRS R terminates if and only if there exists a reduction

ordering ≻ such that l ≻ r for every rule l → r ∈ R.

373



Two Different Scenarios

Depending on the application, the TRS whose termination we

want to show can be

(i) fixed and known in advance, or

(ii) evolving (e.g., generated by some saturation process).

Methods for case (ii) are also usable for case (i).

Many methods for case (i) are not usable for case (ii).

We will first consider case (ii);

additional techniques for case (i) will be considered later.

374



The Interpretation Method

Proving termination by interpretation:

Let A be a Σ-algebra; let ≻ be a well-founded strict partial

ordering on its universe.

Define the ordering ≻A over TΣ(X ) by s ≻A t iff A(β)(s) ≻

A(β)(t) for all assignments β : X → UA.

Is ≻A a reduction ordering?

375



The Interpretation Method

Lemma 4.15:

≻A is stable under substitutions.

376



The Interpretation Method

A function f : Un
A → UA is called monotone (w. r. t. ≻), if

a ≻ a′ implies f (b1, . . . , a, . . . , bn) ≻ f (b1, . . . , a
′, . . . , bn) for all

a, a′, bi ∈ UA.

Lemma 4.16:

If the interpretation fA of every function symbol f is monotone

w. r. t. ≻, then ≻A is compatible with Σ-operations.

Theorem 4.17:

If the interpretation fA of every function symbol f is monotone

w. r. t. ≻, then ≻A is a reduction ordering.

377



Polynomial Orderings

Polynomial orderings:

Instance of the interpretation method:

The carrier set UA is N or some subset of N.

To every function symbol f with arity n we associate a

polynomial Pf (X1, . . . ,Xn) ∈ N[X1, . . . ,Xn] with coefficients

in N and indeterminates X1, . . . ,Xn. Then we define

fA(a1, . . . , an) = Pf (a1, . . . , an) for ai ∈ UA.

378



Polynomial Orderings

Requirement 1:

If a1, . . . , an ∈ UA, then fA(a1, . . . , an) ∈ UA. (Otherwise, A

would not be a Σ-algebra.)

379



Polynomial Orderings

Requirement 2:

fA must be monotone (w. r. t. ≻).

From now on:

UA = { n ∈ N | n ≥ 1 }.

If arity(f ) = 0, then Pf is a constant ≥ 1.

If arity(f ) = n ≥ 1, then Pf is a polynomial P(X1, . . . ,Xn),

such that every Xi occurs in some monomial with exponent

at least 1 and non-zero coefficient.

⇒ Requirements 1 and 2 are satisfied.

380



Polynomial Orderings

The mapping from function symbols to polynomials can be

extended to terms: A term t containing the variables x1, . . . , xn

yields a polynomial Pt with indeterminates X1, . . . ,Xn (where

Xi corresponds to β(xi )).

Example:

Ω = {b/0, f /1, g/3}

Pb = 3, Pf (X1) = X 2
1 , Pg (X1,X2,X3) = X1 + X2X3.

Let t = g(f (b), f (x), y), then Pt(X ,Y ) = 9 + X 2Y .

381



Polynomial Orderings

If P ,Q are polynomials in N[X1, . . . ,Xn], we write P > Q if

P(a1, . . . , an) > Q(a1, . . . , an) for all a1, . . . , an ∈ UA.

Clearly, l ≻A r iff Pl > Pr iff Pl − Pr > 0.

Question: Can we check Pl − Pr > 0 automatically?

382



Polynomial Orderings

Hilbert’s 10th Problem:

Given a polynomial P ∈ Z[X1, . . . ,Xn] with integer coeffi-

cients, is P = 0 for some n-tuple of natural numbers?

Theorem 4.18:

Hilbert’s 10th Problem is undecidable.

Proposition 4.19:

Given a polynomial interpretation and two terms l , r , it is

undecidable whether Pl > Pr .

Proof:

By reduction of Hilbert’s 10th Problem. 2

383



Polynomial Orderings

One easy case:

If we restrict to linear polynomials, deciding whether

Pl − Pr > 0 is trivial:
∑

kiai + k > 0 for all a1, . . . , an ≥ 1 if and only if

ki ≥ 0 for all i ∈ {1, . . . , n},

and
∑

ki + k > 0

384



Polynomial Orderings

Another possible solution:

Test whether Pl(a1, . . . , an) > Pr (a1, . . . , an) for all

a1, . . . , an ∈ { x ∈ R | x ≥ 1 }.

This is decidable (but hard). Since UA ⊆ { x ∈ R | x ≥ 1 }, it

implies Pl > Pr .

Alternatively:

Use fast overapproximations.

385



Simplification Orderings

The proper subterm ordering ⊲ is defined by s ⊲ t if and only if

s|p = t for some position p 6= ε of s.

386



Simplification Orderings

A rewrite ordering ≻ over TΣ(X ) is called simplification

ordering, if it has the subterm property: s ⊲ t implies s ≻ t for

all s, t ∈ TΣ(X ).

Example:

Let Remb be the rewrite system Remb = { f (x1, . . . , xn)→ xi |

f ∈ Ω, 1 ≤ i ≤ n = arity(f ) }.

Define ⊲emb = →+
Remb

and Demb = →∗
Remb

(“homeomorphic

embedding relation”).

⊲emb is a simplification ordering.

387



Simplification Orderings

Lemma 4.20:

If ≻ is a simplification ordering, then s ⊲emb t implies s ≻ t and

s Demb t implies s � t.

388



Simplification Orderings

Goal:

Show that every simplification ordering is well-founded (and

therefore a reduction ordering).

Note: This works only for finite signatures!

To fix this for infinite signatures, the definition of simplification

orderings and the definition of embedding have to be modified.

389



Simplification Orderings

Theorem 4.21 (“Kruskal’s Theorem”):

Let Σ be a finite signature, let X be a finite set of variables.

Then for every infinite sequence t1, t2, t3, . . . there are indices

j > i such that tj Demb ti . (Demb is called a well-partial-ordering

(wpo).)

Proof:

See Baader and Nipkow, page 113–115. 2

390



Simplification Orderings

Theorem 4.22 (Dershowitz):

If Σ is a finite signature, then every simplification ordering ≻ on

TΣ(X ) is well-founded (and therefore a reduction ordering).

391



Simplification Orderings

There are reduction orderings that are not simplification

orderings and terminating TRSs that are not contained in any

simplification ordering.

Example:

Let R = {f (f (x))→ f (g(f (x)))}.

R terminates and →+
R is therefore a reduction ordering.

Assume that→R were contained in a simplification ordering ≻.

Then f (f (x)) →R f (g(f (x))) implies f (f (x)) ≻ f (g(f (x))),

and f (g(f (x))) Demb f (f (x)) implies f (g(f (x))) � f (f (x)),

hence f (f (x)) ≻ f (f (x)).

392



Path Orderings

Let Σ = (Ω,Π) be a finite signature, let ≻ be a strict partial

ordering (“precedence”) on Ω.

The lexicographic path ordering ≻lpo on TΣ(X ) induced by ≻ is

defined by: s ≻lpo t iff

(1) t ∈ vars(s) and t 6= s, or

(2) s = f (s1, . . . , sm), t = g(t1, . . . , tn), and

(a) si �lpo t for some i , or

(b) f ≻ g and s ≻lpo tj for all j , or

(c) f = g , s ≻lpo tj for all j , and (s1, . . . , sm) (≻lpo)lex

(t1, . . . , tn).

393



Path Orderings

Lemma 4.23:

s ≻lpo t implies vars(s) ⊇ vars(t).

Theorem 4.24:

≻lpo is a simplification ordering on TΣ(X ).

Theorem 4.25:

If the precedence ≻ is total, then the lexicographic path

ordering ≻lpo is total on ground terms, i. e., for all s, t ∈ TΣ(∅):

s ≻lpo t ∨ t ≻lpo s ∨ s = t.

394



Path Orderings

Recapitulation:

Let Σ = (Ω,Π) be a finite signature, let ≻ be a strict partial

ordering (“precedence”) on Ω. The lexicographic path ordering

≻lpo on TΣ(X ) induced by ≻ is defined by: s ≻lpo t iff

(1) t ∈ vars(s) and t 6= s, or

(2) s = f (s1, . . . , sm), t = g(t1, . . . , tn), and

(a) si �lpo t for some i , or

(b) f ≻ g and s ≻lpo tj for all j , or

(c) f = g , s ≻lpo tj for all j , and (s1, . . . , sm) (≻lpo)lex

(t1, . . . , tn).

395



Path Orderings

There are several possibilities to compare subterms in (2)(c):

• compare list of subterms lexicographically left-to-right

(“lexicographic path ordering (lpo)”, Kamin and Lévy)

• compare list of subterms lexicographically right-to-left (or

according to some permutation π)

• compare multiset of subterms using the multiset extension

(“multiset path ordering (mpo)”, Dershowitz)

• to each function symbol f with arity(n) ≥ 1 associate a

status ∈ {mul } ∪ { lexπ | π : {1, . . . , n} → {1, . . . , n} } and

compare according to that status (“recursive path ordering

(rpo) with status”)

396



The Knuth-Bendix Ordering

Let Σ = (Ω,Π) be a finite signature, let ≻ be a strict partial

ordering (“precedence”) on Ω, let w : Ω ∪ X → R+
0 be a weight

function, such that the following admissibility conditions are

satisfied:

w(x) = w0 ∈ R+ for all variables x ∈ X ; w(c) ≥ w0 for all

constants c ∈ Ω.

If w(f ) = 0 for some f ∈ Ω with arity(f ) = 1, then f � g for

all g ∈ Ω.

The weight function w can be extended to terms as follows:

w(t) =
∑

x∈vars(t)

w(x) ·#(x , t) +
∑

f∈Ω

w(f ) ·#(f , t).

397



The Knuth-Bendix Ordering

The Knuth-Bendix ordering ≻kbo on TΣ(X ) induced by ≻ and

w is defined by: s ≻kbo t iff

(1) #(x , s) ≥ #(x , t) for all variables x and w(s) > w(t), or

(2) #(x , s) ≥ #(x , t) for all variables x , w(s) = w(t), and

(a) t = x , s = f n(x) for some n ≥ 1, or

(b) s = f (s1, . . . , sm), t = g(t1, . . . , tn), and f ≻ g , or

(c) s = f (s1, . . . , sm), t = f (t1, . . . , tm), and (s1, . . . , sm) (≻kbo)lex

(t1, . . . , tm).

398



The Knuth-Bendix Ordering

Theorem 4.26:

The Knuth-Bendix ordering induced by ≻ and w is a simplifica-

tion ordering on TΣ(X ).

Proof:

Baader and Nipkow, pages 125–129. 2

399



Remark

If Π 6= ∅, then all the term orderings described in this section

can also be used to compare non-equational atoms by treating

predicate symbols like function symbols.

Defining a weight w(f ) = 0 for some unary function symbol

f was in particular introduced for the application of KBO to

equational systems defining groups.

400



4.5 Knuth-Bendix Completion

Completion:

Goal: Given a set E of equations, transform E into an

equivalent convergent set R of rewrite rules.

(If R is finite: decision procedure for E .)

How to ensure termination?

Fix a reduction ordering ≻ and construct R in such a way

that →R ⊆ ≻ (i. e., l ≻ r for every l → r ∈ R).

How to ensure confluence?

Check that all critical pairs are joinable.

401



Knuth-Bendix Completion: Inference Rules

The completion procedure is itself presented as a set of

rewrite rules working on a pair of equations E and rules R:

(E0;R0)⇒ (E1;R1)⇒ (E2;R2)⇒ . . .

At the beginning, E = E0 is the input set and R = R0 is empty.

At the end, E should be empty; then R is the result.

For each step (E ;R) ⇒ (E ′;R′), the equational theories of

E ∪ R and E ′ ∪ R′ agree: ≈E∪R = ≈E ′∪R′ .

402



Knuth-Bendix Completion: Inference Rules

Notations:

The formula s
.
≈ t denotes either s ≈ t or t ≈ s.

CP(R) denotes the set of all critical pairs between rules in R.

403



Knuth-Bendix Completion: Inference Rules

Orient

(E ⊎ {s
.
≈ t};R) ⇒KBC (E ;R ∪ {s → t})

if s ≻ t

Note: There are equations s ≈ t that cannot be oriented, i. e.,

neither s ≻ t nor t ≻ s.

404



Knuth-Bendix Completion: Inference Rules

Trivial equations cannot be oriented – but we don’t need them

anyway:

Delete

(E ⊎ {s ≈ s};R) ⇒KBC (E ;R)

405



Knuth-Bendix Completion: Inference Rules

Critical pairs between rules in R are turned into additional

equations:

Deduce

(E ;R) ⇒KBC (E ∪ {s ≈ t};R)

if 〈s, t〉 ∈ CP(R)

Note: If 〈s, t〉 ∈ CP(R) then s R← u →R t and hence

R |= s ≈ t.

406



Knuth-Bendix Completion: Inference Rules

The following inference rules are not absolutely necessary, but

very useful (e. g., to get rid of joinable critical pairs and to deal

with equations that cannot be oriented):

Simplify-Eq

(E ⊎ {s
.
≈ t};R) ⇒KBC (E ∪ {u ≈ t};R)

if s →R u

407



Knuth-Bendix Completion: Inference Rules

Simplification of the right-hand side of a rule is unproblematic.

R-Simplify-Rule

(E ;R ⊎ {s → t}) ⇒KBC (E ;R ∪ {s → u})

if t →R u

Simplification of the left-hand side may influence orientability

and orientation. Therefore, it yields an equation:

L-Simplify-Rule

(E ;R ⊎ {s → t}) ⇒KBC (E ∪ {u ≈ t};R

if s →R u using a rule l → r ∈ R such that s ⊐ l (see next

slide).

408



Knuth-Bendix Completion: Inference Rules

For technical reasons, the lhs of s → t may only be simplified

using a rule l → r , if l → r cannot be simplified using s → t,

that is, if s ⊐ l , where the encompassment quasi-ordering ⊐
∼ is

defined by

s ⊐∼ l if s|p = lσ for some p and σ

and ⊐ = ⊐
∼ \

⊏
∼ is the strict part of ⊐∼.

Lemma 4.27:

⊐ is a well-founded strict partial ordering.

409



Knuth-Bendix Completion: Inference Rules

Lemma 4.28:

If E ,R ⊢ E ′,R′, then ≈E∪R = ≈E ′∪R′ .

Lemma 4.29:

If E ,R ⊢ E ′,R′ and →R ⊆ ≻, then →R′ ⊆ ≻.

410



Knuth-Bendix Completion: Correctness Proof

If we run the completion procedure on a set E of equations,

different things can happen:

(1) We reach a state where no more inference rules are

applicable and E is not empty.

⇒ Failure (try again with another ordering?)

(2) We reach a state where E is empty and all critical pairs

between the rules in the current R have been checked.

(3) The procedure runs forever.

In order to treat these cases simultaneously, we need some

definitions.

411



Knuth-Bendix Completion: Correctness Proof

A (finite or infinite sequence) (E0;R0) ⇒KBC (E1;R1) ⇒KBC

(E2;R2)⇒KBC . . . with R0 = ∅ is called a run of the completion

procedure with input E0 and ≻.

For a run, E∞ =
⋃

i≥0 Ei and R∞ =
⋃

i≥0 Ri .

The sets of persistent equations or rules of the run are

E∗ =
⋃

i≥0

⋂
j≥i Ej and R∗ =

⋃
i≥0

⋂
j≥i Rj .

Note: If the run is finite and ends with En,Rn, then E∗ = En

and R∗ = Rn.

412



Knuth-Bendix Completion: Correctness Proof

A run is called fair, if CP(R∗) ⊆ E∞ (i. e., if every critical

pair between persisting rules is computed at some step of the

derivation).

Goal:

Show: If a run is fair and E∗ is empty, then R∗ is convergent

and equivalent to E0.

In particular: If a run is fair and E∗ is empty, then

≈E0
= ≈E∞∪R∞

=↔∗
E∞∪R∞

= ↓R∗
.

413




