Automated Reasoning II*

Uwe Waldmann

Summer Term 2016

Topics of the Course

Decision procedures:

equality (congruence closure), algebraic theories, combinations.

Satisfiability modulo theories (SMT):

CDCL(T), dealing with universal quantification.

Superposition:

combining ordered resolution and completion, optimizations, integrating theories.

1 Decision Procedures

In general, validity (or unsatisfiability) of first-order formulas is undecidable.

^{*}This document contains the text of the lecture slides (almost verbatim) plus some additional information, mostly proofs of theorems that are presented on the blackboard during the course. It is not a full script and does not contain the examples and additional explanations given during the lecture. Moreover it should not be taken as an example how to write a research paper – neither stylistically nor typographically.

To get decidability results, we have to impose restrictions on

- signatures,
- formulas,
- and/or algebras.

1.1 Theories and Fragments

So far, we have considered the validity or satisfiability of "unstructured" sets of formulas.

We will now split these sets of formulas into two parts: a theory (which we keep fixed) and a set of formulas that we consider relative to the theory.

A first-order theory \mathcal{T} is defined by

its signature $\Sigma = (\Omega, \Pi)$

its axioms, that is, a set of closed Σ -formulas.

(We often use the same symbol \mathcal{T} for a theory and its set of axioms.)

Note: This is the syntactic view of theories. There is also a semantic view, where one specifies a class of Σ -algebras \mathcal{M} and considers $Th(\mathcal{M})$, that is, all closed Σ -formulas that hold in the algebras of \mathcal{M} .

A Σ -algebra that satisfies all axioms of \mathcal{T} is called a \mathcal{T} -algebra (or \mathcal{T} -interpretation).

 \mathcal{T} is called *consistent* if there is at least one \mathcal{T} -algebra. (We will only consider consistent theories.)

We can define models, validity, satisfiability, entailment, equivalence, etc., relative to a theory \mathcal{T} :

A \mathcal{T} -algebra that is a model of a Σ -formula F is also called a \mathcal{T} -model of F.

A Σ -formula F is called \mathcal{T} -valid, if $\mathcal{A}, \beta \models F$ for all \mathcal{T} -algebras \mathcal{A} and assignments β .

A Σ -formula F is called \mathcal{T} -satisfiable, if $\mathcal{A}, \beta \models F$ for some \mathcal{T} -algebra and assignment β (and otherwise \mathcal{T} -unsatisfiable).

 $(\mathcal{T}$ -satisfiability of sets of formulas, \mathcal{T} -entailment, \mathcal{T} -equivalence: analogously.)

A fragment is some syntactically restricted class of Σ -formulas.

Typical restriction: only certain quantifier prefixes are permitted.

1.2 Equality

Theory of equality:

Signature: arbitrary

Axioms: none (but the equality predicate \approx has a fixed interpretation)

Alternatively:

Signature contains a binary predicate symbol \sim instead of the built-in \approx

Axioms: reflexivity, symmetry, transitivity, congruence for \sim

In general, satisfiability of first-order formulas w.r.t. equality is undecidable.

However, we will show that it is decidable for ground first-order formulas.

Note: It suffices to consider conjunctions of literals. Arbitrary ground formulas can be converted into DNF; a formula in DNF is satisfiable if and only if one of its conjunctions is satisfiable.

Note that our problem can be written in several ways:

An equational clause $\forall \vec{x} (A_1 \lor \ldots \lor A_n \lor \neg B_1 \lor \ldots \lor \neg B_k) \text{ is } \mathcal{T}\text{-valid}$ iff $\exists \vec{x} (\neg A_1 \land \ldots \land \neg A_n \land B_1 \land \ldots \land B_k) \text{ is } \mathcal{T}\text{-unsatisfiable}$ iff the Skolemized (ground!) formula $(\neg A_1 \land \ldots \land \neg A_n \land B_1 \land \ldots \land B_k) \{ \vec{x} \mapsto \vec{c} \} \text{ is } \mathcal{T}\text{-unsatisfiable}$ iff

 $(A_1 \lor \ldots \lor A_n \lor \neg B_1 \lor \ldots \lor \neg B_k) \{ \vec{x} \mapsto \vec{c} \}$ is \mathcal{T} -valid

Other names:

The theory is also known as EUF (equality with uninterpreted function symbols).

The decision procedures for the ground fragment are called *congruence closure* algorithms.

Congruence Closure

Goal: check (un-)satisfiability of a ground conjunction

$$u_1 \approx v_1 \wedge \ldots \wedge u_n \approx v_n \wedge \neg s_1 \approx t_1 \wedge \ldots \wedge \neg s_k \approx t_k$$

Idea:

transform $E = \{u_1 \approx v_1, \ldots, u_n \approx v_n\}$ into an equivalent convergent TRS R and check whether $s_i \downarrow_R = t_i \downarrow_R$.

if $s_i \downarrow_R = t_i \downarrow_R$ for some *i*: $s_i \downarrow_R = t_i \downarrow_R \Leftrightarrow s_i \leftrightarrow_E^* t_i \Leftrightarrow E \models s_i \approx t_i \Rightarrow \text{ unsat.}$ if $s_i \downarrow_R = t_i \downarrow_R$ for no *i*: $T_{\Sigma}(X)/R = T_{\Sigma}(X)/E$ is a model of the conjunction \Rightarrow sat.

In principle, one could use Knuth-Bendix completion to convert E into an equivalent convergent TRS R.

If done properly (see exercises), Knuth-Bendix completion terminates for ground inputs.

However, for the ground case, one can optimize the general procedure.

First step:

Flatten terms: Introduce new constant symbols c_1, c_2, \ldots for all subterms:

 $g(a, h(h(b))) \approx h(a)$

is replaced by

$$a \approx c_1 \wedge b \approx c_2 \wedge h(c_2) \approx c_3 \wedge h(c_3) \approx c_4 \wedge g(c_1, c_4) \approx c_5 \wedge h(c_1) \approx c_6 \wedge c_5 \approx c_6$$

Result: only two kinds of equations left.

D-equations: $f(c_{i_1}, \ldots, c_{i_n}) \approx c_{i_0}$ for $f/n \in \Omega$, $n \ge 0$. C-equations: $c_i \approx c_j$.

 \Rightarrow efficient indexing (e.g., using hash tables), obvious termination for D-equations.

Inference Rules

The congruence closure algorithm is presented as a set of inference rules working on a set of equations E and a set of rules R: $E_0, R_0 \vdash E_1, R_1 \vdash E_2, R_2 \vdash \ldots$

At the beginning, $E = E_0$ is the set of C-equations and $R = R_0$ is the set of D-equations oriented left-to-right. At the end, E should be empty; then R is the result.

Notation: The formula $s \approx t$ denotes either $s \approx t$ or $t \approx s$.

Simplify:

$$\frac{E \cup \{c \approx c'\}, \quad R \cup \{c \to c''\}}{E \cup \{c'' \approx c'\}, \quad R \cup \{c \to c''\}}$$

Delete:

$$\frac{E \cup \{c \approx c\}, \quad R}{E, \quad R}$$

Orient:

$$\frac{E \cup \{c \approx c'\}, R}{E, R \cup \{c \rightarrow c'\}} \quad \text{if } c \succ c'$$

Collapse:

$$\frac{E, \quad R \cup \{t[c]_p \to c', \ c \to c''\}}{E, \quad R \cup \{t[c'']_p \to c', \ c \to c''\}} \qquad \text{if } p \neq \varepsilon$$

Deduce:

$$\frac{E, \quad R \cup \{t \to c, t \to c'\}}{E \cup \{c \approx c'\}, \quad R \cup \{t \to c\}}$$

Note: for ground rewrite rules, critical pair computation does not involve substitution. Therefore, every critical pair computation can be replaced by a simplification, either using Deduce or Collapse.

Strategy

The inference rules are applied according to the following strategy:

- (1) If there is an equation in E, use Simplify as long as possible for this equation, then use either Delete or Orient. Repeat until E is empty.
- (2) If Collapse is applicable, apply it, if now Deduce is applicable, apply it as well. Repeat until Collapse is no longer applicable.
- (3) If E is non-empty, go to (1), otherwise return R.

Implementation

Instead of fixing the ordering \succ in advance, it is preferable to define it on the fly during the algorithm:

If we orient an equation $c \approx c'$ between two constant symbols, we try to make that constant symbol larger that occurs less often in $R \Rightarrow$ fewer Collapse steps.

Additionally:

Use various index data structures so that all the required operations can be performed efficiently.

Use a union-find data structure to represent the equivalence classes encoded by the C-rules.

Average runtime for an implementation using hash tables: $O(m \log m)$, where m is the number of edges in the graph representation of the initial C and D-equations.

Other Predicate Symbols

If the initial ground conjunction contains also non-equational literals $[\neg] P(t_1, \ldots, t_n)$, treat these like equational literals $[\neg] P(t_1, \ldots, t_n) \approx true$. Then use the same algorithm as before.

One Small Problem

The inference rules are sound in the usual sense: The conclusions are entailed by the premises, so every \mathcal{T} -model of the premises is a \mathcal{T} -model of the conclusions.

For the initial flattening, however, we get a weaker result: We have to extend the \mathcal{T} -models of the original equations to obtain models of the flattened equations. That is, we get a new algebra with the same universe as the old one, with the same interpretations for old functions and predicate symbols, but with appropriately chosen interpretations for the new constants.

Consequently, the relations \approx_E and \approx_R for the original E and the final R are not the same. For instance, $c_3 \approx_E c_7$ does not hold, but $c_3 \approx_R c_7$ may hold.

On the other hand, the model extension preserves the universe and the interpretations for old symbols. Therefore, if s and t are terms over the old symbols, we have $s \approx_E t$ iff $s \approx_R t$.

This is sufficient for our purposes: The terms s_i and t_i that we want to normalize using R do not contain new symbols.

History

Congruence closure algorithms have been published, among others, by Shostak (1978). by Nelson and Oppen (1980), and by Downey, Sethi and Tarjan (1980).

Kapur (1997) showed that Shostak's algorithm can be described as a completion procedure.

Bachmair and Tiwari (2000) did this also for the Nelson/Oppen and the Downey/Sethi/Tarjan algorithm.

The algorithm presented here is the Downey/Sethi/Tarjan algorithm in the presentation of Bachmair and Tiwari.

Literature

Leo Bachmair, Ashish Tiwari: Abstract Congruence Closure and Specializations. Proc. CADE-17, 2000, pp 64–78, LNCS 1831, Springer.

Peter J. Downey, Ravi Sethi, Robert E. Tarjan: Variations on the Common Subexpression Problem. Journal of the ACM, 27(4):758–771, 1980.

Deepak Kapur: Shostak's congruence closure as completion. Proc. 8th RTA, 1997, pp. 23–37, LNCS 1232, Springer.

Greg Nelson, Derek C. Oppen: Fast Decision Procedures Based on Congruence Closure. Journal of the ACM, 27(2):356–364, 1980.

Robert E. Shostak: An algorithm for reasoning about equality. Communications of the ACM, 21(7):583–585, 1978.

1.3 Linear Rational Arithmetic

There are several ways to define linear rational arithmetic.

We need at least the following signature: $\Sigma = (\{0/0, 1/0, +/2\}, \{</2\})$ and the predefined binary predicate \approx .

The equational part of linear rational arithmetic is described by the theory of *divisible* torsion-free abelian groups:

$$\begin{aligned} \forall x, y, z \left(x + (y + z) \approx (x + y) + z \right) & \text{(associativity)} \\ \forall x, y \left(x + y \approx y + x \right) & \text{(commutativity)} \\ \forall x \left(x + 0 \approx x \right) & \text{(identity)} \\ \forall x \exists y \left(x + y \approx 0 \right) & \text{(inverse)} \end{aligned} \\ \text{For all } n \geq 1: \ \forall x \underbrace{(x + \dots + x)}_{n \text{ times}} \approx 0 \rightarrow x \approx 0) & \text{(torsion-freeness)} \\ \text{For all } n \geq 1: \ \forall x \exists y \left(y + \dots + y \approx x \right) & \text{(divisibility)} \end{aligned}$$

$$\neg 1 \approx 0$$
 (non-triviality)
Note: Quantification over natural numbers is not part of our language. We really need
infinitely many axioms for torsion-freeness and divisibility.

By adding the axioms of a compatible strict total ordering, we define *ordered divisible abelian groups:*

(irreflexivity)	$\forall x (\neg x < x)$
(transitivity)	$\forall x, y, z (x < y \land y < z \to x < z)$
(totality)	$\forall x, y (x < y \lor y < x \lor x \approx y)$
(compatibility)	$\forall x, y, z (x < y \to x + z < y + z)$
(non-triviality)	0 < 1

n times

Note: The second non-triviality axiom renders the first one superfluous. Moreover, as soon as we add the axioms of compatible strict total orderings, torsion-freeness can be omitted. Every ordered divisible abelian group is obviously torsion-free.

In fact the converse holds: Every torsion-free abelian group can be ordered (F.-W. Levi 1913).

Examples: \mathbb{Q} , \mathbb{R} , \mathbb{Q}^n , \mathbb{R}^n , ...