3.5 Improvements and Refinements

The superposition calculus as described so far can be improved and refined in several
ways.

Concrete Redundancy and Simplification Criteria

Redundancy is undecidable.

Even decidable approximations are often expensive (experimental evaluations are needed
to see what pays off in practice).

Often a clause can be made redundant by adding another clause that is entailed by the
existing ones.

This process is called simplification.
Examples:

Subsumption:
If N contains clauses D and C' = C’V Do, where C’ is non-empty, then D subsumes
C and (' is redundant.

Example: f(z) ~ g(z) subsumes f(y) ~ aV f(h(y)) = g(h(y)).

Trivial literal elimination:
Duplicated literals and trivially false literals can be deleted: A clause C'V LV L can
be simplified to C" V L; a clause C' V s % s can be simplified to C".

Condensation:

If we obtain a clause D from C' by applying a substitution, followed by deletion of
duplicated literals, and if D subsumes C, then C' can be simplified to D.

Example: By applying {y — g(x)} to C = f(g(x)) = aV f(y) = a and deleting the
duplicated literal, we obtain f(g(z)) ~ a, which subsumes C.

Semantic tautology deletion:

Every clause that is a tautology is redundant. Note that in the non-equational case,
a clause is a tautology if and only if it contains two complementary literals, whereas
in the equational case we need a congruence closure algorithm to detect that a clause
like x 2 y V f(z) = f(y) is tautological.

Rewriting:

If N contains a unit clause D = s =~ ¢ and a clause C[sco], such that so > to and
C ¢ Do, then C can be simplified to C[to].

Example: If D = f(z,x) = g(x) and C = h(f(9(y),9(y))) = h(y), and > is an LPO
with h > f > g, then C can be simplified to h(g(g(y))) = h(y).
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Selection Functions

Like the ordered resolution calculus, superposition can be used with a selection function
that overrides the ordering restrictions for negative literals.

A selection function is a mapping

S:C + set of occurrences of negative literals in C'

We indicate selected literals by a box:

—f(x)=a|V gz,y) =~ g(z,2)

The second ordering condition for inferences is replaced by

— The last literal in each premise is either selected, or there is no selected literal in
the premise and the literal is maximal in the premise (strictly maximal for positive
literals in superposition inferences).

In particular, clauses with selected literals can only be used in equality resolution infer-
ences and as the second premise in negative superposition inferences.

Refutational completeness is proved essentially as before:

We assume that each ground clause in Gx(N) inherits the selection of one of the
clauses in N of which it is a ground instance (there may be several ones!).

In the proof of the model construction theorem, we replace case 3 by “C# contains a
selected or maximal negative literal” and case 4 by “C'd contains neither a selected
nor a maximal negative literal”.

In addition, for the induction proof of this theorem we need one more property, namely:
(iv) If CO has selected literals then Egy = 0.

Redundant Inferences

So far, we have defined saturation in terms of redundant clauses:

N is saturated up to redundancy, if the conclusion of every inference from clauses in
N\ Red(N) is contained in N U Red(N).

This definition ensures that in the proof of the model construction theorem, the conclu-
sion Cpf of a ground inference follows from clauses in Gy (V) that are smaller than or
equal to itself, hence they are smaller than the premise C'0 of the inference, hence they
are true in Ry by induction.
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However, a closer inspection of the proof shows that it is actually sufficient that the
clauses from which Cyf follows are smaller than C'6 — it is not necessary that they are
smaller than C6 itself. This motivates the following definition of redundant inferences:

A ground inference with conclusion Cj and right (or only) premise C' is called redundant
w.r.t. a set of ground clauses N, if one of its premises is redundant w.r.t. N, or if Cj
follows from clauses in N that are smaller than C'.

An inference is redundant w.r.t. a set of clauses N, if all its ground instances are
redundant w.r.t. Gx(N).

Recall that a clause can be redundant w.r.t. N without being contained in N. Analo-
gously, an inference can be redundant w.r.t. N without being an inference from clauses
in N.

The set of all inferences that are redundant w.r.t. IV is denoted by RedInf(N).
Saturation is then redefined in the following way:

N is saturated up to redundancy, if every inference from clauses in N is redundant
w.r.t. N.

Using this definition, the model construction theorem can be proved essentially as be-
fore.

The connection between redundant inferences and clauses is given by the following lem-
mas. They are proved in the same way as the corresponding lemmas for redundant
clauses:

Lemma 3.18 If N C N’, then RedInf(N) C RedInf(N').

Lemma 3.19 If N’ C Red(N), then RedInf(N) C RedInf(N \ N').
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3.6 Splitting

Motivation:

A clause like f(z) =~ a V ¢(y) = b has rather undesirable properties in the superposi-
tion calculus: It does not have negative literals that one could select; it does not have
a unique maximal literal; moreover, after performing a superposition inference with
this clause, the conclusion often does not have a unique maximal literal either.

On the other hand, the two unit clauses f(x) ~ a and g(y) ~ b have much nicer
properties.

Splitting with Backtracking

If a clause VZ, iy C1(Z) V Cy(y) consists of two non-empty variable-disjoint subclauses,
then it is equivalent to the disjunction (VZ C1(Z)) V (V§ Ca()).

In this case, superposition derivations can branch in a tableau-like manner:

NU{CV Cs}

NuU{Ci} | N U{Cs}
where C; and Cy do not have common variables.

Splitting:

If L is found on the left branch, backtrack to the right one.

If C} is ground, the general rule can be improved:
NU{C;V Cs}

NU{C} | NU{C} U{-C}

where (' is ground.

Splitting:

Note: =C; denotes the conjunction of all negations of literals in Cf.

In practice: most useful if both subclauses contain at least one positive literal.

Implementing Splitting

Most clauses that are derived after a splitting step do not depend on the split clause.

It is unpractical to delete them as soon as one branch is closed and to recompute them
in the other branch afterwards.

Solution: Associate a label set £ to every clause C that indicates on which splits it
depends.
CQ — £2 Cl — Ll

CO < LQ U El

Inferences:
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If we derive L <~ £ in one branch:
Determine the last split in L.
Backtrack to the corresponding right branch.
Keep those clauses that are still valid on the right branch.

Restore clauses that have been simplified if the simplifying clause is no longer valid
on the right branch.

Additionally: Delete splittings that did not contribute to the contradiction (branch
condensation).

AVATAR

Superposition with splitting has some similarity with CDCL.
Can we actually use CDCL?
Encoding splitting components:

Use propositional literals as labels for splitting components:

non-ground component C' — propositional variable Pg
positive ground component C' — propositional variable Pg
negative ground component C' — negated propositional variable —FP¢

Therefore: splittable clauses — propositional clauses.
Implementation:
Combine a CDCL solver and a superposition prover.

The superposition prover passes splittable clauses and labelled empty clauses to the
CDCL solver.

If the CDCL solver finds contradiction: input contradictory.

Otherwise the CDCL solver extracts a boolean model and passes the associated la-
belled clauses to the superposition prover.
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3.7 Constraint Superposition

So far:

Refutational completeness proof for superposition is based on the analysis of inferences
between ground instances of clauses.

Inferences between ground instances must be covered by inferences between original
clauses.

Non-ground clauses represent the set of all their ground instances.

Do we really need all ground instances?

Constrained Clauses

A constrained clause is a pair (C, K), usually written as C' [K], where C is a X-clause
and K is a formula (called constraint).

Often: K is a boolean combination of ordering literals s > t with X-terms s, t.
(also possible: comparisons between literals or clauses).

Intuition: C'[K7] represents the set of all ground clauses C6 for which K6 evaluates to
true for some fixed term ordering. Such a C¥9 is called a ground instance of C' [K].

A clause C' without constraint is identified with C'[T].

A constrained clause C'[L] with an unsatisfiable constraint represents no ground
instances; it can be discarded.

Constraint Superposition

Inference rules for constrained clauses:
D'Vt~ [Ks] C'V slu] = ¢ [K1]
(D' C'"V [t = §')o [(Ke AN Ky A K)o]
where 0 = mgu(¢, u) and
u is not a variable and
K==t N sful>¢
AN

Pos. Superposition:

The other inference rules are modified analogously.
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To work with effectively with constrained clauses in a calculus, we need methods to
check the satisfiability of constraints:

Possible for LPO, KBO, but expensive.

If constraints become too large, we may delete some conjuncts of the constraint. (Note
that the calculus remains sound, if constraints are replaced by implied constraints.)

Refutational Completeness
The refutational completeness proof for constraint superposition looks mostly like in
Sect. 3.4.

Lifting works as before, so every ground infererence that is required in the proof is an
instance of some inference from the corresponding constrained clauses. (Easy.)

There is one significant problem, though.
Case 2 in the proof of Thm. 3.9 does not work for constrained clauses:

If we have a ground instance C'# where x6 is reducible by R¢y, we can no longer
conclude that ('@ is true because it follows from some rule in Ry and some smaller
ground instance C6'.

Example: Let C'[K] be the clause f(z) ~ a [z > a], let § = {z — b}, and assume
that Rcg contains the rule b — a.
Then 6 satisfies K, but ¢/ = {x — a} does not, so C¢ is not a ground instance of

C[K].
Solution:

Assumption: We start the saturation with a set Ny of unconstrained clauses; the limit
N, contains constrained clauses, though.

During the model construction, we ignore ground instances Cf of clauses in N, for
which z6 is reducible by Rcyg.

We obtain a model R, of all variable irreducible ground instances of clauses in N,.

R, is also a model of all variable irreducible ground instances of clauses in Nj.

Since all clauses in Ny are unconstrained, every ground instance of a clause in Ny
follows from some rule in R, and some smaller ground instance; so it is true in R.,.

Consequently, R, is a model of all ground instances of clauses in Nj.
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Other Constraints

The approach also works for other kinds of constraints.

In particular, we can replace unification by equality constraints (~ “basic superposi-
tion”):
D'vit=t[Ks] C'V su] = ¢ [Ki]
D'vC' Vst~ s [Ko N K ANK]
where v is not a variable and
K=(t=u)

Pos. Superposition:

Note: In contrast to ordering constraints, these constraints are essential for soundness.

The Drawback
Constraints reduce the number of required inferences; however, they are detrimental to
redundancy:

Since we consider only variable irreducible ground instances during the model con-
struction, we may use only such instances for redundancy:

A clause is redundant, if all its variable irreducible ground instances follow from
smaller variable irreducible ground instances.

Even worse, since we don’t know R, in advance, we must consider variable irreducibil-
ity w.r.t. arbitrary rewrite systems.

Consequence: Not every subsumed clause is redundant!
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