3 First-Order Logic

First-order logic
• formalizes fundamental mathematical concepts
• is expressive (Turing-complete)
• is not too expressive (e.g. not axiomatizable: natural numbers, uncountable sets)
• has a rich structure of decidable fragments
• has a rich model and proof theory

First-order logic is also called (first-order) predicate logic.

3.1 Syntax

Syntax:
• non-logical symbols (domain-specific) ⇒ terms, atomic formulas
• logical connectives (domain-independent) ⇒ Boolean combinations, quantifiers

Signature

A signature Σ = (Ω, Π) fixes an alphabet of non-logical symbols, where
• Ω is a set of function symbols f with arity n ≥ 0, written arity(f) = n,
• Π is a set of predicate symbols P with arity m ≥ 0, written arity(P) = m.

Function symbols are also called operator symbols.
If n = 0 then f is also called a constant (symbol).
If m = 0 then P is also called a propositional variable.

We will usually use
b, c, d for constant symbols,
f, g, h for non-constant function symbols,
P, Q, R, S for predicate symbols.
Convention: We will usually write \(f/n \in \Omega \) instead of \(f \in \Omega \), \(\text{arity}(f) = n \) (analogously for predicate symbols).

Refined concept for practical applications: *many-sorted* signatures (corresponds to simple type systems in programming languages); not so interesting from a logical point of view.

Variables

Predicate logic admits the formulation of abstract, schematic assertions. (Object) variables are the technical tool for schematization.

We assume that \(X \) is a given countably infinite set of symbols which we use to denote variables.

Terms

Terms over \(\Sigma \) and \(X \) (\(\Sigma \)-terms) are formed according to these syntactic rules:

\[
s, t, u, v ::= x, \quad x \in X \quad \text{(variable)} \]
\[
\mid f(s_1, \ldots, s_n), \quad f/n \in \Omega \quad \text{(functional term)}
\]

By \(T_\Sigma(X) \) we denote the set of \(\Sigma \)-terms (over \(X \)). A term not containing any variable is called a ground term. By \(T_\Sigma \) we denote the set of \(\Sigma \)-ground terms.

In other words, terms are formal expressions with well-balanced brackets which we may also view as marked, ordered trees. The markings are function symbols or variables. The nodes correspond to the subterms of the term. A node \(v \) that is marked with a function symbol \(f \) of arity \(n \) has exactly \(n \) subtrees representing the \(n \) immediate subterms of \(v \).

Atoms

Atoms (also called atomic formulas) over \(\Sigma \) are formed according to this syntax:

\[
A, B ::= P(s_1, \ldots, s_m), \quad P/m \in \Pi \quad \text{(non-equational atom)}
\]
\[
\lbrack \mid (s \approx t), \quad (s \approx t) \quad \text{(equation)} \rbrack
\]

Whenever we admit equations as atomic formulas we are in the realm of first-order logic *with equality*. Admitting equality does not really increase the expressiveness of first-order logic, (cf. exercises). But deductive systems where equality is treated specifically are much more efficient.
Literals

\[L ::= A \quad \text{(positive literal)} \]
\[\quad | \quad \neg A \quad \text{(negative literal)} \]

Clauses

\[C, D ::= \bot \quad \text{(empty clause)} \]
\[\quad | \quad L_1 \lor \ldots \lor L_k, \quad k \geq 1 \quad \text{(non-empty clause)} \]

General First-Order Formulas

\(F_\Sigma(X) \) is the set of first-order formulas over \(\Sigma \) defined as follows:

\[F, G, H ::= \bot \quad \text{(falsum)} \]
\[\quad | \quad \top \quad \text{(verum)} \]
\[\quad | \quad A \quad \text{(atomic formula)} \]
\[\quad | \quad \neg F \quad \text{(negation)} \]
\[\quad | \quad (F \land G) \quad \text{(conjunction)} \]
\[\quad | \quad (F \lor G) \quad \text{(disjunction)} \]
\[\quad | \quad (F \rightarrow G) \quad \text{(implication)} \]
\[\quad | \quad (F \leftrightarrow G) \quad \text{(equivalence)} \]
\[\quad | \quad \forall x F \quad \text{(universal quantification)} \]
\[\quad | \quad \exists x F \quad \text{(existential quantification)} \]

Notational Conventions

We omit brackets according to the conventions for propositional logic.

\[\forall x_1, \ldots, x_n F \quad \text{and} \quad \exists x_1, \ldots, x_n F \] abbreviate \(\forall x_1 \ldots \forall x_n F \) and \(\exists x_1 \ldots \exists x_n F \).

We use infix-, prefix-, postfix-, or mixfix-notation with the usual operator precedences.

Examples:
\[s + t \cdot u \quad \text{for} \quad + (s, \cdot (t, u)) \]
\[s \cdot u \leq t + v \quad \text{for} \quad \leq (\cdot (s, u), +(t, v)) \]
\[-s \quad \text{for} \quad -(s) \]
\[0 \quad \text{for} \quad 0() \]
Example: Peano Arithmetic

$$\Sigma_{PA} = (\Omega_{PA}, \Pi_{PA})$$
$$\Omega_{PA} = \{0/0, +/2, */2, s/1\}$$
$$\Pi_{PA} = \{\leq/2, </2\}$$

+, *, <, ≤ infix; * >p, +p, <p, ≤p

Examples of formulas over this signature are:

$$\forall x, y (x \leq y \leftrightarrow \exists z (x + z \approx y))$$
$$\exists x \forall y (x + y \approx y)$$
$$\forall x, y (x * s(y) \approx x * y + x)$$
$$\forall x, y (s(x) \approx s(y) \rightarrow x \approx y)$$
$$\forall x \exists y (x < y \land \neg \exists z (x < z \land z < y))$$

Remarks About the Example

We observe that the symbols ≤, <, 0, s are redundant as they can be defined in first-order logic with equality just with the help of +. The first formula defines ≤, while the second defines zero. The last formula, respectively, defines s.

Eliminating the existential quantifiers by Skolemization (cf. below) reintroduces the “redundant” symbols.

Consequently there is a trade-off between the complexity of the quantification structure and the complexity of the signature.

Positions in Terms and Formulas

The set of positions is extended from propositional logic to first-order logic:

The positions of a term s (formula F):

$$\text{pos}(x) = \{\varepsilon\},$$
$$\text{pos}(f(s_1, \ldots, s_n)) = \{\varepsilon\} \cup \bigcup_{i=1}^{n} \{i p \mid p \in \text{pos}(s_i)\},$$
$$\text{pos}(P(t_1, \ldots, t_n)) = \{\varepsilon\} \cup \bigcup_{i=1}^{n} \{i p \mid p \in \text{pos}(t_i)\},$$
$$\text{pos}(\forall x F) = \{\varepsilon\} \cup \{1p \mid p \in \text{pos}(F)\},$$
$$\text{pos}(\exists x F) = \{\varepsilon\} \cup \{1p \mid p \in \text{pos}(F)\}.$$

The prefix order ≤, the subformula (subterm) operator, the formula (term) replacement operator and the size operator are extended accordingly. See the definitions in Sect. 2.
Bound and Free Variables

In QxF, $Q \in \{\exists, \forall\}$, we call F the scope of the quantifier Qx. An occurrence of a variable x is called bound, if it is inside the scope of a quantifier Qx. Any other occurrence of a variable is called free.

Formulas without free variables are also called closed formulas or sentential forms.

Formulas without variables are called ground.

Example:

$$\forall y \ (\forall x \ P(x) \rightarrow Q(x, y))$$

The occurrence of y is bound, as is the first occurrence of x. The second occurrence of x is a free occurrence.

Substitutions

Substitution is a fundamental operation on terms and formulas that occurs in all inference systems for first-order logic.

In general, substitutions are mappings

$$\sigma : X \rightarrow T_X(X)$$

such that the domain of σ, that is, the set

$$\text{dom}(\sigma) = \{ x \in X \mid \sigma(x) \neq x \},$$

is finite. The set of variables introduced by σ, that is, the set of variables occurring in one of the terms $\sigma(x)$, with $x \in \text{dom}(\sigma)$, is denoted by $\text{codom}(\sigma)$.

Substitutions are often written as $\{x_1 \mapsto s_1, \ldots, x_n \mapsto s_n\}$, with x_i pairwise distinct, and then denote the mapping

$$\{x_1 \mapsto s_1, \ldots, x_n \mapsto s_n\}(y) = \begin{cases} s_i, & \text{if } y = x_i \\ y, & \text{otherwise} \end{cases}$$

We also write $x\sigma$ for $\sigma(x)$.

The modification of a substitution σ at x is defined as follows:

$$\sigma[x \mapsto t](y) = \begin{cases} t, & \text{if } y = x \\ \sigma(y), & \text{otherwise} \end{cases}$$
Why Substitution is Complicated

We define the application of a substitution σ to a term t or formula F by structural induction over the syntactic structure of t or F by the equations depicted on the next page.

In the presence of quantification it is surprisingly complex: We need to make sure that the (free) variables in the codomain of σ are not captured upon placing them into the scope of a quantifier Qy, hence the bound variable must be renamed into a “fresh”, that is, previously unused, variable z.

Application of a Substitution

“Homomorphic” extension of σ to terms and formulas:

$$f(s_1, \ldots, s_n)\sigma = f(s_1\sigma, \ldots, s_n\sigma)$$
$$\bot \sigma = \bot$$
$$\top \sigma = \top$$
$$P(s_1, \ldots, s_n)\sigma = P(s_1\sigma, \ldots, s_n\sigma)$$
$$(u \approx v)\sigma = (u\sigma \approx v\sigma)$$
$$\neg F \sigma = \neg(F\sigma)$$
$$(F \rho G)\sigma = (F\sigma \rho G\sigma) ; \text{ for each binary connective } \rho$$
$$(Qx F)\sigma = Qz (F\sigma[x \mapsto z]) ; \text{ with } z \text{ a fresh variable}$$

3.2 Semantics

To give semantics to a logical system means to define a notion of truth for the formulas. The concept of truth that we will now define for first-order logic goes back to Tarski.

As in the propositional case, we use a two-valued logic with truth values “true” and “false” denoted by 1 and 0, respectively.

Algebras

A Σ-algebra (also called Σ-interpretation or Σ-structure) is a triple

$$\mathcal{A} = (U_\mathcal{A}, (f_\mathcal{A} : U^{f}_{\mathcal{A}} \to U^{m}_{\mathcal{A}})_{f/n \in \Omega}, (P_\mathcal{A} \subseteq U^{m}_{\mathcal{A}})_{P/m \in \Pi})$$

where $U_\mathcal{A} \neq \emptyset$ is a set, called the universe of \mathcal{A}.

By Σ-Alg we denote the class of all Σ-algebras.
Assignments

A variable has no intrinsic meaning. The meaning of a variable has to be defined externally (explicitly or implicitly in a given context) by an assignment.

A (variable) assignment, also called a valuation (over a given Σ-algebra A), is a map $\beta : X \rightarrow U_A$.

Variable assignments are the semantic counterparts of substitutions.

Value of a Term in A with Respect to β

By structural induction we define

$$A(\beta) : T_\Sigma(X) \rightarrow U_A$$

as follows:

$$A(\beta)(x) = \beta(x), \quad x \in X$$
$$A(\beta)(f(s_1, \ldots, s_n)) = f_A(A(\beta)(s_1), \ldots, A(\beta)(s_n)), \quad f/n \in \Omega$$

In the scope of a quantifier we need to evaluate terms with respect to modified assignments. To that end, let $\beta[x \mapsto a] : X \rightarrow U_A$, for $x \in X$ and $a \in U_A$, denote the assignment

$$\beta[x \mapsto a](y) = \begin{cases} a & \text{if } x = y \\ \beta(y) & \text{otherwise} \end{cases}$$

Truth Value of a Formula in A with Respect to β

$A(\beta) : F_\Sigma(X) \rightarrow \{0, 1\}$ is defined inductively as follows:

$$A(\beta)(\bot) = 0$$
$$A(\beta)(\top) = 1$$
$$A(\beta)(P(s_1, \ldots, s_n)) = \begin{cases} 1 & \text{if } (A(\beta)(s_1), \ldots, A(\beta)(s_n)) \in P_A \\ 0 & \text{else} \end{cases}$$
$$A(\beta)(s \approx t) = \begin{cases} 1 & \text{if } A(\beta)(s) = A(\beta)(t) \\ 0 & \text{else} \end{cases}$$

39
\[A(\beta)(\neg F) = 1 - A(\beta)(F) \]
\[A(\beta)(F \land G) = \min(A(\beta)(F), A(\beta)(G)) \]
\[A(\beta)(F \lor G) = \max(A(\beta)(F), A(\beta)(G)) \]
\[A(\beta)(F \rightarrow G) = \max(1 - A(\beta)(F), A(\beta)(G)) \]
\[A(\beta)(F \leftrightarrow G) = \begin{cases} 1 & \text{if } A(\beta)(F) = A(\beta)(G) \\ 0 & \text{otherwise} \end{cases} \]
\[A(\beta)(\forall x F) = \min_{a \in U_A} \{ A(\beta[x \mapsto a])(F) \} \]
\[A(\beta)(\exists x F) = \max_{a \in U_A} \{ A(\beta[x \mapsto a])(F) \} \]

Example

The “Standard” Interpretation for Peano Arithmetic:

\[U_N = \{0, 1, 2, \ldots\} \]
\[0_N = 0 \]
\[s_N : n \mapsto n + 1 \]
\[+_N : (n, m) \mapsto n + m \]
\[\times_N : (n, m) \mapsto n \times m \]
\[\leq_N = \{ (n, m) | n \text{ less than or equal to } m \} \]
\[<_N = \{ (n, m) | n \text{ less than } m \} \]

Note that \(\mathbb{N} \) is just one out of many possible \(\Sigma_{PA} \)-interpretations.

Values over \(\mathbb{N} \) for Sample Terms and Formulas:

Under the assignment \(\beta : x \mapsto 1, y \mapsto 3 \) we obtain

\[\mathbb{N}(\beta)(s(x) + s(0)) = 3 \]
\[\mathbb{N}(\beta)(x + y \approx s(y)) = 1 \]
\[\mathbb{N}(\beta)(\forall x, y(x + y \approx y + x)) = 1 \]
\[\mathbb{N}(\beta)(\forall z z \leq y) = 0 \]
\[\mathbb{N}(\beta)(\forall x \exists y x < y) = 1 \]
3.3 Models, Validity, and Satisfiability

F is valid in \mathcal{A} under assignment β:

$$\mathcal{A}, \beta \models F \iff \mathcal{A}(\beta)(F) = 1$$

F is valid in \mathcal{A} (\mathcal{A} is a model of F):

$$\mathcal{A} \models F \iff \mathcal{A}, \beta \models F, \text{ for all } \beta \in X \rightarrow U_{\mathcal{A}}$$

F is valid (or is a tautology):

$$\models F \iff \mathcal{A} \models F, \text{ for all } \mathcal{A} \in \Sigma\text{-Alg}$$

F is called satisfiable iff there exist \mathcal{A} and β such that $\mathcal{A}, \beta \models F$. Otherwise F is called unsatisfiable.

Substitution Lemma

The following propositions, to be proved by structural induction, hold for all Σ-algebras \mathcal{A}, assignments β, and substitutions σ.

Lemma 3.1 For any Σ-term t

$$\mathcal{A}(\beta)(t\sigma) = \mathcal{A}(\beta \circ \sigma)(t),$$

where $\beta \circ \sigma : X \rightarrow U_{\mathcal{A}}$ is the assignment $\beta \circ \sigma(x) = \mathcal{A}(\beta)(x\sigma)$.

Proposition 3.2 For any Σ-formula F, $\mathcal{A}(\beta)(F\sigma) = \mathcal{A}(\beta \circ \sigma)(F)$.

Corollary 3.3 $\mathcal{A}, \beta \models F\sigma \iff \mathcal{A}, \beta \circ \sigma \models F$

These theorems basically express that the syntactic concept of substitution corresponds to the semantic concept of an assignment.
Entailment and Equivalence

F entails (implies) G (or G is a consequence of F), written $F \models G$, if for all $A \in \Sigma$-Alg and $\beta \in X \rightarrow U_A$, whenever $A, \beta \models F$, then $A, \beta \models G$.

F and G are called equivalent, written $F \equiv G$, if for all $A \in \Sigma$-Alg and $\beta \in X \rightarrow U_A$ we have $A, \beta \models F \iff A, \beta \models G$.

Proposition 3.4 F entails G iff $(F \rightarrow G)$ is valid

Proposition 3.5 F and G are equivalent iff $(F \leftrightarrow G)$ is valid.

Extension to sets of formulas N in the “natural way”, e.g., $N \models F$:

\iff for all $A \in \Sigma$-Alg and $\beta \in X \rightarrow U_A$: if $A, \beta \models G$, for all $G \in N$, then $A, \beta \models F$.

Validity vs. Unsatisfiability

Validity and unsatisfiability are just two sides of the same medal as explained by the following proposition.

Proposition 3.6 Let F and G be formulas, let N be a set of formulas. Then

(i) F is valid if and only if $\neg F$ is unsatisfiable.

(ii) $F \models G$ if and only if $F \land \neg G$ is unsatisfiable.

(iii) $N \models G$ if and only if $N \cup \{ \neg G \}$ is unsatisfiable.

Hence in order to design a theorem prover (validity checker) it is sufficient to design a checker for unsatisfiability.

Theory of an Algebra

Let $A \in \Sigma$-Alg. The (first-order) theory of A is defined as

$$Th(A) = \{ G \in F_\Sigma(X) \mid A \models G \}$$

Problem of axiomatizability:

For which algebras A can one axiomatize $Th(A)$, that is, can one write down a formula F (or a recursively enumerable set F of formulas) such that

$$Th(A) = \{ G \mid F \models G \}?$$

Analogously for sets of algebras.
Two Interesting Theories

Let $\Sigma_{Pres} = (\{0/0, s/1, +/2\}, \emptyset)$ and $\mathbb{Z}_+ = (\mathbb{Z}, 0, s, +)$ its standard interpretation on the integers. $Th(\mathbb{Z}_+)$ is called Presburger arithmetic (M. Presburger, 1929). (There is no essential difference when one, instead of \mathbb{Z}, considers the natural numbers \mathbb{N} as standard interpretation.)

Presburger arithmetic is decidable in 3EXPTIME (D. Oppen, JCSS, 16(3):323–332, 1978), and in 2EXPSPACE, using automata-theoretic methods (and there is a constant $c \geq 0$ such that $Th(\mathbb{Z}_+) \notin \text{NTIME}(2^{2^{cn}})$).

However, $\mathbb{N} = (\mathbb{N}, 0, s, +, *)$, the standard interpretation of $\Sigma_{PA} = (\{0/0, s/1, +/2, */2\}, \emptyset)$, has as theory the so-called Peano arithmetic which is undecidable, not even recursively enumerable.

Note: The choice of signature can make a big difference with regard to the computational complexity of theories.
3.4 Algorithmic Problems

Validity(F): $\models F$?

Satisfiability(F): F satisfiable?

Entailment(F,G): does F entail G?

Model(A,F): $A \models F$?

Solve(A,F): find an assignment β such that $A,\beta \models F$.

Solve(F): find a substitution σ such that $\models F\sigma$.

Abduce(F): find G with “certain properties” such that $G \models F$.

Gödel’s Famous Theorems

1. For most signatures Σ, validity is undecidable for Σ-formulas. (One can easily encode Turing machines in most signatures.)

2. For each signature Σ, the set of valid Σ-formulas is recursively enumerable. (We will prove this by giving complete deduction systems.)

3. For $\Sigma = \Sigma_{PA}$ and $\mathbb{N}_* = (\mathbb{N}, 0, s, +, \star)$, the theory $Th(\mathbb{N}_*)$ is not recursively enumerable.

These complexity results motivate the study of subclasses of formulas (fragments) of first-order logic.

Q: Can you think of any fragments of first-order logic for which validity is decidable?

Some Decidable Fragments

Some decidable fragments:

- **Monadic class**: no function symbols, all predicates unary; validity is NEXPTIME-complete.

- Variable-free formulas without equality: satisfiability is NP-complete. (why?)

- Variable-free Horn clauses (clauses with at most one positive atom): entailment is decidable in linear time.

- Finite model checking is decidable in time polynomial in the size of the algebra and the formula.