Uwe Waldmann

June 27, 2016

Tutorials for "Automated Reasoning II" Exercise sheet 7

Exercise 7.1:

A group is a set G with a binary function $\cdot: G \times G \rightarrow G$, a unary function ${ }_{-}^{-1}: G \rightarrow G$, and an element $e \in G$ that satisfy the axioms

$$
\begin{gathered}
a \cdot(b \cdot c)=(a \cdot b) \cdot c \\
a \cdot e=a \\
a \cdot a^{-1}=e
\end{gathered}
$$

for all $a, b, c \in G$. (It is sufficient to assert that e is a right identity and that ${ }_{-}^{-1}$ is a right inverse. One can prove from these axioms that e is also a left identity and that ${ }_{-}^{-1}$ is also a left inverse.)

For a group element $a \in G$ and a positive integer n, we define a^{n} recursively by $a^{1}=a$ and $a^{n+1}=a \cdot\left(a^{n}\right)$. We say that $a \in G$ has order n if n is the smallest positive integer such that $a^{n}=e$. We say that $a \in G$ has order ∞ if there is no positive integer n such that $a^{n}=e$. (Note that every group has exactly one element with order 1 , namely e itself.)

We say that some $a \in G$ commutes with some $b \in G$ if $a \cdot b=b \cdot a$. The center of a group G is the set of all elements $a \in G$ that commute with every $b \in G$.

Formalize the following problem in unsorted first-order logic with equality and use the theorem prover SPASS to prove it: If a group G has exactly one element with order 2 , then this element is in the center of G.

Notes:

- You can download SPASS from http://www.spass-prover.org/; use either version $3.9,3.7$, or 3.5 .
- A sample SPASS input file containing the definition of a group and the conjecture that the right identity element in a group is also a left identity is available from the tutorial web page.
- Even though the presentation above refers to integer numbers, you should formalize the problem without referring to integer numbers.
- It is advisable to formalize the problem without defining auxiliary predicates like commutes(_) or center(_). (With auxiliary predicates, the problem becomes noticably harder for SPASS.)

Exercise 7.2:

Compute R_{∞} for the clause set $\{f(x) \approx a\}$ and the signature $\Sigma=(\{f / 1, g / 1, a / 0\}, \emptyset)$; use the LPO with $g>f>a$.

Exercise 7.3:

Prove Lemma 3.14: For every run $N_{0} \vdash N_{1} \vdash N_{2} \vdash \ldots$ of the superposition calculus, $\operatorname{Red}\left(N_{i}\right) \subseteq \operatorname{Red}\left(N_{\infty}\right)$ and $\operatorname{Red}\left(N_{i}\right) \subseteq \operatorname{Red}\left(N_{*}\right)$.

Exercise 7.4:

Find an unsatisfiable clause set consisting of two unit clauses $s \approx t$ and $u \not \approx v$ and a term ordering \succ such that the only inference that neither violates the ordering restrictions of the superposition calculus nor yields a tautology is a positive superposition inference in which the left-hand side of $s \approx t$ is unified with the right-hand side of a renamed copy of $s \approx t$.

Bring your solution (or solution attempt) to the tutorial on July 4.

