The Nelson–Oppen Algorithm (Non-deterministic Version)

Suppose that $\exists \vec{x} \ F$ is a purified conjunction of Σ_1 and Σ_2-literals.

Let F_1 be the conjunction of all literals of F that do not contain Σ_2-symbols; let F_2 be
the conjunction of all literals of F that do not contain Σ_1-symbols. (Equations between
variables are in both F_1 and F_2.)

The Nelson–Oppen algorithm starts with the pair F_1, F_2 and applies the following inference rules.

Unsat:

$$F_1, F_2 \perp$$

if $\exists \vec{x} \ F_i$ is unsatisfiable w. r. t. T_i for some i.

Branch:

$$F_1, F_2 \quad F_1 \land (x \approx y), F_2 \land (x \approx y) \quad F_1 \land (x \not\approx y), F_2 \land (x \not\approx y)$$

if x and y are two different variables appearing in
both F_1 and F_2 such that neither $x \approx y$ nor $x \not\approx y$
occsurs in both F_1 and F_2

“|” means non-deterministic (backtracking!) branching of the derivation into two sub-
derivations. Derivations are therefore trees. All branches need to be reduced until ter-
imination.

Clearly, all derivation paths are finite since there are only finitely many shared variables
in F_1 and F_2, therefore the procedure represented by the rules is terminating.

We call a constraint configuration to which no rule applies irreducible.

Theorem 1.1 (Soundness) If “Branch” can be applied to F_1, F_2, then $\exists \vec{x} (F_1 \land F_2)$
is satisfiable in $T_1 \cup T_2$ if and only if one of the successor configurations of F_1, F_2 is
satisfiable in $T_1 \cup T_2$.

Corollary 1.2 If all paths in a derivation tree from F_1, F_2 end in \perp, then $\exists \vec{x} (F_1 \land F_2)$
is unsatisfiable in $T_1 \cup T_2$.

For completeness we need to show that if one branch in a derivation terminates with
an irreducible configuration F_1, F_2 (different from \perp), then $\exists \vec{x} (F_1 \land F_2)$ (and, thus, the
initial formula of the derivation) is satisfiable in the combined theory.
As \(\exists \vec{x} (F_1 \land F_2) \) is irreducible by “Unsat”, the two formulas are satisfiable in their respective component theories, that is, we have \(T_i \)-models \(A_i \) of \(\exists \vec{x} F_i \) for \(i \in \{1, 2\} \). We are left with combining the models into a single one that is both a model of the combined theory and of the combined formula. These constructions are called amalgamations.

Let \(F \) be a \(\Sigma_i \)-formula and let \(S \) be a set of variables of \(F \). \(F \) is called compatible with an equivalence \(\sim \) on \(S \) if the formula

\[
\exists \vec{x} \left(F \land \bigwedge_{x,y \in S, x \sim y} x \approx y \land \bigwedge_{x,y \in S, x \not\approx y} x \not\approx y \right)
\]

is \(T_i \)-satisfiable whenever \(F \) is \(T_i \)-satisfiable. This expresses that \(F \) does not contradict equalities between the variables in \(S \) as given by \(\sim \).

Proposition 1.3 If \(F_1, F_2 \) is a pair of conjunctions over \(T_1 \) and \(T_2 \), respectively, that is irreducible by “Branch”, then both \(F_1 \) and \(F_2 \) are compatible with some equivalence \(\sim \) on the shared variables \(S \) of \(F_1 \) and \(F_2 \).

Proof. If \(F_1, F_2 \) is irreducible by the branching rule, then for each pair of shared variables \(x \) and \(y \), both \(F_1 \) and \(F_2 \) contain either \(x \approx y \) or \(x \not\approx y \). Choose \(\sim \) to be the equivalence given by all (positive) variable equations between shared variables that are contained in \(F_1 \).

Lemma 1.4 (Amalgamation Lemma) Let \(T_1 \) and \(T_2 \) be two stably infinite theories over disjoint signatures \(\Sigma_1 \) and \(\Sigma_2 \). Furthermore let \(F_1, F_2 \) be a pair of conjunctions of literals over \(T_1 \) and \(T_2 \), respectively, both compatible with some equivalence \(\sim \) on the shared variables of \(F_1 \) and \(F_2 \). Then \(F_1 \land F_2 \) is \((T_1 \cup T_2) \)-satisfiable if and only if each \(F_i \) is \(T_i \)-satisfiable.

Proof. The “only if” part is obvious.

For the “if” part, assume that each of the \(F_i \) is \(T_i \)-satisfiable. That is, there exist models \(A_i \) of \(T_i \) and variable assignments \(\beta_i \) such that \(A_i, \beta_i \models F_i \). As the \(F_i \) are compatible with an equivalence \(\sim \) on their shared variables, we may assume that the \(\beta_i \) also satisfy the extended conjunctions in (1) with \(S \) the set of shared variables. In particular, whenever we have two shared variables \(x \) and \(y \), \(\beta_1(x) = \beta_1(y) \) if and only if \(\beta_2(x) = \beta_2(y) \). Since the theories are stably infinite we may additionally assume that the \(A_i \) have countably infinite universes, hence there are bijections \(\rho_i \) from the domain of \(A_i \) to \(\mathbb{N} \) such that \(\rho_1(\beta_1(x)) = \rho_2(\beta_2(x)) \) for each shared variable \(x \). Now define \(A \) to be the algebra having \(\mathbb{N} \) as its domain; for \(f \) or \(P \) in \(\Sigma_i \) define \(f_A(n_1, \ldots, n_k) = \rho_1(f_{A_i}(\rho_1^{-1}(n_1), \ldots, \rho_1^{-1}(n_k))) \) and \(P_A(n_1, \ldots, n_k) \Leftrightarrow P_{A_i}(\rho_1^{-1}(n_1), \ldots, \rho_1^{-1}(n_k)) \). Define \(\beta(x) = \rho_i(\beta_i(x)) \) if \(x \) is a variable occurring in \(F_i \). By construction of the \(\rho_i \) this definition is independent of the choice of \(i \). Clearly \(A|_{\Sigma_i}, \beta \models F_i \), for \(i = 1, 2 \), hence \(A, \beta \models F_1 \land F_2 \). Moreover, the reducts \(A|_{\Sigma_i} \) are isomorphic (via \(\rho_i \)) to \(A_i \) and thus are models of \(T_i \), so that \(A \) is a model of \(T_1 \cup T_2 \) as required.
Theorem 1.5 The non-deterministic Nelson–Oppen algorithm is terminating and complete for deciding satisfiability of pure conjunctions of literals F_1 and F_2 over $\mathcal{T}_1 \cup \mathcal{T}_2$ for signature-disjoint, stably infinite theories \mathcal{T}_1 and \mathcal{T}_2.

Proof. Suppose that F_1, F_2 is irreducible by the inference rules of the Nelson–Oppen algorithm. Applying the amalgamation lemma in combination with Prop. 1.3 we infer that F_1, F_2 is satisfiable w. r. t. $\mathcal{T}_1 \cup \mathcal{T}_2$.

Convexity

The number of possible equivalences of shared variables grows superexponentially with the number of shared variables, so enumerating all possible equivalences non-deterministically is going to be inefficient.

A much faster variant of the Nelson–Oppen algorithm exists for convex theories.

A first-order theory \mathcal{T} is called convex w. r. t. equations, if for every conjunction Γ of Σ-equations and non-equational Σ-literals and for all Σ-equations A_i ($1 \leq i \leq n$), whenever $\mathcal{T} \models \forall \vec{x} (\Gamma \rightarrow A_1 \lor \ldots \lor A_n)$, then there exists some index j such that $\mathcal{T} \models \forall \vec{x} (\Gamma \rightarrow A_j)$.

Theorem 1.6 If a first-order theory \mathcal{T} is convex w. r. t. equations and has no trivial models (i.e., models with only one element), then \mathcal{T} is stably infinite.

Proof. We shall prove the contrapositive of the statement. Suppose \mathcal{T} is not stably infinite. Then there exists a satisfiable conjunction of literals $\exists \vec{x} F$ that has only finite models w. r. t. \mathcal{T}. We split F into two conjunctions F^+ and F^-, such that F^- contains the negative equational literals in F and F^+ contains the rest. As \mathcal{T} is a first-order theory, it is compact, hence all models of F are bounded in cardinality by some number m. Now consider the clause $C = F^+ \rightarrow \neg F^- \lor \bigvee_{1 \leq i < j \leq m+1} y_i \approx y_j$, with fresh variables y_1, \ldots, y_{m+1} not occurring in F. $\mathcal{T} \models \forall \vec{x}, \vec{y} C$, as the clause exactly expresses that all models of F have size less than or equal to m. However, $\mathcal{T} \not\models \forall \vec{x}, \vec{y} (F^+ \rightarrow A)$, for any literal A of $\neg F^-$ (as otherwise F would not be satisfiable), and also $\mathcal{T} \not\models \forall \vec{x}, \vec{y} (F^+ \rightarrow y_i \approx y_j)$, for each i, j, as otherwise \mathcal{T} would have trivial models, which we have excluded.
Lemma 1.7 Suppose \mathcal{T} is convex, F a conjunction of literals, and S a subset of its variables. Let, for any pair of variables x_i and x_j in S, $x_i \sim x_j$ if and only if $\mathcal{T} \models \forall \vec{x}(F \to x_i \approx x_j)$. Then F is compatible with \sim.

Proof. We show that with this choice of \sim the constraint (1) is satisfiable in \mathcal{T} whenever F is. Suppose, to the contrary, that F is satisfiable but (1) is not, that is,

$$\mathcal{T} \models \forall \vec{z} (F \to \bigvee_{x,y \in S, x \sim y} x \approx y \lor \bigvee_{x,y \in S, x \not\sim y} x \approx y)$$

or, equivalently,

$$\mathcal{T} \models \forall \vec{z} (F^+ \land \bigwedge_{x,y \in S, x \sim y} x \approx y \to \neg F^- \lor \bigvee_{x,y \in S, x \not\sim y} x \approx y).$$

By convexity of \mathcal{T}, the antecedent implies one of the equations of the succedent. Since the equations $x \approx y$, with $x \sim y$, are entailed by F and since F is satisfiable, this means that this equation must come from the last disjunct. In other words, there exists a pair of different variables x' and y' in S such that $x' \not\sim y'$ and

$$\mathcal{T} \models \forall \vec{z} (F^+ \land \bigwedge_{x,y \in S, x \sim y} x \approx y \to x' \approx y').$$

Since

$$\mathcal{T} \models \forall \vec{z} (F \to \bigwedge_{x,y \in S, x \sim y} x \approx y),$$

we derive $\mathcal{T} \models \forall \vec{z} (F \to x' \approx y')$, which is impossible.

The Nelson–Oppen Algorithm (Deterministic Version for Convex Theories)

Unsat:

$$F_1, F_2 \perp$$

if $\exists \vec{x} F_i$ is unsatisfiable w.r.t. \mathcal{T}_i for some i.

Propagate:

$$F_1, F_2 \quad \frac{F_1 \land (x \approx y), F_2 \land (x \approx y)}{F_1 \land (x \approx y), F_2 \land (x \approx y)}$$

if x and y are two different variables appearing in both F_1 and F_2 such that

$\mathcal{T}_1 \models \forall \vec{x}(F_1 \to x \approx y)$ and $\mathcal{T}_2 \not\models \forall \vec{x}(F_2 \to x \approx y)$

or $\mathcal{T}_2 \models \forall \vec{x}(F_2 \to x \approx y)$ and $\mathcal{T}_1 \not\models \forall \vec{x}(F_1 \to x \approx y)$.

28
Theorem 1.8 If \mathcal{T}_1 and \mathcal{T}_2 are signature-disjoint theories that are convex w. r. t. equations and have no trivial models, then the deterministic Nelson–Oppen algorithm is terminating, sound and complete for deciding satisfiability of pure conjunctions of literals F_1 and F_2 over $\mathcal{T}_1 \cup \mathcal{T}_2$.

Proof. Termination and soundness are obvious: there are only finitely many different equations that can be added, and each of them is entailed by given formulas.

For completeness, we have to show that every configuration that is irreducible by “Unsat” and “Propagate” is satisfiable w. r. t. $\mathcal{T}_1 \cup \mathcal{T}_2$: Let F_1, F_2 be such a configuration. As it is irreducible by “Propagate”, we have, for every equation $x \approx y$ between shared variables, $\mathcal{T}_1 \models \forall \vec{x} (F_1 \rightarrow x \approx y)$ if and only if $\mathcal{T}_2 \models \forall \vec{x} (F_2 \rightarrow x \approx y)$. Consequently, F_1 and F_2 are compatible with the same equivalence on the shared variables of F_1 and F_2. Moreover, each of the formulas F_i is \mathcal{T}_i-satisfiable, and since convexity implies stable infiniteness, F_i has a \mathcal{T}_i-model with a countably infinite universe. Hence, by the amalgamation lemma, $F_1 \land F_2$ is $(\mathcal{T}_1 \cup \mathcal{T}_2)$-satisfiable.

Corollary 1.9 The deterministic Nelson–Oppen algorithm for convex theories requires at most $O(n^3)$ calls to the individual decision procedures for the component theories, where n is the number of shared variables.

Iterating Nelson–Oppen

The Nelson–Oppen combination procedures can be iterated to work with more than two component theories by virtue of the following observations where signature disjointness is assumed:

Theorem 1.10 If \mathcal{T}_1 and \mathcal{T}_2 are stably infinite, then so is $\mathcal{T}_1 \cup \mathcal{T}_2$.

Proof. The non-deterministic Nelson–Oppen algorithm is sound and complete for $\mathcal{T}_1 \cup \mathcal{T}_2$, that is, an existentially quantified conjunction F over $\Sigma_1 \cup \Sigma_2$ is satisfiable if and only if in every derivation from the purified form of F there exists a branch leading to some irreducible constraint F_1, F_2 entailing F. The amalgamation lemma 1.4 constructs a model with a countably infinite universe for F from the models of F_1 and F_2.

Lemma 1.11 A first-order theory \mathcal{T} is convex w. r. t. equations if and only if for every conjunction Γ of Σ-equations and non-equational Σ-literals and for all equations $x_i \approx x_i'$ ($1 \leq i \leq n$), whenever $\mathcal{T} \models \forall \vec{x} (\Gamma \rightarrow x_1 \approx x_1' \lor \ldots \lor x_n \approx x_n')$, then there exists some index j such that $\mathcal{T} \models \forall \vec{x} (\Gamma \rightarrow x_j \approx x_j')$.
Lemma 1.12 Let \mathcal{T} be a first-order theory that is convex w. r. t. equations. Let F be a conjunction of literals; let F^- be the conjunction of all negative equational literals in F and let F^+ be the conjunction of all remaining literals in F. If $\mathcal{T} \models \forall \vec{x} (F \rightarrow x \approx y)$, then $\exists \vec{x} F$ is \mathcal{T}-unsatisfiable or $\mathcal{T} \models \forall \vec{x} (F^+ \rightarrow x \approx y)$.

Proof. $\mathcal{T} \models \forall \vec{x} (F \rightarrow x \approx y)$ is equivalent to $\mathcal{T} \models \forall \vec{x} (F^+ \rightarrow (\neg F^- \vee x \approx y))$. By convexity of \mathcal{T} we know that $\mathcal{T} \models \forall \vec{x} (F^+ \rightarrow x \approx y)$ or $\mathcal{T} \models \forall \vec{x} (F^+ \rightarrow A)$ for some literal $\neg A$ in F^-. In the latter case, $\exists \vec{x} (F^+ \land \neg A)$ is \mathcal{T}-unsatisfiable; hence $\exists \vec{x} F$, that is, $\exists \vec{x} (F^+ \land F^-)$ is \mathcal{T}-unsatisfiable as well.

Theorem 1.13 If \mathcal{T}_1 and \mathcal{T}_2 are convex w. r. t. equations and do not have trivial models, then so is $\mathcal{T}_1 \cup \mathcal{T}_2$.

Proof. Suppose that \mathcal{T}_1 and \mathcal{T}_2 are convex w. r. t. equations and do not have trivial models. Assume furthermore that $\mathcal{T} \models \forall \vec{x} (\Gamma \rightarrow x_1 \approx x_1' \lor \ldots \lor x_n \approx x_n')$ for some conjunction Γ of $(\Sigma_1 \cup \Sigma_2)$-equations and non-equational $(\Sigma_1 \cup \Sigma_2)$-literals. Then $\exists \vec{x} (\Gamma \land x_1 \neq x_1' \land \ldots \land x_n \neq x_n')$ is \mathcal{T}-unsatisfiable, and we can detect this by some run of the deterministic Nelson–Oppen algorithm starting with $\exists \vec{x}, \vec{y} (\Gamma_1 \land \Gamma_2 \land x_1 \neq x_1' \land \ldots \land x_n \neq x_n')$, where $\Gamma_1 \land \Gamma_2$ is the result of purifying Γ. This run consists of a sequence of “Propagate” steps followed by a final “Unsat” step, and without loss of generality, we use the “Propagate” rule only if “Unsat” cannot be applied. Consequently, whenever we add an equation $x \approx y$ that is entailed by F_1 w. r. t. \mathcal{T}_1 or by F_2 w. r. t. \mathcal{T}_2, then it is by Lemma 1.12 already entailed by the positive and the non-equational literals in F_1 or F_2. Furthermore, due to the convexity of \mathcal{T}_1 and \mathcal{T}_2, the final “Unsat” step depends on at most one negative equational literal in F_1 or F_2. We can therefore construct a similar Nelson–Oppen derivation that starts with only the positive and the non-equational literals in Γ_1 and Γ_2, plus at most one negative equational literal that may be needed for the “Unsat” step. If a negative equational literal is needed, it is one of the $x_j \neq x_j'$; then $\exists \vec{x} (\Gamma \land x_j \neq x_j')$ is \mathcal{T}-unsatisfiable and $\forall \vec{x} (\Gamma \rightarrow x_j \approx x_j')$ is \mathcal{T}-valid; if no negative equational literal is needed at all, then $\exists \vec{x} \Gamma$ is \mathcal{T}-unsatisfiable, so $\forall \vec{x} (\Gamma \rightarrow x_j \approx x_j')$ is \mathcal{T}-valid for every j.

30
Extensions

Many-sorted logics:

- \textit{read}/2 becomes \textit{read} : \textit{array} \times \textit{int} \rightarrow \textit{data}.
- \textit{write}/3 becomes \textit{write} : \textit{array} \times \textit{int} \times \textit{data} \rightarrow \textit{array}.

Variables: \(x : \textit{data} \)

- Only one declaration per function/predicate/variable symbol.
- All terms, atoms, substitutions must be well-sorted.

Algebras:

- Instead of universe \(U_A \), one set per sort: \(\textit{array}_A, \textit{int}_A \).

Interpretations of function and predicate symbols correspond to their declarations:

\(\textit{read}_A : \textit{array}_A \times \textit{int}_A \rightarrow \textit{data}_A \)

If we consider combinations of theories with shared sorts but disjoint function and predicate symbols, then we get essentially the same combination results as before.

However, stable infiniteness and/or convexity are only required for the shared sorts.

Non-stably infinite theories:

- If we impose stronger conditions on one theory, we can relax the conditions on the other one.
 - For instance, EUF can be combined with any other theory; stable infiniteness is not required.

Non-disjoint combinations:

- Have to ensure that both decision procedures interpret shared symbols in a compatible way.
 - Some results, e.g. by Ghilardi, using strong model theoretical conditions on the theories.
Another Combination Method

Shostak’s method:

Applicable to combinations of EUF and solvable theories.

A Σ-theory T is called solvable, if there exists an effectively computable function $solve$ such that, for any T-equation $s \approx t$:

(A) $solve(s \approx t) = \bot$ if and only if $T \models \forall \vec{x} (s \not= t)$;

(B) $solve(s \approx t) = \emptyset$ if and only if $T \models \forall \vec{x} (s \approx t)$; and otherwise

(C) $solve(s \approx t) = \{x_1 \approx u_1, \ldots, x_n \approx u_n\}$, where

- the x_i are pairwise different variables occurring in $s \approx t$;

- the x_i do not occur in the u_j; and

- $T \models \forall \vec{x}((s \approx t) \leftrightarrow \exists \vec{y}(x_1 \approx u_1 \land \ldots \land x_n \approx u_n))$, where \vec{y} are the variables occurring in one of the u_j but not in $s \approx t$, and $\vec{x} \cap \vec{y} = \emptyset$.

Additionally useful (but not required):

A canonizer, that is, a function that simplifies terms by computing some unique normal form

Main idea of the procedure:

If $s \approx t$ is a positive equation and $solve(s \approx t) = \{x_1 \approx u_1, \ldots, x_n \approx u_n\}$, replace $s \approx t$ by $x_1 \approx u_1 \land \ldots \land x_n \approx u_n$ and use these equations to eliminate the x_i elsewhere.

Practical problem:

Solvability is a rather restrictive condition.

Literature

