

Universität des Saarlandes FR Informatik

Uwe Waldmann

April 18, 2014

Tutorials for "Automated Reasoning II" Exercise sheet 1

Exercise 1.1:

Use the congruence closure algorithm to check whether the equational clause

$$\forall x, y \ f(f(x)) \not\approx x \lor f(x) \not\approx y \lor f(f(y)) \not\approx g(y) \lor x \approx y \lor h(x, y) \approx h(x, g(y))$$

is valid.

Exercise 1.2:

Prove that Knuth-Bendix completion terminates and produces a convergent TRS if the input consists only of ground equations, the term ordering is total on ground terms, and simplification inferences are computed eagerly (that is, *Orient* and *Deduce* may only be applied if none of the *Simplify* rules is applicable).

Exercise 1.3:

On page 4 of the lecture notes we have sketched a flattening operation for sets of equations. Formalize it using an appropriate transition system in such a way that any two different D-equations have always different left-hand sides.

Exercise 1.4:

Let $\Sigma = (\Omega, \Pi)$ and $\Sigma' = (\Omega', \Pi')$ be signatures such that $\Omega \subseteq \Omega'$ and $\Pi \subseteq \Pi'$. If \mathcal{A} is a Σ -algebra and \mathcal{B} is a Σ' -algebra such that $U_{\mathcal{A}} = U_{\mathcal{B}}$, $f_{\mathcal{A}} = f_{\mathcal{B}}$ for every $f \in \Omega$ and $P_{\mathcal{A}} = P_{\mathcal{B}}$ for every $P \in \Pi$, then \mathcal{A} is called the Σ -reduct of \mathcal{B} (denoted by $\mathcal{A} = \mathcal{B}|_{\Sigma}$).

Prove the following two properties:

(i) Let $\Sigma = (\Omega, \Pi)$ with $c \notin \Omega$, let $\Sigma' = (\Omega \cup \{c/0\}, \Pi)$. Let N be a set of closed Σ -formulas and let t be a ground term occurring in a closed Σ -formula $F[t]_p$. Then the Σ -models of $N \cup \{F[t]_p\}$ are exactly the Σ -reducts of the Σ' -models of $N \cup \{F[c]_p\} \cup \{t \approx c\}$.

(ii) Let N be a set of closed Σ -formulas, let N' be a set of closed Σ '-formulas, and let F be a closed Σ -formula. If the Σ -models of N are exactly the Σ -reducts of Σ '-models of N', then $N \models F$ if and only if $N' \models F$.

Bring your solution (or solution attempt) to the tutorial on April 25.