2 Satisfiability Modulo Theories (SMT)

So far:

decision procedures for satisfiability for various fragments of first-order theories;

often only for ground conjunctions of literals.

Goals:

extend decision procedures efficiently to ground CNF formulas;

later: extend to non-ground formulas (we will often lose completeness, however).

2.1 The CDCL(T) Procedure

Goal:

Given a propositional formula in CNF (or alternatively, a finite set N of clauses), where the atoms represent ground formulas over some theory \mathcal{T} , check whether it is satisfiable in \mathcal{T} (and optionally: output one solution, if it is satisfiable).

Assumption:

As in the propositional case, clauses contain neither duplicated literals nor complementary literals.

For propositional CDCL ("Conflict-Driven Clause Learning"), we have considered partial valuations, i.e., partial mappings from propositional variables to truth values.

A partial valuation \mathcal{A} corresponds to a set M of literals that does not contain complementary literals, and vice versa:

- $\mathcal{A}(L)$ is true, if $L \in M$.
- $\mathcal{A}(L)$ is false, if $\overline{L} \in M$.

 $\mathcal{A}(L)$ is undefined, if neither $L \in M$ nor $\overline{L} \in M$.

We will now consider partial mappings from ground \mathcal{T} -atoms to truth values (which correspond to sets of \mathcal{T} -literals).

In order to check whether a (partial) valuation is permissible, we identify the valuation \mathcal{A} or the set M with the conjunction of all literals in M:

The valuation \mathcal{A} or the set M is called \mathcal{T} -satisfiable, if the literals in M have a \mathcal{T} -model.

Since the elements of M can be interpreted both as propositional variables and as ground \mathcal{T} -formulas, we have to distinguish between two notions of entailment:

We write $M \models F$ if F is entailed by M propositionally. We write $M \models_{\mathcal{T}} F$ if the ground \mathcal{T} -formulas represented by M entail F.

M is called a \mathcal{T} -model of F, if it is \mathcal{T} -satisfiable and $M \models F$.

We write $F \models_{\mathcal{T}} G$, if the formula F entails G w.r.t. \mathcal{T} , that is, if every \mathcal{T} -model of F is also a model of G.

Idea

Naive Approach:

Use CDCL to find a propositionally satisfying valuation.

If the valuation found is \mathcal{T} -satisfiable, stop; otherwise continue CDCL search.

Note: The CDCL procedure may not use "pure literal" checks.

Improvements:

Check already partial valuations for \mathcal{T} -satisfiability.

If \mathcal{T} -decision procedure yields explanations, use them for non-chronological backjumping.

If \mathcal{T} -decision procedure can provide \mathcal{T} -entailed literals, use them for propagation.

Since \mathcal{T} -satisfiability checks may be costly, learn clauses that incorporate useful \mathcal{T} -knowledge, in particular explanations for backjumping.

CDCL(T)

The "CDCL Modulo Theories" procedure is modelled by a transition relation $\Rightarrow_{CDCL(\mathcal{T})}$ on a set of states.

States:

- fail
- $M \parallel N$,

where M is a list of annotated literals ("trail") and N is a set of clauses.

Annotated literal:

- L: deduced literal, due to propagation.
- L^d: decision literal (guessed literal).

CDCL(T) Rules from CDCL

Unit Propagate:

 $M \parallel N \cup \{C \lor L\} \Rightarrow_{\mathrm{CDCL}(\mathcal{T})} M L \parallel N \cup \{C \lor L\}$

if C is false under M and L is undefined under M.

Decide:

 $M \parallel N \Rightarrow_{\mathrm{CDCL}(\mathcal{T})} M L^{\mathrm{d}} \parallel N$

if L is undefined under M.

Fail:

 $M \parallel N \cup \{C\} \Rightarrow_{\mathrm{CDCL}(\mathcal{T})} fail$

if C is false under M and M contains no decision literals.

Specific CDCL(T) Rules

 $\mathcal{T} ext{-Learn:}$

 $M \parallel N \Rightarrow_{\mathrm{CDCL}(\mathcal{T})} M \parallel N \cup \{C\}$

if $N \models_{\mathcal{T}} C$ and each atom of C occurs in N or M.

 $\mathcal{T} ext{-}Forget:$

 $M \parallel N \cup \{C\} \Rightarrow_{\mathrm{CDCL}(\mathcal{T})} M \parallel N$

if
$$N \models_{\mathcal{T}} C$$
.

 \mathcal{T} -Propagate:

 $M \parallel N \Rightarrow_{\mathrm{CDCL}(\mathcal{T})} M L \parallel N$

if $M \models_{\mathcal{T}} L$ where L is undefined in M, and L or \overline{L} occurs in N.

 \mathcal{T} -Backjump:

 $M' L^{\mathrm{d}} M'' \parallel N \Rightarrow_{\mathrm{CDCL}(\mathcal{T})} M' L' \parallel N$

if $M' L^{d} M'' \models \neg C$ for some $C \in N$ and if there is some "backjump clause" $C' \lor L'$ such that $N \models_{\mathcal{T}} C' \lor L'$ and $M' \models \neg C'$, L' is undefined under M', and L' or $\overline{L'}$ occurs in N or in $M' L^{d} M''$. Note: We don't need a special rule to handle the case that $M' L^{d} M'' \models_{\mathcal{T}} \bot$. If the trail contains a \mathcal{T} -inconsistent subset, we can always add the negation of that subset using \mathcal{T} -Learn and apply \mathcal{T} -Backjump afterwards.

CDCL(T) Properties

The system $\text{CDCL}(\mathcal{T})$ consists of the rules Decide, Fail, Unit Propagate, \mathcal{T} -Propagate, \mathcal{T} -Backjump, \mathcal{T} -Learn and \mathcal{T} -Forget.

Lemma 2.1 If we reach a state $M \parallel N$ starting from $\emptyset \parallel N$, then:

- (1) M does not contain complementary literals.
- (2) Every deduced literal L in M follows from \mathcal{T} , N, and decision literals occurring before L in M.

Proof. By induction on the length of the derivation.

Lemma 2.2 If no clause is learned infinitely often, then every derivation starting from $\emptyset \parallel N$ terminates.

Proof. Similar to the propositional case.

Lemma 2.3 If $\emptyset \parallel N \Rightarrow^*_{CDCL(\mathcal{T})} M \parallel N'$ and there is some conflicting clause in $M \parallel N'$, that is, $M \models \neg C$ for some clause C in N', then either Fail or \mathcal{T} -Backjump applies to $M \parallel N'$.

Proof. Similar to the propositional case.

Lemma 2.4 If $\emptyset \parallel N \Rightarrow^*_{\text{CDCL}(\mathcal{T})} M \parallel N'$ and M is \mathcal{T} -unsatisfiable, then either there is a conflicting clause in $M \parallel N'$, or else \mathcal{T} -Learn applies to $M \parallel N'$, generating a conflicting clause.

Proof. If M is \mathcal{T} -unsatisfiable, then there are literals L_1, \ldots, L_n in M such that $\emptyset \models_{\mathcal{T}} \overline{L_1} \lor \ldots \lor \overline{L_n}$. Hence the conflicting clause $\overline{L_1} \lor \ldots \lor \overline{L_n}$ is either in $M \parallel N'$, or else it can be learned by one \mathcal{T} -Learn step. \Box

Theorem 2.5 Consider a derivation $\emptyset \parallel N \Rightarrow^*_{\text{CDCL}(\mathcal{T})} S$, where no more rules of the CDCL(T) procedure are applicable to S except \mathcal{T} -Learn or \mathcal{T} -Forget, and if S has the form $M \parallel N'$ then M is \mathcal{T} -satisfiable. Then

- (1) S is fail iff N is \mathcal{T} -unsatisfiable.
- (2) If S has the form $M \parallel N'$, then M is a \mathcal{T} -model of N.