
Part 6: Termination Revisited

So far: Termination as a subordinate task for entailment

checking.

TRS is generated by some saturation process; ordering must

be chosen before the saturation starts.

Now: Termination as a main task (e. g., for program analysis).

TRS is fixed and known in advance.

471

Termination Revisited

Literature:

Nao Hirokawa and Aart Middeldorp: Dependency Pairs Revisited,

RTA 2004, pp. 249-268 (in particular Sect. 1–4).

Thomas Arts and Jürgen Giesl: Termination of Term Rewriting

Using Dependency Pairs, Theoretical Computer Science,

236:133-178, 2000.

472

6.1 Dependency Pairs

Invented by T. Arts and J. Giesl in 1996, many refinements since

then.

Given: finite TRS R over Σ = (Ω, ∅).

T0 := { t ∈ TΣ(X) | ∃ infinite deriv. t →R t1 →R t2 →R . . . }.

T∞ := { t ∈ T0 | ∀p > ε : t|p /∈ T0 }

= minimal elements of T0 w. r. t. ⊲.

t ∈ T0 ⇒ there exists a t′ ∈ T∞ such that t D t′.

R is non-terminating iff T0 6= ∅ iff T∞ 6= ∅.

473

Dependency Pairs

Assume that T∞ 6= ∅ and consider some non-terminating

derivation starting from t ∈ T∞. Since all subterms of t allow

only finite derivations, at some point a rule l → r ∈ R must

be applied at the root of t (possibly preceded by rewrite steps

below the root):

t = f (t1, . . . , tn)
>ε
−→∗

R f (s1, . . . , sn) = lσ
ε
−→R rσ.

In particular, root(t) = root(l), so we see that the root symbol

of any term in T∞ must be contained in D := { root(l) | l →

r ∈ R }. D is called the set of defined symbols of R; C := Ω \D

is called the set of constructor symbols of R.

474

Dependency Pairs

The term rσ is contained in T0, so there exists a v ∈ T∞ such

that rσ D v .

If v occurred in rσ at or below a variable position of r , then

xσ|p = v for some x ∈ var(r) ⊆ var(l), hence si D xσ and

there would be an infinite derivation starting from some ti . This

contradicts t ∈ T∞, though.

Therefore, v = uσ for some non-variable subterm u of r . As

v ∈ T∞, we see that root(u) = root(v) ∈ D. Moreover, u

cannot be a proper subterm of l , since otherwise again there

would be an infinite derivation starting from some ti .

475

Dependency Pairs

Putting everything together, we obtain

t = f (t1, . . . , tn)
>ε
−→∗

R f (s1, . . . , sn) = lσ
ε
−→R rσ D uσ

where r D u, root(u) ∈ D, l 6⊲ u, u is not a variable.

Since uσ ∈ T∞, we can continue this process and obtain an

infinite sequence.

476

Dependency Pairs

If we define

S := { l → u | l → r ∈ R, r D u, root(u) ∈ D, l 6⊲ u, u /∈ X },

we can combine the rewrite step at the root and the subterm

step and obtain

t
>ε
−→∗

R lσ
ε
−→S uσ.

477

Dependency Pairs

To get rid of the superscripts ε and >ε, it turns out to be useful

to introduce a new set of function symbols f ♯ that are only used

for the root symbols of this derivation:

Ω♯ := { f ♯/n | f /n ∈ Ω }.

For a term t = f (t1, . . . , tn) we define t♯ := f ♯(t1, . . . , tn); for a

set of terms T we define T ♯ := { t♯ | t ∈ T }.

The set of dependency pairs of a TRS R is then defined by

DP(R) := { l♯ → u♯ | l → r ∈ R, r D u, root(u) ∈ D, l 6⊲ u, u /∈ X }.

478

Dependency Pairs

For t ∈ T∞, the sequence using the S-rule corresponds now to

t♯ →∗
R l♯σ →DP(R) u

♯σ

where t♯ ∈ T ♯
∞ and u♯σ ∈ T ♯

∞.

(Note that rules in R do not contain symbols from Ω♯, whereas

all roots of terms in DP(R) come from Ω♯, so rules from R can

only be applied below the root and rules from DP(R) can only

be applied at the root.)

479

Dependency Pairs

Since u♯σ is again in T ♯
∞, we can continue the process in the

same way. We obtain: R is non-terminating iff there is an

infinite sequence

t1 →
∗
R t2 →DP(R) t3 →

∗
R t4 →DP(R) . . .

with ti ∈ T ♯
∞ for all i .

Moreover, if there exists such an infinite sequence, then there

exists an infinite sequence in which all DPs that are used are used

infinitely often. (If some DP is used only finitely often, we can

cut off the initial part of the sequence up to the last occurrence

of that DP; the remainder is still an infinite sequence.)

480

Dependency Graphs

Such infinite sequences correspond to “cycles” in the “depen-

dency graph”:

Dependency graph DG (R) of a TRS R:

directed graph

nodes: dependency pairs s → t ∈ DP(R)

edges: from s → t to u → v if there are σ, τ such that

tσ →∗
R uτ .

481

Dependency Graphs

Intuitively, we draw an edge between two dependency pairs,

if these two dependency pairs can be used after another in

an infinite sequence (with some R-steps in between). While

this relation is undecidable in general, there are reasonable

overapproximations:

482

Dependency Graphs

The functions cap and ren are defined by:

cap(x) = x

cap(f (t1, . . . , tn)) =

y if f ∈ D

f (cap(t1), . . . , cap(tn)) if f ∈ C ∪ D♯

ren(x) = y , y fresh

ren(f (t1, . . . , tn)) = f (ren(t1), . . . , ren(tn))

The overapproximated dependency graph contains an edge from

s → t to u → v if ren(cap(t)) and u are unifiable.

483

Dependency Graphs

A cycle in the dependency graph is a non-empty subset

K ⊆ DP(R) such that there is a non-empty path from every DP

in K to every DP in K (the two DPs may be identical).

Let K ⊆ DP(R). An infinite rewrite sequence in R ∪ K of the

form

t1 →
∗
R t2 →K t3 →

∗
R t4 →K . . .

with ti ∈ T ♯
∞ is called K -minimal, if all rules in K are used

infinitely often.

R is non-terminating iff there is a cycle K ⊆ DP(R) and a

K -minimal infinite rewrite sequence.

484

6.2 Subterm Criterion

Our task is to show that there are no K -minimal infinite rewrite

sequences.

Suppose that every dependency pair symbol f ♯ in K has positive

arity (i. e., no constants). A simple projection π is a mapping

π : Ω♯ → N such that π(f ♯) = i ∈ {1, . . . , arity(f ♯)}.

We define π(f ♯(t1, . . . , tn)) = tπ(f ♯).

485

Subterm Criterion

Theorem 6.1 (Hirokawa and Middeldorp):

Let K be a cycle in DG (R). If there is a simple projection π for

K such that π(l) D π(r) for every l → r ∈ K and π(l) ⊲ π(r)

for some l → r ∈ K , then there are no K -minimal sequences.

486

Subterm Criterion

Proof:

Suppose that

t1 →
∗
R u1 →K t2 →

∗
R u2 →K . . .

is a K -minimal infinite rewrite sequence. Apply π to every ti :

Case 1: ui →K ti+1. There is an l → r ∈ K such that ui = lσ,

ti+1 = rσ. Then π(ui) = π(l)σ and π(ti+1) = π(r)σ. By

assumption, π(l) D π(r). If π(l) = π(r), then π(ui) = π(ti+1).

If π(l) ⊲ π(r), then π(ui) = π(l)σ ⊲ π(r)σ = π(ti+1). In

particular, π(ui) ⊲ π(ti+1) for infinitely many i (since every DP

is used infinitely often).

Case 2: ti →
∗
R ui . Then π(ti)→ π(ui).

487

Subterm Criterion

By applying π to every term in the K -minimal infinite rewrite

sequence, we obtain an infinite (→R ∪ ⊲)-sequence containing

infinitely many ⊲-steps. Since ⊲ is well-founded, there must

also exist infinitely many →R -steps (otherwise the infinite

sequence would have an infinite tail consisting only of ⊲-steps,

contradicting well-foundedness.)

Now note that ⊲ ◦ →R ⊆ →R ◦⊲. Therefore we can commute

⊲-steps and →R -steps and move all →R -steps to the front.

We obtain an infinite →R -sequence that starts with π(t1).

However t1 ⊲ π(t1) and t1 ∈ T∞, so there cannot be an infinite

→R -sequence starting from π(t1). 2

488

Subterm Criterion

Problem: The number of cycles in DG (R) can be exponential.

Better method: Analyze strongly connected components (SCCs).

SCC of a graph: maximal subgraph in which there is a non-empty

path from every node to every node. (The two nodes can be

identical.)a

Important property: Every cycle is contained in some SCC.

aThere are several definitions of SCCs that differ in the treatment of

edges from a node to itself.

489

Subterm Criterion

Idea: Search for a simple projection π such that π(l) D π(r) for

all DPs l → r in the SCC. Delete all DPs in the SCC for which

π(l) ⊲ π(r) (by the previous theorem, there cannot be any

K -minimal infinite rewrite sequences using these DPs). Then

re-compute SCCs for the remaining graph and re-start.

No SCCs left ⇒ no cycles left ⇒ R is terminating.

Example: See Ex. 13 from Hirokawa and Middeldorp.

490

