
Automated Reasoning II∗

Uwe Waldmann

Summer Term 2016

Topics of the Course

Decision procedures:

equality (congruence closure),
algebraic theories,
combinations.

Satisfiability modulo theories (SMT):

CDCL(T),
dealing with universal quantification.

Superposition:

combining ordered resolution and completion,
optimizations,
integrating theories.

1 Decision Procedures

In general, validity (or unsatisfiability) of first-order formulas is undecidable.

∗This document contains the text of the lecture slides (almost verbatim) plus some additional infor-
mation, mostly proofs of theorems that are presented on the blackboard during the course. It is not
a full script and does not contain the examples and additional explanations given during the lecture.
Moreover it should not be taken as an example how to write a research paper – neither stylistically
nor typographically.
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To get decidability results, we have to impose restrictions on

• signatures,

• formulas,

• and/or algebras.

1.1 Theories and Fragments

So far, we have considered the validity or satisfiability of “unstructured” sets of formu-
las.

We will now split these sets of formulas into two parts: a theory (which we keep fixed)
and a set of formulas that we consider relative to the theory.

A first-order theory T is defined by

its signature Σ = (Ω,Π)

its axioms, that is, a set of closed Σ-formulas.

(We often use the same symbol T for a theory and its set of axioms.)

Note: This is the syntactic view of theories. There is also a semantic view, where one
specifies a class of Σ-algebras M and considers Th(M), that is, all closed Σ-formulas
that hold in the algebras of M.

A Σ-algebra that satisfies all axioms of T is called a T -algebra (or T -interpretation).

T is called consistent if there is at least one T -algebra. (We will only consider consistent
theories.)

We can define models, validity, satisfiability, entailment, equivalence, etc., relative to a
theory T :

A T -algebra that is a model of a Σ-formula F is also called a T -model of F .

A Σ-formula F is called T -valid, if A, β |= F for all T -algebras A and assignments β.

A Σ-formula F is called T -satisfiable, if A, β |= F for some T -algebra and assignment
β (and otherwise T -unsatisfiable).

(T -satisfiability of sets of formulas, T -entailment, T -equivalence: analogously.)

A fragment is some syntactically restricted class of Σ-formulas.

Typical restriction: only certain quantifier prefixes are permitted.
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1.2 Equality

Theory of equality:

Signature: arbitrary

Axioms: none
(but the equality predicate ≈ has a fixed interpretation)

Alternatively:

Signature contains a binary predicate symbol ∼ instead of the built-in ≈

Axioms: reflexivity, symmetry, transitivity, congruence for ∼

In general, satisfiability of first-order formulas w. r. t. equality is undecidable.

However, we will show that it is decidable for ground first-order formulas.

Note: It suffices to consider conjunctions of literals. Arbitrary ground formulas can be
converted into DNF; a formula in DNF is satisfiable if and only if one of its conjunctions
is satisfiable.

Note that our problem can be written in several ways:

An equational clause
∀~x (A1 ∨ . . . ∨An ∨ ¬B1 ∨ . . . ∨ ¬Bk) is T -valid

iff

∃~x (¬A1 ∧ . . . ∧ ¬An ∧ B1 ∧ . . . ∧Bk) is T -unsatisfiable

iff

the Skolemized (ground!) formula
(¬A1 ∧ . . . ∧ ¬An ∧ B1 ∧ . . . ∧Bk){~x 7→ ~c} is T -unsatisfiable

iff

(A1 ∨ . . . ∨ An ∨ ¬B1 ∨ . . . ∨ ¬Bk){~x 7→ ~c} is T -valid

Other names:

The theory is also known as EUF (equality with uninterpreted function symbols).

The decision procedures for the ground fragment are called congruence closure algo-
rithms.
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Congruence Closure

Goal: check (un-)satisfiability of a ground conjunction

u1 ≈ v1 ∧ . . . ∧ un ≈ vn ∧ ¬ s1 ≈ t1 ∧ . . . ∧ ¬ sk ≈ tk

Idea:

transform E = {u1 ≈ v1, . . . , un ≈ vn} into an equivalent convergent TRS R and
check whether si↓R = ti↓R.

if si↓R = ti↓R for some i:
si↓R = ti↓R ⇔ si ↔

∗

E ti ⇔ E |= si ≈ ti ⇒ unsat.

if si↓R = ti↓R for no i:
TΣ(X)/R = TΣ(X)/E is a model of the conjunction ⇒ sat.

In principle, one could use Knuth-Bendix completion to convert E into an equivalent
convergent TRS R.

If done properly (see exercises), Knuth-Bendix completion terminates for ground in-
puts.

However, for the ground case, one can optimize the general procedure.

First step:

Flatten terms: Introduce new constant symbols c1, c2, . . . for all subterms:

g(a, h(h(b))) ≈ h(a)

is replaced by

a ≈ c1 ∧ b ≈ c2 ∧ h(c2) ≈ c3 ∧ h(c3) ≈ c4 ∧ g(c1, c4) ≈ c5 ∧ h(c1) ≈ c6 ∧ c5 ≈ c6

Result: only two kinds of equations left.

D-equations: f(ci1 , . . . , cin) ≈ ci0 for f/n ∈ Ω, n ≥ 0.
C-equations: ci ≈ cj .

⇒ efficient indexing (e. g., using hash tables),
obvious termination for D-equations.
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Inference Rules

The congruence closure algorithm is presented as a set of inference rules working on a
set of equations E and a set of rules R: E0, R0 ⊢ E1, R1 ⊢ E2, R2 ⊢ . . .

At the beginning, E = E0 is the set of C-equations and R = R0 is the set of D-equations
oriented left-to-right. At the end, E should be empty; then R is the result.

Notation: The formula s
.
≈ t denotes either s ≈ t or t ≈ s.

Simplify:

E ∪ {c
.
≈ c′}, R ∪ {c → c′′}

E ∪ {c′′
.
≈ c′}, R ∪ {c → c′′}

Delete:

E ∪ {c ≈ c}, R

E, R

Orient:

E ∪ {c
.
≈ c′}, R

E, R ∪ {c → c′}
if c ≻ c′

Collapse:

E, R ∪ {t[c]p → c′, c → c′′}

E, R ∪ {t[c′′]p → c′, c → c′′}
if p 6= ε

Deduce:

E, R ∪ {t → c, t → c′}

E ∪ {c ≈ c′}, R ∪ {t → c}

Note: for ground rewrite rules, critical pair computation does not involve substitution.
Therefore, every critical pair computation can be replaced by a simplification, either
using Deduce or Collapse.

Strategy

The inference rules are applied according to the following strategy:

(1) If there is an equation in E, use Simplify as long as possible for this equation, then
use either Delete or Orient. Repeat until E is empty.

(2) If Collapse is applicable, apply it, if now Deduce is applicable, apply it as well.
Repeat until Collapse is no longer applicable.

(3) If E is non-empty, go to (1), otherwise return R.
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Implementation

Instead of fixing the ordering ≻ in advance, it is preferable to define it on the fly during
the algorithm:

If we orient an equation c ≈ c′ between two constant symbols, we try to make that
constant symbol larger that occurs less often in R ⇒ fewer Collapse steps.

Additionally:

Use various index data structures so that all the required operations can be performed
efficiently.

Use a union-find data structure to represent the equivalence classes encoded by the
C-rules.

Average runtime for an implementation using hash tables: O(m logm), where m is the
number of edges in the graph representation of the initial C and D-equations.

Other Predicate Symbols

If the initial ground conjunction contains also non-equational literals [¬] P (t1, . . . , tn),
treat these like equational literals [¬] P (t1, . . . , tn) ≈ true. Then use the same algorithm
as before.

One Small Problem

The inference rules are sound in the usual sense: The conclusions are entailed by the
premises, so every T -model of the premises is a T -model of the conclusions.

For the initial flattening, however, we get a weaker result: We have to extend the T -
models of the original equations to obtain models of the flattened equations. That is, we
get a new algebra with the same universe as the old one, with the same interpretations
for old functions and predicate symbols, but with appropriately chosen interpretations
for the new constants.

Consequently, the relations ≈E and ≈R for the original E and the final R are not the
same. For instance, c3 ≈E c7 does not hold, but c3 ≈R c7 may hold.

On the other hand, the model extension preserves the universe and the interpretations
for old symbols. Therefore, if s and t are terms over the old symbols, we have s ≈E t iff
s ≈R t.

This is sufficient for our purposes: The terms si and ti that we want to normalize using
R do not contain new symbols.

6



History

Congruence closure algorithms have been published, among others, by Shostak (1978).
by Nelson and Oppen (1980), and by Downey, Sethi and Tarjan (1980).

Kapur (1997) showed that Shostak’s algorithm can be described as a completion proce-
dure.

Bachmair and Tiwari (2000) did this also for the Nelson/Oppen and the Downey/Sethi/Tarjan
algorithm.

The algorithm presented here is the Downey/Sethi/Tarjan algorithm in the presentation
of Bachmair and Tiwari.
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1.3 Linear Rational Arithmetic

There are several ways to define linear rational arithmetic.

We need at least the following signature: Σ = ({0/0, 1/0,+/2}, {</2}) and the pre-
defined binary predicate ≈.

The equational part of linear rational arithmetic is described by the theory of divisible
torsion-free abelian groups:

∀x, y, z (x+ (y + z) ≈ (x+ y) + z) (associativity)

∀x, y (x+ y ≈ y + x) (commutativity)

∀x (x+ 0 ≈ x) (identity)

∀x ∃y (x+ y ≈ 0) (inverse)

For all n ≥ 1: ∀x (x+ · · ·+ x
︸ ︷︷ ︸

n times

≈ 0 → x ≈ 0) (torsion-freeness)

For all n ≥ 1: ∀x ∃y (y + · · ·+ y
︸ ︷︷ ︸

n times

≈ x) (divisibility)

¬ 1 ≈ 0 (non-triviality)

Note: Quantification over natural numbers is not part of our language. We really need
infinitely many axioms for torsion-freeness and divisibility.

By adding the axioms of a compatible strict total ordering, we define ordered divisible

abelian groups:

∀x (¬ x < x) (irreflexivity)

∀x, y, z (x < y ∧ y < z → x < z) (transitivity)

∀x, y (x < y ∨ y < x ∨ x ≈ y) (totality)

∀x, y, z (x < y → x+ z < y + z) (compatibility)

0 < 1 (non-triviality)

Note: The second non-triviality axiom renders the first one superfluous. Moreover, as
soon as we add the axioms of compatible strict total orderings, torsion-freeness can be
omitted. Every ordered divisible abelian group is obviously torsion-free.

In fact the converse holds: Every torsion-free abelian group can be ordered (F.-W. Levi
1913).

Examples: Q, R, Qn, Rn, . . .
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