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4 Higher-Order Logic

Higher-Order logic

• extends first-order logic with quantification over functions and predicates

• is very expressive (natural numbers, uncountable sets...)

• is the preferred language of most mathematicians

Higher-order logic is also called simple type theory.

4.1 History

Higher-order quantification

Unrestricted quantification is first considered by Frege (1879).

It contains several paradoxical statements, such as Russell’s paradox, which motivated
the creation of ramified type theory by Russell (1908).

A later simplification of this theory by Church (1940) was denoted a simple type

theory, or HOL.

4.2 Syntax

Syntax choices:

explicit function symbols

explicit predicate abstraction

quantifiers and connectives as constants of the language

with extensionality

Types

Types are defined recursively:

o is the type of Booleans, of order 0.

ι is the type of individuals, of order 1.

if τ1 and τ2 are types then τ1 � τ2 is a type, of order max(order(τ1) + 1, order(τ2))

We also use the notation τ1, . . . , τn � τ to denote τ1 � (· · · � (τn � τ) . . . ).
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Terms

Given a non-empty set of constants and a collection of non-empty sets of variables for
each type,

constants are terms

variables are terms

if t1 and t2 are terms then (t1t2) is a term

if x is a variable and t is a term then λx. t is a term

Types of Terms

Given a non-empty set S of individuals and a collection of non-empty sets of variables
for each type, the term t is of type

o if t ∈ {⊤,⊥}

ι if t ∈ S

τ if t = x(τ) is a variable of type τ

τ1 � τ2 if t = λx(τ1). t1(τ2)

τ2 if t = (t1(τ1�τ2) t2(τ1))

A term is well-typed if a type can be associated to it according to the previous definition.
We only consider well-typed terms in what follows.

4.3 Semantics

A well-founded formula is a term of type o.

How to evaluate the truth of such a formula?
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Classical Model

Let D be a non-empty set, for each type τ we define the following collection, denoted as
the frame of the type

the frame of τ = o is Jo,DK = {⊤,⊥}

the frame of τ = ι is Jι, DK = D

the frame of τ = τ1 � τ2 is Jτ1 � τ2, DK, the collection of all functions mapping Jτ1, DK
into Jτ2, DK

A higher-order classical model is a structure M = 〈D, I〉 where D is a non-empty set
called the domain of the model and I is the interpretation of the model, a mapping such
that

if a(τ) is a constant then I(a) ∈ Jτ,DK,

I(=(τ�τ�o)) is the equality relation on Jτ,DK.

By adding a valuation function α such that for any variable x(τ), α(x) ∈ Jτ,DK, it
becomes possible to evaluate the truth-value of higher-order formulas as in first-order
logic.

The evaluation VM,α(t) of a term t given a model M = 〈D, I〉 and a valuation α is
recursively defined as

I(a) if t is a constant a

α(x) if t is a variable x

the function from Jτ1, DK to Jτ2, DK such that for all a ∈ Jτ1, DK, (VM,α(λx. t))(a) =
VM,α(t[a/x]) if t = λx(τ1). t(τ2)

(VM,α(t1))(VM,α(t2)) if t = (t1(τ1�τ2) t2(τ1))

Truth evaluation:

Given a model M = 〈D, I〉 and a valuation α, a well-founded formula φ is true in M
with respect to α, denoted as M, α |= φ iff VM,α(φ) = {⊤}

φ is satisfiable in M iff there exist a valuation α such that M, α |= φ

φ is valid in M, denoted M |= φ iff for all valuations α, M, α |= φ

φ is valid, denoted |= φ iff for all models M, M |= φ

These notions extend straightforwardly to sets of formulas.
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Problems with the classical semantic

• Loss of compactness: in FOL, every unsatisfiable set of formulas has a finite unsat-
isfiable subset. This is no longer the case in HOL with classical semantics (cHOL).

• Loss of strong completeness: no proof procedure able to derive all consequences of
a set of formulas can exist in cHOL.

• Loss of weak completeness: no proof procedure able to derive all valid sets of
formulas can exist in cHOL.

• And even worse: the status of validity of some formulas is unclear.

Henkin Semantics

To solve the previously mentioned issues, it is possible to generalize the notion of a
model by relaxing the notion of a frame into that of a Henkin frame. Given a non-empty
set D,

Jo,DK = {⊤,⊥}

Jι, DK = D

Jτ1 � τ2, DK is the collection of all some functions mapping Jτ1, DK into Jτ2, DK with

some additional closure conditions.

Henkin vs Classical Semantics

• Any formula true in all Henkin models is true in all classical models.

• There are formulas true in all classical models that are not true in all Henkin
models.

• There are (weak) complete proof procedures for HOL with Henkin semantics.

4.4 Higher-Order Term Unification

In FOL, there exist a unique m.g.u. for two terms.

This is no longer true in HOL.

For example, consider t1 = f x and t2 = a where f , x are variables and a is a constant.
The unifiers of t1 and t2 are {f 7→ λy. a} and {f 7→ λy. y, x 7→ a}.

Some equations even have an infinite number of m.g.u’s.

Even worse, the higher-order unification problem is undecidable.
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Huet’s Unification Algorithm

Given:

E, a unification problem, i.e. a finite set of equations.

Goal:

find a substitution σ such that Eσ contains only syntactically equal equations.

Idea:

Test if the head symbols of the two sides of equations can be unified or not to restrict
the search space.

Rigid and Flexible Terms

A term is rigid if its head symbol is a constant or a bound variable. Otherwise its head
symbol is a free variable and the term is flexible.

Rigid-Rigid Equations

Two rules can be applied depending on the head symbols in the rigid-rigid equation.

Fail:

E ∪ {λx1 . . . xn. f u1 . . . up ≈ λx1 . . . xn. g v1 . . . vq}

⊥

Simplify :

E ∪ {λx1 . . . xn. f u1 . . . up ≈ λx1 . . . xn. f v1 . . . vp}

E ∪ {λx1 . . . xn. u1 ≈ λx1 . . . xn. v1, . . . , λx1 . . . xn. up ≈ λx1 . . . xn. vp}

Flexible-Rigid Equations

There is only one rule to handle such terms, but it can generate many results.

Generate:

E

Eσ

where σ = {X 7→ λy1, . . . , yp. h (H1 y1 . . . yp) . . . (Hr y1 . . . yp)} and (λx1 . . . xn. X u1 . . . up ≈
λx1 . . . xn. f v1 . . . vq) ∈ E such that h ∈ {f, y1, . . . , yp} if f is a constant and h ∈
{y1, . . . , yp} otherwise.
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Flexible-Flexible Equations

The following result, also by Huet, handles flexible-flexible equations.

Proposition 4.1 A unification problem E containing only flexible-flexible equations

has always a solution.

Proof. Consider any flexible-flexible equation

e = (λx1 . . . xn. X(τ) u1 . . . up ≈ λx1 . . . xn. Y v1 . . . vq).

Since there are no empty types, there exists a constant a(τ) for each type τ . Let θτ
be the substitution that maps all variables of type τ to this constant a. Then eθ =
(λx1 . . . xn. a ≈ λx1, . . . , xn. a) thus θ is a unifier of e.

We say that a unification problem with only flexible-flexible equations is a solved unifi-
cation problem.

The Whole Procedure

A reasonable strategy consists in applying Fail and Simplify eagerly, and Generate only
when there is no rigid-rigid equation left.

Generate is non-deterministic, making this procedure branching.

Theorem 4.2 The procedure made of the rules Fail, Simplify and Generate is sound

and complete.

Soundness

Proposition 4.3 If a unification problem E can be transformed into a solved problem

E ′ by applying Fail, Simplify and Generate then E has a solution.

The proof is by induction on the size of the derivation from E to E ′.

• If E is a solved problem then Prop. 4.1 applies.

• If the first rule applied on E is Fail then E ′ = ⊥ is not a solved problem, a
contradiction.
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• If the first rule applied on E is Simplify, resulting in E1, then by the induction
hypothesis, E1 has a solution σ and

E = E0 ∪ {λx1 . . . xn. f u1 . . . up ≈ λx1 . . . xn. f v1 . . . vp}

and E1 = E0 ∪ {λx1 . . . xn. u1 ≈ λx1 . . . xn. v1, . . . , λx1 . . . xn. up ≈ λx1 . . . xn. vp}

such that σ(ui) = σ(vi) for all i ∈ {1, . . . , p} and E0σ contains only trivial equa-
tions. Thus Eσ = E0σ ∪ {(λx1 . . . xn. f u1 . . . up ≈ λx1 . . . xn. f v1 . . . vp)σ}. Since
(f u1 . . . up)σ = f u1σ . . . upσ = f v1σ . . . vpσ = (f v1 . . . vp)σ, the substitution σ
is a solution to the unification problem E.

• If the first rule applied on E is Generate and E1 is the resulting unification problem
then there exists a solution σ to E1 by the induction hypothesis, and E1 = Eθ
where θ = {X 7→ λy1 . . . yp. h (H1 y1 . . . yp) . . . (Hr y1 . . . yp)} and E contains
an equation λx1 . . . xn. X u1 . . . up ≈ λx1 . . . xn. f v1 . . . vq Let σ′ = σ ◦ θ. Since
Eσ′ = E(σ ◦ θ) = (Eθ)σ = E1σ, the substitution σ′ is a solution of E.

Completeness

Proposition 4.4 If a unification problem E has a solution σ then we can derive a solved

problem E ′ from E using the rules Fail, Simplify and Generate.

Proof. This proof is done by induction of the complexity of σ. First we must define this
measure. Let us consider an arbitrary term t = λx1 . . . xn. h u1 . . . up. The number of

applications used in t, denoted π(t) is computed in the following way: π(t) = p+
p∑

i=1

π(ui).

This function is used to compute the complexity of a substitution. Let σ be a substitution
that maps the variables x1,...,xk to the terms t1,...,tk such that xi and ti are distinct,
and that maps all other variables to themselves. The complexity C(σ) of σ is C(σ) =

k +
k∑

i=1

π(ti). We can now use this measure to perform an induction in the following way.

• If E contains rigid-rigid equations then it is possible to get rid of them by repeat-
edly applying the rule Simplify. This process terminates, which can be proved by
induction on the size of terms in E. Fail can never be applied during this pro-
cess, otherwise it would contradict the fact that there exist a solution of E. If the
resulting set of equations Es is solved, we have a derivation to a solved problem.

• Otherwise Es contains no rigid-rigid equations, but at least one flexible-rigid one,
i.e., λx1 . . . xn. X u1 . . . up ≈ λx1 . . . xn. f v1 . . . vq ∈ Es. Since σ is a solution of
Es, (λx1 . . . xn. X u1 . . . up)σ = (λx1 . . . xn. f v1 . . . vq)σ, thus σ = σ0 ∪ θ where
θ = {X 7→ λy1 . . . yp. h w1 . . . wr}, and h ∈ {y1, . . . , yp, f} if f is a constant or h ∈
{y1, . . . , yp} otherwise. Then, we can use Generate with the function h occurring
in θ on Es to generate E ′

s = Esθ
′ where θ′ = X 7→ λy1, . . . , yp. h (H1 y1 . . . yp) . . .
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(Hr y1 . . . yp). Let γ = {H1 7→ λy1 . . . yp. w1, . . . , Hr 7→ λy1 . . . yp. wr}. The com-

plexity of σ is C(σ) = C(σ0 ∪ θ) = C(σ0) + 1 + r +
r∑

i=1

π(wi), and that of σ′ is

C(σ′) = C(σ0 ∪ γ) = C(σ0) + r +
r∑

i=1

π(wi). Thus C(σ′) < C(σ). By the induction

hypothesis, there exists a derivation from E ′
s to a solved unification problem E ′

and E ′
s was obtained by derivation from E hence we can conclude.

Termination?

Higher-order unification is only semi-decidable.

When solutions exist, Huet’s algorithm will find one and terminate, but when there is
no solution, it may loop forever.

4.5 Resolution in Higher-Order Logic

In first-order logic, resolution for general clauses has two rules:

Resolution:
D ∨B C ∨ ¬A

(D ∨ C)σ

where σ = mgu(A,B).

Factoring:
C ∨ A ∨ B

(C ∨A)σ

where σ = mgu(A,B).

In higher-order logic, a first problem is that m.g.u’s need not exist and unification is
undecidable.

Example 4.5 Given D ∨ B and C ∨ ¬A where A and B are unifiable but without

m.g.u., there may exist infinitely many σ1, σ2,... unifiers of A and B generating distinc

resolvents (D ∨ C)σ1, (D ∨ C)σ2,... and in general there is no way to know which one is

needed to prove the given theorem.

Huet proposes to delay the computation of unifiers (when no m.g.u. exists) by using
constraints storing the corresponding unification problems.

Once a contradiction has been derived, the corresponding unification problem can then
be solved using Huet’s algorithm.
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Resolution:
D ∨BJXK C ∨ ¬AJY K

D ∨ CJX ∧ Y ∧A ≈ BK

Factoring:
C ∨ A ∨ BJXK

C ∨ AJX ∧A ≈ BK

Another problem in HOL is that it is not always possible to guess the necessary substi-
tution based on the available terms.

Example 4.6 Consider the formula ¬X(o) where X is a Boolean variable. The set {¬X}
is saturated by resolution, but still the formula ¬X is unsatisfiable. However, we can

guess the substitution σ = {X 7→ ¬Y }. Then (¬X)σ = ¬(¬Y ) = Y and resolution can

now derive the empty clause from ¬X and Y .

To overcome this issue, Huet introduces additional splitting rules.

C ∨ AJXK

C ∨ ¬x(o)JX ∧A ≈ ¬xK

C ∨ AJXK

C ∨ x(o) ∨ y(o)JX ∧A ≈ (x ∨ y)K

C ∨AJXK

C ∨ P(τ�o)x(τ)JX ∧ A ≈ Π((τ�o)�o)P K

Π((τ�o)�o) is the function that associates ⊤ to any set of type τ � o that contains all
elements of type τ .

C ∨ ¬AJXK

C ∨ x(o)JX ∧ A ≈ ¬xK

C ∨ ¬AJXK

C ∨ x(o)JX ∧ A ≈ (x ∨ y(o))K and C ∨ yJX ∧A ≈ (x ∨ y)K

C ∨ ¬AJXK

C ∨ ¬P(τ�o)(sk((τ�o)�τ)P )JX ∧ A ≈ Π((τ�o)�o)P K

sk is the skolem constant such that ¬Π((τ�o)�o)P = ¬P(τ�o)(sk((τ�o)�τ)P ).

Huet proved that resolution with these splitting rules is sound and complete (but not
terminating).

In practice, several improvements are possible.

As soon as a constraint becomes unsatisfiable, delete the corresponding clause.

If a constraint has a small enough set of solutions, generate all applied clauses to
replace the constrained original one.
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4.6 Superposition in Higher-Order Logic

In HOL, existing automated solvers rely on:

• Tableau (Satallax)

• Resolution (Leo III)

• Applicative encoding to first-order logic (Sledgehammer)

• ...

Currently there exists no efficient version of Superposition for full higher-order logic.

There are many theoretical problems to lifting Superposition to HOL (unification,...)

Superposition in λ-free Higher-Order Logic

Things get easier in λ-free higher-order logic (i.e. no λ-terms and no predicate vari-
ables).

This fragment can be encoded in FOL using a binary function app (application).

If the ordering has all standard properties of reduction orderings plus compatibility with
arguments, the extension of Superposition to this fragment is straightforward.

There is only one known ordering with these properties: KBO.

There are applications where standard KBO is not optimal.

There are other orderings that one would like to use (LPO, KBO with multipliers) but
one loses at least one of the desired properties (e.g. compatibility with arguments).

There are workarounds that allow to recover from the loss of compatibility with argu-
ments, e.g. by:

redefining redundancy so that g x ≈ f x is not redundant to g ≈ f , and

adding a rule that adds context to an equation (generate g x ≈ f x from g ≈ f), and

relaxing the variable constraint in the superposition rules (no superposition at or
under a variable, except if...), and

adding a layer to the completeness proof.

Our current goal is to extend this calculus to predicate-free HOL (including λ-terms)
and then to full HOL.
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Melvin Fitting: Types Tableaus and Gödel’s God. Studia Logica 81(3): 425-427, 2005.

Gérard P. Huet: A Mechanization of Type Theory. IJCAI: 139-146, 1973.

92


