2 Satisfiability Modulo Theories (SMT)

So far:

decision procedures for satisfiability for various fragments of first-order theories; often only for ground conjunctions of literals.

Goals:

extend decision procedures efficiently to ground CNF formulas;

later: extend to non-ground formulas (we will often lose completeness, however).

2.1 The CDCL(T) Procedure

Goal:

Given a propositional formula in CNF (or alternatively, a finite set N of clauses), where the atoms represent ground formulas over some theory \mathcal{T} , check whether it is satisfiable in \mathcal{T} (and optionally: output one solution, if it is satisfiable).

Assumption:

As in the propositional case, clauses contain neither duplicated literals nor complementary literals.

For propositional CDCL ("Conflict-Driven Clause Learning"), we have considered partial valuations, i.e., partial mappings from propositional variables to truth values.

A partial valuation \mathcal{A} corresponds to a set M of literals that does not contain complementary literals, and vice versa:

- $\mathcal{A}(L)$ is true, if $L \in M$.
- $\mathcal{A}(L)$ is false, if $\overline{L} \in M$.
- $\mathcal{A}(L)$ is undefined, if neither $L \in M$ nor $\overline{L} \in M$.

We will now consider partial mappings from ground \mathcal{T} -atoms to truth values (which correspond to sets of \mathcal{T} -literals).

In order to check whether a (partial) valuation is permissible, we identify the valuation \mathcal{A} or the set M with the conjunction of all literals in M:

The valuation \mathcal{A} or the set M is called \mathcal{T} -satisfiable, if the literals in M have a \mathcal{T} -model.

Since the elements of M can be interpreted both as propositional variables and as ground \mathcal{T} -formulas, we have to distinguish between two notions of entailment:

We write $M \models F$ if F is entailed by M propositionally. We write $M \models_{\mathcal{T}} F$ if the ground \mathcal{T} -formulas represented by M entail F.

M is called a \mathcal{T} -model of F, if it is \mathcal{T} -satisfiable and $M \models F$.

We write $F \models_{\mathcal{T}} G$, if the formula F entails G w.r.t. \mathcal{T} , that is, if every \mathcal{T} -model of F is also a model of G.

Idea

Naive Approach:

Use CDCL to find a propositionally satisfying valuation.

If the valuation found is \mathcal{T} -satisfiable, stop; otherwise continue CDCL search.

Note: The CDCL procedure may not use "pure literal" checks.

Improvements:

Check already partial valuations for \mathcal{T} -satisfiability.

If \mathcal{T} -decision procedure yields explanations, use them for non-chronological backjumping.

If \mathcal{T} -decision procedure can provide \mathcal{T} -entailed literals, use them for propagation.

Since \mathcal{T} -satisfiability checks may be costly, learn clauses that incorporate useful \mathcal{T} -knowledge, in particular explanations for backjumping.

CDCL(T)

The "CDCL Modulo Theories" procedure is modelled by a transition relation $\Rightarrow_{\text{CDCL}(\mathcal{T})}$ on a set of states.

States:

- fail
- \bullet $M \parallel N$,

where M is a list of annotated literals and N is a set of clauses.

Annotated literal:

- L: deduced literal, due to unit propagation.
- L^{d} : decision literal (guessed literal).

CDCL(T) Rules from CDCL

Unit Propagate:

$$M \parallel N \cup \{C \vee L\} \ \Rightarrow_{\text{CDCL}(\mathcal{T})} \ M \ L \parallel N \cup \{C \vee L\}$$

if C is false under M and L is undefined under M.

Decide:

$$M \parallel N \Rightarrow_{\text{CDCL}(\mathcal{T})} M L^{\text{d}} \parallel N$$

if L is undefined under M.

Fail:

$$M \parallel N \cup \{C\} \Rightarrow_{\text{CDCL}(\mathcal{T})} fail$$

if C is false under M and M contains no decision literals.

Specific CDCL(T) Rules

 \mathcal{T} -Backjump:

$$M L^{\operatorname{d}} M' \parallel N \Rightarrow_{\operatorname{CDCL}(\mathcal{T})} M L' \parallel N$$

if
$$M L^{\mathrm{d}} M' \models \neg C$$
 for some $C \in N$

and if there is some "backjump clause" $C' \vee L'$ such that

$$N \models_{\mathcal{T}} C' \vee L'$$
 and $M \models \neg C'$,

L' is undefined under M, and

L' or $\overline{L'}$ occurs in N or in M L^{d} M'.

 \mathcal{T} -Learn:

$$M \parallel N \ \Rightarrow_{\mathrm{CDCL}(\mathcal{T})} \ M \parallel N \cup \{C\}$$

if $N \models_{\mathcal{T}} C$ and each atom of C occurs in N or M.

 $\mathcal{T} ext{-Forget:}$

$$M \parallel N \cup \{C\} \Rightarrow_{\text{CDCL}(\mathcal{T})} M \parallel N$$

if
$$N \models_{\mathcal{T}} C$$
.

 \mathcal{T} -Propagate:

$$M \parallel N \Rightarrow_{\text{CDCL}(\mathcal{T})} M L \parallel N$$

if $M \models_{\mathcal{T}} L$ where L is undefined in M, and L or \overline{L} occurs in N.

CDCL(T) Properties

The system $CDCL(\mathcal{T})$ consists of the rules Decide, Fail, Unit Propagate, \mathcal{T} -Propagate, \mathcal{T} -Backjump, \mathcal{T} -Learn and \mathcal{T} -Forget.

Lemma 2.1 If we reach a state $M \parallel N$ starting from $\emptyset \parallel N$, then:

- (1) M does not contain complementary literals.
- (2) Every deduced literal L in M follows from \mathcal{T} , N, and decision literals occurring before L in M.

Proof. By induction on the length of the derivation.

Lemma 2.2 If no clause is learned infinitely often, then every derivation starting from $\emptyset \parallel N$ terminates.

Proof. Similar to the propositional case.

Lemma 2.3 If $\emptyset \parallel N \Rightarrow_{\mathrm{CDCL}(\mathcal{T})}^* M \parallel N'$ and there is some conflicting clause in $M \parallel N'$, that is, $M \models \neg C$ for some clause C in N', then either Fail or \mathcal{T} -Backjump applies to $M \parallel N'$.

Proof. Similar to the propositional case.

Lemma 2.4 If $\emptyset \parallel N \Rightarrow_{\text{CDCL}(\mathcal{T})}^* M \parallel N'$ and M is \mathcal{T} -unsatisfiable, then either there is a conflicting clause in $M \parallel N'$, or else \mathcal{T} -Learn applies to $M \parallel N'$, generating a conflicting clause.

Proof. If M is \mathcal{T} -unsatisfiable, then there are literals L_1, \ldots, L_n in M such that $\emptyset \models_{\mathcal{T}} \overline{L_1} \vee \ldots \vee \overline{L_n}$. Hence the conflicting clause $\overline{L_1} \vee \ldots \vee \overline{L_n}$ is either in $M \parallel N'$, or else it can be learned by one \mathcal{T} -Learn step.

Theorem 2.5 Consider a derivation $\emptyset \parallel N \Rightarrow_{\mathrm{CDCL}(\mathcal{T})}^* S$, where no more rules of the $\mathrm{CDCL}(T)$ procedure are applicable to S except \mathcal{T} -Learn or \mathcal{T} -Forget, and if S has the form $M \parallel N'$ then M is \mathcal{T} -satisfiable. Then

- (1) S is fail iff N is \mathcal{T} -unsatisfiable.
- (2) If S has the form $M \parallel N'$, then M is a \mathcal{T} -model of N.

The Solver Interface

The general $CDCL(\mathcal{T})$ procedure has to be connected to a "Solver" for \mathcal{T} , a theory module that performs at least \mathcal{T} -satisfiability checks.

The solver is initialized with a list of all literals occurring in the input of the $CDCL(\mathcal{T})$ procedure.

Internally, it keeps a stack I of theory literals that is initially empty. The solver performs the following operations on I:

SetTrue($L: \mathcal{T}$ -Literal):

Check whether $I \cup \{L\}$ is \mathcal{T} -satisfiable.

If no: return an explanation for \overline{L} , that is, a subset J of I such that $J \models_{\mathcal{T}} \overline{L}$.

If yes: push L on I.

Optionally: Return a list of literals that are \mathcal{T} -consequences of $I \cup \{L\}$ (and have not yet been detected before).

Note: Depending on \mathcal{T} , detecting (all) \mathcal{T} -consequences may be very cheap or very expensive.

Backtrack($n: \mathbb{N}$):

Pop n literals from I.

Explanation(L: \mathcal{T} -Literal):

Return an explanation for L, that is, a subset J of I such that $J \models_{\mathcal{T}} L$.

We assume that L has been returned previously as a result of some SetTrue(L') operation. No literal of J may occur in I after L'.

Computing Backjump Clauses

Backjump clauses for a conflict can then be computed as in the propositional case:

Start with the conflicting clause.

Resolve with the clauses used for Unit Propagate or the explanations produced by the solver until a backjump clause (or \perp) is found.

2.2 Heuristic Instantiation

CDCL(T) is limited to ground (or existentially quantified) formulas. Even if we have decidability for more than the ground fragment of a theory \mathcal{T} , we cannot use this in CDCL(T).

Most current SMT implementations offer a limited support for universally quantified formulas by heuristic instantiation.

Goal:

Create potentially useful ground instances of universally quantified clauses and add them to the given ground clauses.

Idea (Detlefs, Nelson, Saxe: Simplify):

Select subset of the terms (or atoms) in $\forall \vec{x} \, C$ as "trigger" (automatically, but can be overridden manually).

If there is a ground instance $C\theta$ of $\forall \vec{x} C$ such that $t\theta$ occurs (modulo congruence) in the current set of ground clauses for every $t \in trigger(C)$, add $C\theta$ to the set of ground clauses (incrementally).

Conditions for trigger terms (or atoms):

- (1) Every quantified variable of the clause occurs in some trigger term (therefore more than one trigger term may be necessary).
- (2) A trigger term is not a variable itself.
- (3) A trigger is not explicitly forbidden by the user.
- (4) There is no larger instance of the term in the formula: (If f(x) were selected as a trigger in $\forall x P(f(x), f(g(x)))$, a ground term f(a) would produce an instance P(f(a), f(g(a))), which would produce instance P(f(g(a)), f(g(g(a)))), and so on.)
- (5) No proper subterm satisfies (1)–(4).

Also possible (but expensive, therefore only in restricted form): Theory matching

The ground atom P(a) is not an instance of the trigger atom P(x+1); it is however equivalent (in linear algebra) to P((a-1)+1), which is an instance and may therefore produce a new ground clause.

Heuristic instantiation is obviously incomplete

```
e.g., it does not find the contradiction for f(x,a) \approx x, f(b,y) \approx y, a \not\approx b
```

but it is quite useful in practice:

modern implementations: CVC, Yices, Z3.

2.3 Local Theory Extensions

Under certain circumstances, instantiating universally quantified variables with "known" ground terms is sufficient for completeness.

Scenario:

 $\Sigma_0 = (\Omega_0, \Pi_0)$: base signature; \mathcal{T}_0 : Σ_0 -theory. $\Sigma_1 = (\Omega_0 \cup \Omega_1, \Pi_0)$: signature extension; K: universally quantified Σ_1 -clauses; G: ground clauses.

Assumption: clauses in G are Σ_1 -flat and Σ_1 -linear:

only constants as arguments of Ω_1 -symbols,

if a constant occurs in two terms below an Ω_1 -symbol, then the two terms are identical, no term contains the same constant twice below an Ω_1 -symbol.

Example: Monotonic functions over \mathbb{Z} .

 \mathcal{T}_0 : Linear integer arithmetic.

$$\Omega_1 = \{f/1\}.$$
 $K = \{ \forall x, y \ (\neg x \le y \lor f(x) \le f(y)) \}.$
 $G = \{ f(3) \ge 6, f(5) \le 9 \}.$

Observation: If we choose interpretations for f(3) and f(5) that satisfy the G and monotonicity axiom, then it is always possible to define f for all remaining integers such that the monotonicity axiom is satisfied.

Example: Strictly monotonic functions over \mathbb{Z} .

 \mathcal{T}_0 : Linear integer arithmetic.

$$\Omega_1 = \{ f/1 \}.
K = \{ \forall x, y \ (\neg x < y \lor f(x) < f(y)) \}.
G = \{ f(3) > 6, f(5) < 9 \}.$$

Observation: Even though we can choose interpretations for f(3) and f(5) that satisfy G and the strict monotonicity axiom (map f(3) to 7 and f(5) to 8), we cannot define f(4) such that the strict monotonicity axiom is satisfied.

To formalize the idea, we need partial algebras:

like (usual) total algebras, but f_A may be a partial function.

There are several ways to define equality in partial algebras (strong equality, Evans equality, weak equality, etc.). Here we use weak equality:

an equation $s \approx t$ holds w.r.t. \mathcal{A} and β if both $\mathcal{A}(\beta)(s)$ and $\mathcal{A}(\beta)(t)$ are defined and equal or if at least one of them is undefined;

a negated equation $s \not\approx t$ holds w.r.t. \mathcal{A} and β if both $\mathcal{A}(\beta)(s)$ and $\mathcal{A}(\beta)(t)$ are defined and different or if at least one of them is undefined.

If a partial algebra \mathcal{A} satisfies a set of formulas N w.r.t. weak equality, it is called a weak partial model of N.

A partial algebra \mathcal{A} embeds weakly into a partial algebra \mathcal{B} if there is an injective total mapping $h: U_{\mathcal{A}} \to U_{\mathcal{B}}$ such that if $f_{\mathcal{A}}(a_1, \ldots, a_n)$ is defined in \mathcal{A} then $f_{\mathcal{B}}(h(a_1), \ldots, h(a_n))$ is defined in \mathcal{B} and equal to $h(f_{\mathcal{A}}(a_1, \ldots, a_n))$.

A theory extension $\mathcal{T}_0 \subseteq \mathcal{T}_0 \cup K$ is called *local*, if for every set G, $\mathcal{T}_0 \cup K \cup G$ is satisfiable if and only if $\mathcal{T}_0 \cup K[G] \cup G$ has a (partial) model, where K[G] is the set of instances of clauses in K in which all terms starting with an Ω_1 -symbol are ground terms occurring in K or G.

If every weak partial model of $\mathcal{T}_0 \cup K$ can be embedded into a a total model, then the theory extension $\mathcal{T}_0 \subseteq \mathcal{T}_0 \cup K$ is local (Sofronie-Stokkermans 2005).

Note: There are many variants of partial models and embeddings corresponding to different kinds of locality.

Examples of local theory extensions:

free functions, constructors/selectors, monotonic functions, Lipschitz functions.

Literature

David Detlefs, Greg Nelson, James B. Saxe: Simplify: A Theorem Prover for Program Checking. Journal of the ACM, 52(3):365–473, 2005.

Yeting Ge and Leonardo de Moura: Complete instantiation for quantified formulas in Satisfiabiliby Modulo Theories. International Conference on Computer Aided Verification, CAV 2009 LNCS 5643, pp 306–320, Springer, 2009.

Leonardo de Moura, Nikolaj Bjørner: Efficient E-Matching for SMT solvers. Automated Deduction, CADE-21, LNAI 4603, pp. 183–198, Springer, 2007.

Robert Nieuwenhuis, Albert Oliveras, Cesare Tinelli: Solving SAT and SAT Modulo Theories: From an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T). Journal of the ACM, 53(6):937–977, 2006.

Viorica Sofronie-Stokkermans: Hierarchic reasoning in local theory extensions. Automated Deduction, CADE-20, LNAI 3632, pp. 219–234, Springer, 2005.