Superposition: Refutational Completeness

Construction of candidate interpretations
(Bachmair & Ganzinger 1990):

Let N be a set of clauses not containing L.
Using induction on the clause ordering we define sets of rewrite

rules Ec and R¢ for all C € Gg(N) as follows:

Assume that Ep has already been defined for all D € Gg(N)
with D <¢ C. Then Rc = Up_ ¢ Ep.
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Superposition: Refutational Completeness

The set Ec- contains the rewrite rule s — t, if

C’ is false in Rc U {s — t}.

s is irreducible w.r.t. Rc.

)
)
(c)
(d) C is false in Rc.
)
)
)

no negative literal is selected in C’

In this case, C is called productive. Otherwise Ec = ().

534



Superposition: Refutational Completeness

Lemma 6.5:
If Ec ={s — t} and Ep = {u — v}, then s > u if and only if
C>cD.
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Superposition: Refutational Completeness

Corollary 6.6:
The rewrite systems R¢c and R, are convergent.

Proof:
Obviously, s = t for all rules s — t in R¢c and R..

Furthermore, it is easy to check that there are no critical pairs
between any two rules: Assume that there are rules u — v In
Ep and s — t in Ec such that v is a subterm of s. As > is a
reduction ordering that is total on ground terms, we get u < s
and therefore D <+ C and Ep € Rc. But then s would be
reducible by R¢, contradicting condition (f). O

536



Superposition: Refutational Completeness

Lemma 6.7:
If D <¢ C and Ec = {s — t}, then s > u for every term u
occurring in a negative literal in D and s > v for every term v

occurring in a positive literal in D.
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Superposition: Refutational Completeness

Corollary 6.8:
If D € Gg(N) is true in Rp, then D is true in Ry, and R¢ for
all C =¢ D.

Proof:

If a positive literal of D is true in Rp, then this is obvious.

Otherwise, some negative literal s % t of D must be true in Rp,
hence s Jg, t. As the rules in R, \ Rp have left-hand sides that
are larger than s and t, they cannot be used in a rewrite proof
of sl t, hence s /r. t and s Jr_ t. O
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Superposition: Refutational Completeness

Corollary 6.9:
If D= D’V u~= v is productive, then D’ is false and D is true
in R and R¢ for all C =¢ D.

Proof:
Obviously, D is true in Ry, and R¢ for all C >=¢ D.

Since all negative literals of D’ are false in Rp, it is clear that
they are false in Ry, and R¢. For the positive literals v’ ~ v/ of
D’, condition (e) ensures that they are false in Rp U {u — v}.
Since v’ < v and v/ <X u and all rules in Ry \ Rp have left-hand
sides that are larger than u, these rules cannot be used in a
rewrite proof of v’ | v/, hence v’ Jr. v/ and " Jr_ V' O
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Superposition: Refutational Completeness

Lemma 6.10 ( “Lifting Lemma"):
Let C be a clause and let # be a substitution such that C6
Is ground. Then every equality resolution or equality factoring

inference from C@ is a ground instance of an inference from C.

Proof:

Exercise. L
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Superposition: Refutational Completeness

Lemma 6.11 ( “Lifting Lemma"):
let D=D'Vu~vand C=C"V|[-]s =t betwo clauses

(without common variables) and let 6 be a substitution such
that D6 and C6 are ground.

If there is a superposition inference between D6 and C6 where
uf and some subterm of sf are overlapped, and uf does not
occur in sf at or below a variable position of s, then the

inference is a ground instance of a superposition inference from
D and C.

Proof:

Exercise. Ll
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Superposition: Refutational Completeness

Theorem 6.12 ( “Model Construction”):

Let N be a set of clauses that is saturated up to redundancy

and does not contain the empty clause. Then we have for every
ground clause CO € G (N):

(i) Eco = 0 if and only if C6 is true in Rcg.
(i) If CO is redundant w.r.t. Gx(N), then it is true in Rcy.

(iii) CO is true in Ry and in Rp for every D € Gy(N) with
D ¢ C0.
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Superposition: Refutational Completeness

A Y -interpretation A is called term-generated, if forevery b € U4
there is a ground term t € Tx(()) such that b = A(B)(t).
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Superposition: Refutational Completeness

Lemma 6.13:
Let N be a set of (universally quantified) ¥-clauses and let A

be a term-generated X -interpretation. Then A is a model of
Gy (N) if and only if it is a model of N.

Proof:

(=): Let A = Gg(N); let (VXC) € N.

Then A = VXC iff A(y[x; — ai])(C) =1 for all v and a;.
Choose ground terms t; such that A(v)(t;) = a;; define 6
such that x;0 = t;, then A(v[x; — a;])(C) = A(v 0 0)(C) =
A(7)(CO) = 1 since CH € Gs(N).

(«<): Let A be a model of N; let C € N and CO € Gg(N).
Then A(7)(CO) = A(y00)(C) =1since A= N. O
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Superposition: Refutational Completeness

Theorem 6.14 (Refutational Completeness: Static View):

Let N be a set of clauses that is saturated up to redundancy.
Then N has a model if and only if N does not contain the empty
clause.

Proof:

If L € N, then obviously N does not have a model.

If L ¢ N, then the interpretation R, (thatis, Tx())/Rx) is a
model of all ground instances in Gy (N) according to part (iii) of
the model construction theorem.

As Ty (0)/R is term generated, it is a model of N. O
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Superposition: Refutational Completeness

So far, we have considered only inference rules that add new
clauses to the current set of clauses
(corresponding to the Deduce rule of Knuth-Bendix Completion).

In other words, we have derivations of the form
No = Ny = Ny = ..., where each N;.; is obtained from N; by
adding the consequence of some inference from clauses in ;.

Under which circumstances are we allowed to delete (or simplify)
a clause during the derivation?
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Superposition: Refutational Completeness

A run of the superposition calculus is a sequence
No = Ny No = ..., such that

(I) N,' ’: NH—lr and
(ii) all clauses in N; \ N;; 1 are redundant w.r.t. N; ;.

In other words, during a run we may add a new clause if it
follows from the old ones, and we may delete a clause, if it is

redundant w.r.t. the remaining ones.

For a run, Noo = ;5o Ni and N = U;5o (i N

The set N, of all persistent clauses is called the limit of the run.
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Superposition: Refutational Completeness

Lemma 6.15:
If N C N’, then Red(N) C Red(N’).

Proof:
Obvious. ]
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Superposition: Refutational Completeness

Lemma 6.16:
If N/ C Red(N), then Red(N) C Red(N \ N').

Proof:

Follows from the compactness of first-order logic and the
well-foundedness of the multiset extension of the clause ordering.
[
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Superposition: Refutational Completeness

Lemma 6.17:
Let No = Ny = Ny ... be a run.
Then Red(N;) C Red(Ny) and Red(N;) C Red(N,) for every i.

Proof:
Exercise. []
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Superposition: Refutational Completeness

Corollary 6.18:
N; C N, U Red(N,) for every 1.

Proof:

If C € N;\ N,, then there is a kK > i such that C € N \ Ny,1,
so C must be redundant w.r.t. Ngy;.

Consequently, C is redundant w.r.t. N,. ]
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Superposition: Refutational Completeness

A run is called fair, if the conclusion of every inference from
clauses in N, \ Red(N,) is contained in some N; U Red(N;).

Lemma 6.19:

If a run is fair, then its limit is saturated up to redundancy.

Proof:

If the run is fair, then the conclusion of every inference from
non-redundant clauses in N, is contained in some N; U Red(N;),
and therefore contained in N, U Red(N,).

Hence N, is saturated up to redundancy. O
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Superposition: Refutational Completeness

Theorem 6.20 (Refutational Completeness: Dynamic View):

Let Np = Ny = N> ... be a fair run, let N, be its limit.
Then Ny has a model if and only if 1 ¢ N,.

Proof:

(«<=): By fairness, N, is saturated up to redundancy.

If L ¢ N,, then it has a term-generated model.

Since every clause in Ny is contained in N, or redundant
w.r.t. N,, this model is also a model of Gg(N)

and therefore a model of M.

(=): Obvious, since Ny = N,.
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