Notations:

```
The formula s \approx t denotes either s \approx t or t \approx s.
```

CP(R) denotes the set of all critical pairs between rules in R.

Orient

 $(E \uplus \{s \stackrel{\cdot}{\approx} t\}; R) \quad \Rightarrow_{KBC} \quad (E; R \cup \{s \rightarrow t\})$ if $s \succ t$

Note: There are equations $s \approx t$ that cannot be oriented, i.e., neither $s \succ t$ nor $t \succ s$.

Trivial equations cannot be oriented – but we don't need them anyway:

Delete

 $(E \uplus \{s \approx s\}; R) \Rightarrow_{KBC} (E; R)$

Critical pairs between rules in R are turned into additional equations:

Deduce

 $(E; R) \Rightarrow_{KBC} (E \cup \{s \approx t\}; R)$ if $\langle s, t \rangle \in CP(R)$

Note: If $\langle s, t \rangle \in CP(R)$ then $s R \leftarrow u \rightarrow R t$ and hence $R \models s \approx t$.

The following inference rules are not absolutely necessary, but very useful (e.g., to get rid of joinable critical pairs and to deal with equations that cannot be oriented):

Simplify-Eq $(E \uplus \{s \approx t\}; R) \Rightarrow_{KBC} (E \cup \{u \approx t\}; R)$ if $s \rightarrow_R u$

Simplification of the right-hand side of a rule is unproblematic.

R-Simplify-Rule $(E; R \uplus \{s \to t\}) \Rightarrow_{KBC} (E; R \cup \{s \to u\})$ if $t \to_R u$

Simplification of the left-hand side may influence orientability and orientation. Therefore, it yields an *equation*:

L-Simplify-Rule

 $(E; R \uplus \{s \to t\}) \Rightarrow_{KBC} (E \cup \{u \approx t\}; R)$ if $s \to_R u$ using a rule $I \to r \in R$ such that $s \sqsupset I$ (see next slide).

For technical reasons, the lhs of $s \to t$ may only be simplified using a rule $I \to r$, if $I \to r$ cannot be simplified using $s \to t$, that is, if $s \sqsupset I$, where the encompassment quasi-ordering \sqsupset is defined by

$$s \supseteq I$$
 if $s|_p = I\sigma$ for some p and σ

and
$$\Box = \Box \setminus \Box$$
 is the strict part of \Box .

Lemma 4.27:

 \square is a well-founded strict partial ordering.

Lemma 4.28: If $(E; R) \Rightarrow_{KBC} (E'; R')$, then $\approx_{E \cup R} = \approx_{E' \cup R'}$.

Lemma 4.29: If $(E; R) \Rightarrow_{KBC} (E'; R')$ and $\rightarrow_R \subseteq \succ$, then $\rightarrow_{R'} \subseteq \succ$.

If we run the completion procedure on a set E of equations, different things can happen:

- (1) We reach a state where no more inference rules are applicable and E is not empty. \Rightarrow Failure (try again with another ordering?)
- (2) We reach a state where E is empty and all critical pairs between the rules in the current R have been checked.
- (3) The procedure runs forever.

In order to treat these cases simultaneously, we need some definitions.

A (finite or infinite sequence) $(E_0; R_0) \Rightarrow_{KBC} (E_1; R_1) \Rightarrow_{KBC} (E_2; R_2) \Rightarrow_{KBC} \dots$ with $R_0 = \emptyset$ is called a run of the completion procedure with input E_0 and \succ .

For a run,
$$E_{\infty} = \bigcup_{i \ge 0} E_i$$
 and $R_{\infty} = \bigcup_{i \ge 0} R_i$.

The sets of persistent equations or rules of the run are $E_* = \bigcup_{i \ge 0} \bigcap_{j \ge i} E_j$ and $R_* = \bigcup_{i \ge 0} \bigcap_{j \ge i} R_j$. Note: If the run is finite and ends with E_n , R_n , then $E_* = E_n$ and $R_* = R_n$. A run is called fair, if $CP(R_*) \subseteq E_{\infty}$ (i.e., if every critical pair between persisting rules is computed at some step of the derivation).

Goal:

Show: If a run is fair and E_* is empty, then R_* is convergent and equivalent to E_0 .

In particular: If a run is fair and E_* is empty, then $\approx_{E_0} = \approx_{E_{\infty} \cup R_{\infty}} = \leftrightarrow^*_{E_{\infty} \cup R_{\infty}} = \downarrow_{R_*}.$

General assumptions from now on:

$$(E_0; R_0) \Rightarrow_{KBC} (E_1; R_1) \Rightarrow_{KBC} (E_2; R_2) \Rightarrow_{KBC} \dots$$

is a fair run.

 R_0 and E_* are empty.

A proof of $s \approx t$ in $E_{\infty} \cup R_{\infty}$ is a finite sequence (s_0, \ldots, s_n) such that $s = s_0$, $t = s_n$, and for all $i \in \{1, \ldots, n\}$:

(1) $s_{i-1} \leftrightarrow_{E_{\infty}} s_i$, or (2) $s_{i-1} \rightarrow_{R_{\infty}} s_i$, or (3) $s_{i-1} \underset{R_{\infty}}{\leftarrow} s_i$.

The pairs (s_{i-1}, s_i) are called proof steps.

A proof is called a rewrite proof in R_* , if there is a $k \in \{0, ..., n\}$ such that $s_{i-1} \rightarrow_{R_*} s_i$ for $1 \le i \le k$ and $s_{i-1} \underset{R_*}{K} s_i$ for $k+1 \le i \le n$ Idea (Bachmair, Dershowitz, Hsiang):

Define a well-founded ordering on proofs, such that for every proof that is not a rewrite proof in R_* there is an equivalent smaller proof.

Consequence: For every proof there is an equivalent rewrite proof in R_* .

We associate a cost $c(s_{i-1}, s_i)$ with every proof step as follows:

(1) If $s_{i-1} \leftrightarrow_{E_{\infty}} s_i$, then $c(s_{i-1}, s_i) = (\{s_{i-1}, s_i\}, -, -)$, where the first component is a multiset of terms and - denotes an arbitrary (irrelevant) term.

(2) If
$$s_{i-1} \rightarrow_{R_{\infty}} s_i$$
 using $l \rightarrow r$, then $c(s_{i-1}, s_i) = (\{s_{i-1}\}, l, s_i)$.
(3) If $s_{i-1} \underset{R_{\infty}}{\leftarrow} s_i$ using $l \rightarrow r$, then $c(s_{i-1}, s_i) = (\{s_i\}, l, s_{i-1})$.

Proof steps are compared using the lexicographic combination of the multiset extension of the reduction ordering \succ , the encompassment ordering \Box , and the reduction ordering \succ .

The cost c(P) of a proof P is the multiset of the costs of its proof steps.

The proof ordering \succ_C compares the costs of proofs using the multiset extension of the proof step ordering.

Lemma 4.30: \succ_C is a well-founded ordering.

Lemma 4.31:

Let P be a proof in $E_{\infty} \cup R_{\infty}$. If P is not a rewrite proof in R_* , then there exists an equivalent proof P' in $E_{\infty} \cup R_{\infty}$ such that $P \succ_C P'$.

Proof:

If P is not a rewrite proof in R_* , then it contains

(a) a proof step that is in
$$E_{\infty}$$
, or
(b) a proof step that is in $R_{\infty} \setminus R_*$, or
(c) a subproof $s_{i-1} \xrightarrow{R_*} s_i \rightarrow_{R_*} s_{i+1}$ (peak).

We show that in all three cases the proof step or subproof can be replaced by a smaller subproof: Case (a): A proof step using an equation $s \approx t$ is in E_{∞} . This equation must be deleted during the run.

If $s \approx t$ is deleted using *Orient*:

 $\ldots s_{i-1} \leftrightarrow_{E_{\infty}} s_i \ldots \implies \ldots s_{i-1} \rightarrow_{R_{\infty}} s_i \ldots$

If $s \approx t$ is deleted using *Delete*:

 $\ldots s_{i-1} \leftrightarrow_{E_{\infty}} s_{i-1} \ldots \Longrightarrow \ldots s_{i-1} \ldots$

If $s \approx t$ is deleted using *Simplify-Eq*: $\dots s_{i-1} \leftrightarrow_{E_{\infty}} s_i \dots \implies \dots s_{i-1} \rightarrow_{R_{\infty}} s' \leftrightarrow_{E_{\infty}} s_i \dots$

Case (b): A proof step using a rule $s \to t$ is in $R_{\infty} \setminus R_*$. This rule must be deleted during the run.

If $s \rightarrow t$ is deleted using *R*-*Simplify-Rule*:

 $\ldots s_{i-1} \rightarrow_{R_{\infty}} s_i \ldots \implies \ldots s_{i-1} \rightarrow_{R_{\infty}} s' \underset{R_{\infty}}{\leftarrow} s_i \ldots$

If $s \rightarrow t$ is deleted using *L-Simplify-Rule*:

 $\ldots s_{i-1} \rightarrow_{R_{\infty}} s_i \ldots \implies \ldots s_{i-1} \rightarrow_{R_{\infty}} s' \leftrightarrow_{E_{\infty}} s_i \ldots$

Case (c): A subproof has the form $s_{i-1} \underset{R_*}{\leftarrow} s_i \rightarrow_{R_*} s_{i+1}$.

If there is no overlap or a non-critical overlap:

$$\ldots s_{i-1} \underset{R_*}{\leftarrow} s_i \rightarrow_{R_*} s_{i+1} \ldots \Longrightarrow \ldots s_{i-1} \rightarrow_{R_*}^* s' \underset{R_*}{*} s_{i+1} \ldots$$

If there is a critical pair that has been added using *Deduce*:

$$\ldots S_{i-1} \underset{R_*}{\leftarrow} S_i \rightarrow_{R_*} S_{i+1} \ldots \Longrightarrow \ldots S_{i-1} \leftrightarrow_{E_{\infty}} S_{i+1} \ldots$$

In all cases, checking that the replacement subproof is smaller than the replaced subproof is routine. \Box

Theorem 4.32:

Let $(E_0; R_0) \Rightarrow_{KBC} (E_1; R_1) \Rightarrow_{KBC} (E_2; R_2) \Rightarrow_{KBC} \dots$ be a fair run and let R_0 and E_* be empty. Then

- (1) every proof in $E_\infty \cup R_\infty$ is equivalent to a rewrite proof in R_* ,
- (2) R_* is equivalent to E_0 , and
- (3) R_* is convergent.

Proof:

(1) By well-founded induction on \succ_C using the previous lemma.

(2) Clearly $\approx_{E_{\infty}\cup R_{\infty}} = \approx_{E_0}$. Since $R_* \subseteq R_{\infty}$, we get $\approx_{R_*} \subseteq \approx_{E_{\infty}\cup R_{\infty}}$. On the other hand, by (1), $\approx_{E_{\infty}\cup R_{\infty}} \subseteq \approx_{R_*}$.

(3) Since $\rightarrow_{R_*} \subseteq \succ$, R_* is terminating. By (1), R_* is confluent.

Classical completion:

Try to transform a set E of equations into an equivalent convergent TRS.

Fail, if an equation can neither be oriented nor deleted.

Unfailing completion (Bachmair, Dershowitz and Plaisted):

If an equation cannot be oriented, we can still use *orientable instances* for rewriting.

Note: If \succ is total on ground terms, then every *ground instance* of an equation is trivial or can be oriented.

Goal: Derive a ground convergent set of equations.

Let *E* be a set of equations, let \succ be a reduction ordering. We define the relation $\rightarrow_{E^{\succ}}$ by

$$s \rightarrow_{E^{\succ}} t$$
 iff there exist $(u \approx v) \in E$ or $(v \approx u) \in E$,
 $p \in pos(s)$, and $\sigma : X \rightarrow T_{\Sigma}(X)$,
such that $s|_{p} = u\sigma$ and $t = s[v\sigma]_{p}$
and $u\sigma \succ v\sigma$.

Note: $\rightarrow_{E^{\succ}}$ is terminating by construction.

From now on let \succ be a reduction ordering that is total on ground terms.

E is called ground convergent w.r.t. \succ , if for all ground terms *s* and *t* with $s \leftrightarrow_E^* t$ there exists a ground term *v* such that $s \rightarrow_{E^{\succ}}^* v \stackrel{*}{_{E^{\succ}}} \leftarrow t$.

(Analogously for $E \cup R$.)

As for standard completion, we establish ground convergence by computing critical pairs.

However, the ordering \succ is not total on non-ground terms.

Since $s\theta \succ t\theta$ implies $s \not\preceq t$, we approximate \succ on ground terms by $\not\preceq$ on arbitrary terms.

Let $u_i \approx v_i$ (i = 1, 2) be equations in E whose variables have been renamed such that $vars(u_1 \approx v_1) \cap vars(u_2 \approx v_2) = \emptyset$. Let $p \in pos(u_1)$ be a position such that $u_1|_p$ is not a variable, σ is an mgu of $u_1|_p$ and u_2 , and $u_i\sigma \not\preceq v_i\sigma$ (i = 1, 2). Then $\langle v_1\sigma, (u_1\sigma)[v_2\sigma]_p \rangle$ is called a semi-critical pair of E with respect to \succ .

The set of all semi-critical pairs of E is denoted by $SP_{\succ}(E)$.

Semi-critical pairs of $E \cup R$ are defined analogously. If $\rightarrow_R \subseteq \succ$, then CP(R) and $SP_{\succ}(R)$ agree.

Note: In contrast to critical pairs, it may be necessary to consider overlaps of a rule with itself at the top.

For instance, if $E = \{f(x) \approx g(y)\}$, then $\langle g(y), g(y') \rangle$ is a non-trivial semi-critical pair.

Unfailing Completion

The *Deduce* rule takes now the following form:

Deduce

 $(E; R) \Rightarrow_{UKBC} (E \cup \{s \approx t\}; R)$ if $\langle s, t \rangle \in SP_{\succ}(E \cup R)$

The other rules are inherited from \Rightarrow_{KBC} . The fairness criterion for runs is replaced by

$$\mathsf{SP}_\succ(E_*\cup R_*)\subseteq E_\infty$$

(i.e., if every semi-critical pair between persisting rules or equations is computed at some step of the derivation).

Analogously to Thm. 4.32 we obtain now the following theorem:

Theorem 4.33: Let $(E_0; R_0) \Rightarrow_{UKBC} (E_1; R_1) \Rightarrow_{UKBC} (E_2; R_2) \Rightarrow_{UKBC} \dots$ be a fair run; let $R_0 = \emptyset$. Then

(1) $E_* \cup R_*$ is equivalent to E_0 , and

(2) $E_* \cup R_*$ is ground convergent.

Moreover one can show that, whenever there exists a *reduced* convergent R such that $\approx_{E_0} = \downarrow_R$ and $\rightarrow_R \in \succ$, then for every fair *and simplifying* run $E_* = \emptyset$ and $R_* = R$ up to variable renaming.

Here *R* is called reduced, if for every $I \rightarrow r \in R$, both *I* and *r* are irreducible w.r.t. $R \setminus \{I \rightarrow r\}$. A run is called simplifying, if R_* is reduced, and for all equations $u \approx v \in E_*$, *u* and *v* are incomparable w.r.t. \succ and irreducible w.r.t. R_* .

Unfailing completion is refutationally complete for equational theories:

Theorem 4.34:

Let *E* be a set of equations, let \succ be a reduction ordering that is total on ground terms. For any two terms *s* and *t*, let \hat{s} and \hat{t} be the terms obtained from *s* and *t* by replacing all variables by Skolem constants. Let eq/2, true/0 and false/0 be new operator symbols, such that *true* and *false* are smaller than all other terms. Let $E_0 = E \cup \{eq(\hat{s}, \hat{t}) \approx true, eq(x, x) \approx false\}$. If $(E_0; \emptyset) \Rightarrow_{UKBC} (E_1; R_1) \Rightarrow_{UKBC} (E_2; R_2) \Rightarrow_{UKBC} \dots$ be a fair run of unfailing completion, then $s \approx_E t$ iff some $E_i \cup R_i$ contains *true* \approx *false*. Outlook:

Combine ordered resolution and unfailing completion to get a calculus for equational clauses:

compute inferences between (strictly) maximal literals as in ordered resolution,

compute overlaps between maximal sides of equations as in unfailing completion

 \Rightarrow Superposition calculus.