

Universität des Saarlandes FR Informatik

Uwe Waldmann

May 23, 2016

Tutorials for "Automated Reasoning II" Exercise sheet 4

Exercise 4.1:

Let $\Sigma = (\Omega, \emptyset)$ be a signature without predicate symbols (except built-in equality). For two Σ -algebras \mathcal{A} and \mathcal{B} , we define the product $\mathcal{A} \times \mathcal{B}$ as the Σ -algebra whose universe is the cartesian product of the universes of \mathcal{A} and \mathcal{B} , and where $f_{\mathcal{A} \times \mathcal{B}}((a_1, b_1), \dots, (a_n, b_n)) = (f_{\mathcal{A}}(a_1, \dots, a_n), f_{\mathcal{B}}(b_1, \dots, b_n)).$

A Σ -theory \mathcal{T} is called closed under products, if the product of any two models of \mathcal{T} is again a model of \mathcal{T} .

Prove: If \mathcal{T} is closed under products, then it is convex.

Exercise 4.2:

Prove: If the axioms of the Σ -theory \mathcal{T} are unversally quantified equational Horn clauses (that is, clauses where all atoms are equations and at most one of the literals is positive), then \mathcal{T} is convex. (You may use the previous exercise.)

Exercise 4.3:

What goes wrong if we combine the original DPLL procedure (including the pure literal rule) with a theory solver?

Exercise 4.4:

Use the CDCL(EUF) calculus to determine whether the following set of clauses is satisfiable or not:

$$f(a,b) \not\approx f(a',b')$$
(1)

$$g(g(c)) \not\approx c$$
(2)

$$g(d) \approx c \lor g(g(c)) \approx c$$
(3)

$$a \approx a' \lor c \approx d$$
(4)

$$b \approx b' \lor c \approx d$$
(5)

Bring your solution (or solution attempt) to the tutorial on June 1.