
Knuth-Bendix Completion: Inference Rules

Notations:

The formula s
.
≈ t denotes either s ≈ t or t ≈ s.

CP(R) denotes the set of all critical pairs between rules in R.
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Knuth-Bendix Completion: Inference Rules

Orient

(E ⊎ {s
.
≈ t};R) ⇒KBC (E ;R ∪ {s → t})

if s ≻ t

Note: There are equations s ≈ t that cannot be oriented, i. e.,

neither s ≻ t nor t ≻ s.
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Knuth-Bendix Completion: Inference Rules

Trivial equations cannot be oriented – but we don’t need them

anyway:

Delete

(E ⊎ {s ≈ s};R) ⇒KBC (E ;R)
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Knuth-Bendix Completion: Inference Rules

Critical pairs between rules in R are turned into additional

equations:

Deduce

(E ;R) ⇒KBC (E ∪ {s ≈ t};R)

if 〈s, t〉 ∈ CP(R)

Note: If 〈s, t〉 ∈ CP(R) then s R← u →R t and hence

R |= s ≈ t.
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Knuth-Bendix Completion: Inference Rules

The following inference rules are not absolutely necessary, but

very useful (e. g., to get rid of joinable critical pairs and to deal

with equations that cannot be oriented):

Simplify-Eq

(E ⊎ {s
.
≈ t};R) ⇒KBC (E ∪ {u ≈ t};R)

if s →R u
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Knuth-Bendix Completion: Inference Rules

Simplification of the right-hand side of a rule is unproblematic.

R-Simplify-Rule

(E ;R ⊎ {s → t}) ⇒KBC (E ;R ∪ {s → u})

if t →R u

Simplification of the left-hand side may influence orientability

and orientation. Therefore, it yields an equation:

L-Simplify-Rule

(E ;R ⊎ {s → t}) ⇒KBC (E ∪ {u ≈ t};R

if s →R u using a rule l → r ∈ R such that s ⊐ l (see next

slide).
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Knuth-Bendix Completion: Inference Rules

For technical reasons, the lhs of s → t may only be simplified

using a rule l → r , if l → r cannot be simplified using s → t,

that is, if s ⊐ l , where the encompassment quasi-ordering ⊐
∼ is

defined by

s ⊐∼ l if s|p = lσ for some p and σ

and ⊐ = ⊐
∼ \

⊏
∼ is the strict part of ⊐∼.

Lemma 4.27:

⊐ is a well-founded strict partial ordering.
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Knuth-Bendix Completion: Inference Rules

Lemma 4.28:

If (E ;R)⇒KBC (E ′;R′), then ≈E∪R = ≈E ′∪R′ .

Lemma 4.29:

If (E ;R)⇒KBC (E ′;R′) and →R ⊆ ≻, then →R′ ⊆ ≻.
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Knuth-Bendix Completion: Correctness Proof

If we run the completion procedure on a set E of equations,

different things can happen:

(1) We reach a state where no more inference rules are

applicable and E is not empty.

⇒ Failure (try again with another ordering?)

(2) We reach a state where E is empty and all critical pairs

between the rules in the current R have been checked.

(3) The procedure runs forever.

In order to treat these cases simultaneously, we need some

definitions.
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Knuth-Bendix Completion: Correctness Proof

A (finite or infinite sequence) (E0;R0) ⇒KBC (E1;R1) ⇒KBC

(E2;R2)⇒KBC . . . with R0 = ∅ is called a run of the completion

procedure with input E0 and ≻.

For a run, E∞ =
⋃

i≥0 Ei and R∞ =
⋃

i≥0 Ri .

The sets of persistent equations or rules of the run are

E∗ =
⋃

i≥0

⋂
j≥i Ej and R∗ =

⋃
i≥0

⋂
j≥i Rj .

Note: If the run is finite and ends with En,Rn, then E∗ = En

and R∗ = Rn.
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Knuth-Bendix Completion: Correctness Proof

A run is called fair, if CP(R∗) ⊆ E∞ (i. e., if every critical

pair between persisting rules is computed at some step of the

derivation).

Goal:

Show: If a run is fair and E∗ is empty, then R∗ is convergent

and equivalent to E0.

In particular: If a run is fair and E∗ is empty, then

≈E0
= ≈E∞∪R∞

=↔∗
E∞∪R∞

= ↓R∗
.
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Knuth-Bendix Completion: Correctness Proof

General assumptions from now on:

(E0;R0)⇒KBC (E1;R1)⇒KBC (E2;R2)⇒KBC . . .

is a fair run.

R0 and E∗ are empty.
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Knuth-Bendix Completion: Correctness Proof

A proof of s ≈ t in E∞ ∪ R∞ is a finite sequence (s0, . . . , sn)

such that s = s0, t = sn, and for all i ∈ {1, . . . , n}:

(1) si−1 ↔E∞
si , or

(2) si−1 →R∞
si , or

(3) si−1 R∞
← si .

The pairs (si−1, si ) are called proof steps.

A proof is called a rewrite proof in R∗, if there is a k ∈ {0, . . . , n}

such that si−1 →R∗
si for 1 ≤ i ≤ k and si−1 R∗

← si for

k + 1 ≤ i ≤ n

415



Knuth-Bendix Completion: Correctness Proof

Idea (Bachmair, Dershowitz, Hsiang):

Define a well-founded ordering on proofs, such that for every

proof that is not a rewrite proof in R∗ there is an equivalent

smaller proof.

Consequence: For every proof there is an equivalent rewrite

proof in R∗.
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Knuth-Bendix Completion: Correctness Proof

We associate a cost c(si−1, si ) with every proof step as follows:

(1) If si−1 ↔E∞
si , then c(si−1, si ) = ({si−1, si},−,−), where

the first component is a multiset of terms and − denotes an

arbitrary (irrelevant) term.

(2) If si−1 →R∞
si using l → r , then c(si−1, si ) = ({si−1}, l , si ).

(3) If si−1 R∞
← si using l → r , then c(si−1, si ) = ({si}, l , si−1).

Proof steps are compared using the lexicographic combination

of the multiset extension of the reduction ordering ≻, the

encompassment ordering ⊐, and the reduction ordering ≻.
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Knuth-Bendix Completion: Correctness Proof

The cost c(P) of a proof P is the multiset of the costs of its

proof steps.

The proof ordering ≻C compares the costs of proofs using the

multiset extension of the proof step ordering.

Lemma 4.30:

≻C is a well-founded ordering.
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Knuth-Bendix Completion: Correctness Proof

Lemma 4.31:

Let P be a proof in E∞ ∪ R∞. If P is not a rewrite proof in R∗,

then there exists an equivalent proof P ′ in E∞ ∪ R∞ such that

P ≻C P ′.

Proof:

If P is not a rewrite proof in R∗, then it contains

(a) a proof step that is in E∞, or

(b) a proof step that is in R∞ \ R∗, or

(c) a subproof si−1 R∗
← si →R∗

si+1 (peak).

We show that in all three cases the proof step or subproof can

be replaced by a smaller subproof:
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Knuth-Bendix Completion: Correctness Proof

Case (a): A proof step using an equation s
.
≈ t is in E∞. This

equation must be deleted during the run.

If s
.
≈ t is deleted using Orient:

. . . si−1 ↔E∞
si . . . =⇒ . . . si−1 →R∞

si . . .

If s
.
≈ t is deleted using Delete:

. . . si−1 ↔E∞
si−1 . . . =⇒ . . . si−1 . . .

If s
.
≈ t is deleted using Simplify-Eq:

. . . si−1 ↔E∞
si . . . =⇒ . . . si−1 →R∞

s′ ↔E∞
si . . .
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Knuth-Bendix Completion: Correctness Proof

Case (b): A proof step using a rule s → t is in R∞ \ R∗. This

rule must be deleted during the run.

If s → t is deleted using R-Simplify-Rule:

. . . si−1 →R∞
si . . . =⇒ . . . si−1 →R∞

s′ R∞
← si . . .

If s → t is deleted using L-Simplify-Rule:

. . . si−1 →R∞
si . . . =⇒ . . . si−1 →R∞

s′ ↔E∞
si . . .
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Knuth-Bendix Completion: Correctness Proof

Case (c): A subproof has the form si−1 R∗
← si →R∗

si+1.

If there is no overlap or a non-critical overlap:

. . . si−1 R∗
← si →R∗

si+1 . . . =⇒ . . . si−1 →
∗
R∗

s′ ∗
R∗
← si+1 . . .

If there is a critical pair that has been added using Deduce:

. . . si−1 R∗
← si →R∗

si+1 . . . =⇒ . . . si−1 ↔E∞
si+1 . . .

In all cases, checking that the replacement subproof is smaller

than the replaced subproof is routine. 2
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Knuth-Bendix Completion: Correctness Proof

Theorem 4.32:

Let (E0;R0) ⇒KBC (E1;R1)⇒KBC (E2;R2)⇒KBC . . . be a fair

run and let R0 and E∗ be empty. Then

(1) every proof in E∞ ∪R∞ is equivalent to a rewrite proof in R∗,

(2) R∗ is equivalent to E0, and

(3) R∗ is convergent.
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Knuth-Bendix Completion: Correctness Proof

Proof:

(1) By well-founded induction on ≻C using the previous lemma.

(2) Clearly ≈E∞∪R∞
= ≈E0 . Since R∗ ⊆ R∞, we get

≈R∗
⊆ ≈E∞∪R∞

. On the other hand, by (1), ≈E∞∪R∞
⊆ ≈R∗

.

(3) Since →R∗
⊆ ≻, R∗ is terminating. By (1), R∗ is confluent.

2
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4.6 Unfailing Completion

Classical completion:

Try to transform a set E of equations into an equivalent

convergent TRS.

Fail, if an equation can neither be oriented nor deleted.

Unfailing completion (Bachmair, Dershowitz and Plaisted):

If an equation cannot be oriented, we can still use orientable

instances for rewriting.

Note: If ≻ is total on ground terms, then every ground

instance of an equation is trivial or can be oriented.

Goal: Derive a ground convergent set of equations.
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Unfailing Completion

Let E be a set of equations, let ≻ be a reduction ordering.

We define the relation →E≻ by

s →E≻ t iff there exist (u ≈ v) ∈ E or (v ≈ u) ∈ E ,

p ∈ pos(s), and σ : X → TΣ(X ),

such that s|p = uσ and t = s[vσ]p

and uσ ≻ vσ.

Note: →E≻ is terminating by construction.
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Unfailing Completion

From now on let ≻ be a reduction ordering that is total on

ground terms.

E is called ground convergent w. r. t. ≻, if for all ground terms

s and t with s ↔∗
E t there exists a ground term v such that

s →∗
E≻ v ∗

E≻← t.

(Analogously for E ∪ R.)
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Unfailing Completion

As for standard completion, we establish ground convergence by

computing critical pairs.

However, the ordering ≻ is not total on non-ground terms.

Since sθ ≻ tθ implies s 6� t, we approximate ≻ on ground terms

by 6� on arbitrary terms.
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Unfailing Completion

Let ui
.
≈ vi (i = 1, 2) be equations in E whose variables have

been renamed such that vars(u1
.
≈ v1) ∩ vars(u2

.
≈ v2) = ∅.

Let p ∈ pos(u1) be a position such that u1|p is not a variable,

σ is an mgu of u1|p and u2, and uiσ 6� viσ (i = 1, 2). Then

〈v1σ, (u1σ)[v2σ]p〉 is called a semi-critical pair of E with respect

to ≻.

The set of all semi-critical pairs of E is denoted by SP≻(E ).

Semi-critical pairs of E ∪ R are defined analogously. If →R ⊆ ≻,

then CP(R) and SP≻(R) agree.
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Unfailing Completion

Note: In contrast to critical pairs, it may be necessary to

consider overlaps of a rule with itself at the top.

For instance, if E = {f (x) ≈ g(y)}, then 〈g(y), g(y ′)〉 is a

non-trivial semi-critical pair.
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Unfailing Completion

The Deduce rule takes now the following form:

Deduce

(E ;R) ⇒UKBC (E ∪ {s ≈ t};R)

if 〈s, t〉 ∈ SP≻(E ∪ R)

The other rules are inherited from ⇒KBC . The fairness criterion

for runs is replaced by

SP≻(E∗ ∪ R∗) ⊆ E∞

(i. e., if every semi-critical pair between persisting rules or

equations is computed at some step of the derivation).
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Unfailing Completion

Analogously to Thm. 4.32 we obtain now the following theorem:

Theorem 4.33:

Let (E0;R0) ⇒UKBC (E1;R1) ⇒UKBC (E2;R2) ⇒UKBC . . . be a

fair run; let R0 = ∅. Then

(1) E∗ ∪ R∗ is equivalent to E0, and

(2) E∗ ∪ R∗ is ground convergent.
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Unfailing Completion

Moreover one can show that, whenever there exists a reduced

convergent R such that ≈E0
= ↓R and →R ∈ ≻, then for every

fair and simplifying run E∗ = ∅ and R∗ = R up to variable

renaming.

Here R is called reduced, if for every l → r ∈ R, both l and r

are irreducible w. r. t. R \ {l → r}. A run is called simplifying,

if R∗ is reduced, and for all equations u ≈ v ∈ E∗, u and v are

incomparable w. r. t. ≻ and irreducible w. r. t. R∗.
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Unfailing Completion

Unfailing completion is refutationally complete for equational

theories:

Theorem 4.34:

Let E be a set of equations, let ≻ be a reduction ordering that

is total on ground terms. For any two terms s and t, let ŝ and

t̂ be the terms obtained from s and t by replacing all variables

by Skolem constants. Let eq/2, true/0 and false/0 be new

operator symbols, such that true and false are smaller than all

other terms. Let E0 = E ∪ {eq(ŝ, t̂) ≈ true, eq(x , x) ≈ false}.

If (E0; ∅) ⇒UKBC (E1;R1) ⇒UKBC (E2;R2) ⇒UKBC . . . be a

fair run of unfailing completion, then s ≈E t iff some Ei ∪ Ri

contains true ≈ false.
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Unfailing Completion

Outlook:

Combine ordered resolution and unfailing completion to get a

calculus for equational clauses:

compute inferences between (strictly) maximal literals as in

ordered resolution,

compute overlaps between maximal sides of equations as in

unfailing completion

⇒ Superposition calculus.
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