6.4 Superposition

Goal:

Combine the ideas of superposition for first-order logic without
equality (overlap maximal literals in a clause) and Knuth-Bendix
completion (overlap maximal sides of equations) to get a

calculus for equational clauses.

508



Observation

It is possible to encode an arbitrary predicate p using a function

fp and a new constant tt:

P(ty,...,ty)
= P(ty,...,ty) ~ - fp(ty, ... ty) & tt

fp(ty, ..., ty) = tt

¢

In equational logic it is therefore sufficient to consider the case
that 1 = 0, i.e., equality is the only predicate symbol.

Abbreviation: s % t instead of = s ~ t.
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The Superposition Calculus — Informally

Conventions:

From now on: I = () (equality is the only predicate).

Inference rules are to be read modulo symmetry of the equality
symbol.

We will first explain the ideas and motivations behind the
superposition calculus and its completeness proof. Precise
definitions will be given later.
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The Superposition Calculus — Informally

Ground inference rules:

D'Vttt C'Vs[t]= s’

Superposition Right:
PETP 5 D'v C'vV st~ s’

Superposition Left:

D'Vttt C'Vvs[t] % s

D'V C'Vs[t'] % s’

C'Vss#s
C/

Equality Resolution:

(Note: We will need one further inference rule.)
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The Superposition Calculus — Informally

Ordering restrictions:

Some considerations:

The literal ordering must depend primarily on the larger term
of an equation.

As In the resolution case, negative literals must be a bit larger
than the corresponding positive literals.

Additionally, we need the following property:

If s >t > u, then s % u must be larger than s =~ t.

In other words, we must compare first the larger term, then
the polarity, and finally the smaller term.
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The Superposition Calculus — Informally

The following construction has the required properties:
Let > be a reduction ordering that is total on ground terms.

To a positive literal s ~ t, we assign the multiset {s, t},
to a negative literal s % t the multiset {s, s, t, t}.
The literal ordering >; compares these multisets using the

multiset extension of .

The clause ordering > compares clauses by comparing their
multisets of literals using the multiset extension of ;.
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The Superposition Calculus — Informally

Ordering restrictions:

Ground inferences are necessary only if the following conditions

are satisfied:

— In superposition inferences, the left premise is smaller than
the right premise.

— The literals that are involved in the inferences are maximal

in the respective clauses
(strictly maximal for positive literals in superposition

inferences).

— In these literals, the lhs is greater than or equal to the rhs
(in superposition inferences: greater than the rhs).
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The Superposition Calculus — Informally

Model construction:

We want to use roughly the same ideas as in the completenes
proof for superposition on first-order without equality.

But: a Herbrand interpretation does not work for equality:
The equality symbol =~ must be interpreted by equality in the
Interpretation.
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The Superposition Calculus — Informally

Solution: Define a set E of ground equations and take
Ts(0)/E = Tx(0)/~g as the universe.

Then two ground terms s and t are equal in the interpretation,
if and only if s =g t.

If E is a terminating and confluent rewrite system R, then two

ground terms s and t are equal in the interpretation, if and only
if s gt

516



The Superposition Calculus — Informally

One problem:

In the completeness proof for the resolution calculus, the

following property holds:

If C = C’ Vv A with a strictly maximal and positive literal A
is false in the current interpretation, then adding A to the
current interpretation cannot make any literal of C’ true.

This does not hold for superposition:

Let b >~ ¢ > d.

Assume that the current rewrite system (representing the
current interpretation) contains the rule ¢ — d.

Now consider the clause b~ cV b~ d.

517



The Superposition Calculus — Informally

We need a further inference rule to deal with clauses of this
kind, either the “Merging Paramodulation” rule of Bachmair

and Ganzinger or the following “Equality Factoring” rule due to
Nieuwenhuis:

C'Vsx~t'Vsat

Equality Factoring: CVEZLY £
s~

Note: This inference rule subsumes the usual factoring rule.
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The Superposition Calculus — Informally

How do the non-ground versions of the inference rules for
superposition look like?

Main idea as in non-equational first-order case:

Replace identity by unifiability.
Apply the mgu to the resulting clause.

In the ordering restrictions, replace > by A.
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The Superposition Calculus — Informally

However:

As in Knuth-Bendix completion, we do not want to consider
overlaps at or below a variable position.

Consequence: there are inferences between ground instances
D6 and C@ of clauses D and C which are not ground instances
of inferences between D and C.

Such inferences have to be treated in a special way in the
completeness proof.
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The Superposition Calculus — Formally

Until now, we have seen most of the ideas behind the
superposition calculus and its completeness proof.

We will now start again from the beginning giving precise

definitions and proofs.

Inference rules are applied with respect to the commutativity of

equality ~.
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The Superposition Calculus — Formally

Inference rules (part 1):

Superposition Right:

Superposition Left:

D'vit~t C'Vslu]l = s’

(D"V C'Vs[t] = s')o

where ¢ = mgu(t, u) and
u 1s not a variable.

D'vit~t C'Vslu] % s

(D’ v C'Vs[t'] % s')o

where ¢ = mgu(t, u) and
u is not a variable.
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The Superposition Calculus — Formally

Inference rules (part 2):

Equality Resolution:

Equality Factoring:

C'Vsss

C'o

where o = mgu(s, s’).

C'vs' ~t'Vsat

(C’'VtEgtVs=t)o

where o = mgu(s, s’).
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The Superposition Calculus — Formally

Theorem 6.4:
All inference rules of the superposition calculus are correct, i.e.,
for every rule

Ch, ...,
Co

we have {Cq,..., G} E G.

Proof:
Exercise. []
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The Superposition Calculus — Formally

Orderings:

Let > be a reduction ordering that is total on ground terms.

To a positive literal s ~ t, we assign the multiset {s, t},
to a negative literal s % t the multiset {s, s, t, t}.
The literal ordering >; compares these multisets using the

multiset extension of .

The clause ordering > compares clauses by comparing their
multisets of literals using the multiset extension of ;.
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The Superposition Calculus — Formally

Inferences have to be computed only if the following ordering
restrictions are satisfied:

— In superposition inferences, after applying the unifier to
both premises, the left premise is not greater than or equal
to the right one.

— The last literal in each premise is maximal in the respective
premise, 1. €., there exists no greater literal
(strictly maximal for positive literals in superposition
inferences, i.e., there exists no greater or equal literal).

— In these literals, the lhs is not smaller than the rhs
(in superposition inferences: neither smaller nor equal).
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The Superposition Calculus — Formally

Superposition Left in Detail:

D'vit~t C'Vslu] % s
(D" Vv C'Vs[t'] % s')o

where o = mgu(t, u),

u is not a variable,

to A t'o, so As'o

(t = t’)o strictly maximal in (D’ V t =~ t’)o, nothing selected

(s % s’")o maximal in (C’ Vs % s’)o or selected
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The Superposition Calculus — Formally

Superposition Right in Detail:

D'vit~t C'Vslul = s
(D'V C'Vs[t] = s')o

where o = mgu(t, u),

u is not a variable,

to A t'o, so As'o

(t = t’)o strictly maximal in (D’ V t =~ t’)o, nothing selected

(s =~ s’)o strictly maximal in (C" Vs ~ s’)o, nothing selected
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The Superposition Calculus — Formally

Equality Resolution in Detail:

C'Vs#s'
C'o

where o = mgu(s, s’),

(s % s’)o maximal in (C’V s = s")o or selected
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The Superposition Calculus — Formally

Equality Factoring in Detail:

C'Vs'~=t'Vs~t
(C’'Vt#£t/Vst)o

where o = mgu(s, s’),
s'lo A t'o, so A to

(s &~ t)o maximal in (C' Vs’ ~ t' Vs~ t)o, nothing selected
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The Superposition Calculus — Formally

A ground clause C is called redundant w.r.t. a set of ground
clauses N, if it follows from clauses in N that are smaller than C.

A clause is redundant w.r.t. a set of clauses N, if all its ground
instances are redundant w.r.t. Gg(N).

The set of all clauses that are redundant w.r.t. N is denoted by
Red(N).

N is called saturated up to redundancy, if the conclusion of

every inference from clauses in N \ Red(N) is contained in
N U Red(N).
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Superposition: Refutational Completeness

For a set E of ground equations, Tx(0)/E is an E-interpretation
(or E-algebra) with universe {[t] | t € Tx(0) }.

One can show (similar to the proof of Birkhoff's Theorem) that
for every ground equation s ~ t we have Tx(0)/E = s ~ t if
and only if s <% t.

In particular, if E is a convergent set of rewrite rules R and

s &~ t is a ground equation, then Ts(())/R = s ~ t if and only
if s |r t. By abuse of terminology, we say that an equation or
clause is valid (or true) in R if and only if it is true in Tx(0)/R.
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Superposition: Refutational Completeness

Construction of candidate interpretations
(Bachmair & Ganzinger 1990):

Let N be a set of clauses not containing L.
Using induction on the clause ordering we define sets of rewrite

rules Ec and R¢ for all C € Gg(N) as follows:

Assume that Ep has already been defined for all D € Gg(N)
with D <¢ C. Then Rc = Up_ ¢ Ep.
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Superposition: Refutational Completeness

The set Ec- contains the rewrite rule s — t, if

C=C'"Vs~t.

C’ is false in Rc U {s — t}.
s is irreducible w.r.t. Rc.

)
)
(c)
(d) C is false in Rc.
)
)

In this case, C is called productive. Otherwise Ec = ().
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Superposition: Refutational Completeness

Lemma 6.5:
If Ec ={s — t} and Ep = {u — v}, then s > u if and only if
C>cD.
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Superposition: Refutational Completeness

Corollary 6.6:
The rewrite systems R¢c and R, are convergent.

Proof:
Obviously, s = t for all rules s — t in R¢c and R..

Furthermore, it is easy to check that there are no critical pairs
between any two rules: Assume that there are rules u — v In
Ep and s — t in Ec such that v is a subterm of s. As > is a
reduction ordering that is total on ground terms, we get u < s
and therefore D <+ C and Ep € Rc. But then s would be
reducible by R¢, contradicting condition (f). O
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Superposition: Refutational Completeness

Lemma 6.7:
If D <¢ C and Ec = {s — t}, then s > u for every term u
occurring in a negative literal in D and s > v for every term v

occurring in a positive literal in D.
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Superposition: Refutational Completeness

Corollary 6.8:
If D € Gg(N) is true in Rp, then D is true in Ry, and R¢ for
all C =¢ D.

Proof:

If a positive literal of D is true in Rp, then this is obvious.

Otherwise, some negative literal s % t of D must be true in Rp,
hence s Jg, t. As the rules in R, \ Rp have left-hand sides that
are larger than s and t, they cannot be used in a rewrite proof
of sl t, hence s /r. t and s Jr_ t. O
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Superposition: Refutational Completeness

Corollary 6.9:
If D= D’V u~= v is productive, then D’ is false and D is true
in R and R¢ for all C =¢ D.

Proof:
Obviously, D is true in Ry, and R¢ for all C >=¢ D.

Since all negative literals of D’ are false in Rp, it is clear that
they are false in Ry, and R¢. For the positive literals v’ ~ v/ of
D’, condition (e) ensures that they are false in Rp U {u — v}.
Since v’ < v and v/ <X u and all rules in Ry \ Rp have left-hand
sides that are larger than u, these rules cannot be used in a
rewrite proof of v’ | v/, hence v’ Jr. v/ and " Jr_ V' O
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Superposition: Refutational Completeness

Lemma 6.10 ( “Lifting Lemma"):
Let C be a clause and let # be a substitution such that C6
Is ground. Then every equality resolution or equality factoring

inference from C@ is a ground instance of an inference from C.

Proof:

Exercise. L
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Superposition: Refutational Completeness

Lemma 6.11 ( “Lifting Lemma"):
let D=D'Vu~vand C=C"V|[-]s =t betwo clauses

(without common variables) and let 6 be a substitution such
that D6 and C6 are ground.

If there is a superposition inference between D6 and C6 where
uf and some subterm of sf are overlapped, and uf does not
occur in sf at or below a variable position of s, then the

inference is a ground instance of a superposition inference from
D and C.

Proof:

Exercise. Ll
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Superposition: Refutational Completeness

Theorem 6.12 ( “Model Construction”):

Let N be a set of clauses that is saturated up to redundancy

and does not contain the empty clause. Then we have for every
ground clause CO € G (N):

(i) Eco = 0 if and only if C6 is true in Rcg.
(i) If CO is redundant w.r.t. Gx(N), then it is true in Rcy.

(iii) CO is true in Ry and in Rp for every D € Gy(N) with
D ¢ C0.
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Superposition: Refutational Completeness

A Y -interpretation A is called term-generated, if forevery b € U4
there is a ground term t € Tx(()) such that b = A(B)(t).
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Superposition: Refutational Completeness

Lemma 6.13:
Let N be a set of (universally quantified) ¥-clauses and let A

be a term-generated X -interpretation. Then A is a model of
Gy (N) if and only if it is a model of N.

Proof:

(=): Let A = Gg(N); let (VXC) € N.

Then A = VXC iff A(y[x; — ai])(C) =1 for all v and a;.
Choose ground terms t; such that A(v)(t;) = a;; define 6
such that x;0 = t;, then A(v[x; — a;])(C) = A(v 0 0)(C) =
A(7)(CO) = 1 since CH € Gs(N).

(«<): Let A be a model of N; let C € N and CO € Gg(N).
Then A(7)(CO) = A(y00)(C) =1since A= N. O
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Superposition: Refutational Completeness

Theorem 6.14 (Refutational Completeness: Static View):

Let N be a set of clauses that is saturated up to redundancy.
Then N has a model if and only if N does not contain the empty
clause.

Proof:

If L € N, then obviously N does not have a model.

If L ¢ N, then the interpretation R, (thatis, Tx())/Rx) is a
model of all ground instances in Gy (N) according to part (iii) of
the model construction theorem.

As Ty (0)/R is term generated, it is a model of N. O
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