

Tutorials for "Automated Reasoning II" Exercise sheet 2

Exercise 2.1:

The quantifier elimination algorithms for linear rational arithmetic can also be applied to non-linear formulas, provided that all the bound variables occur only linearly. That is, the atoms can have the form $\sum_{i} s_{i}(\vec{z}) \cdot x_{i} \sim 0$ where the coefficients $s_{i}(\vec{z})$ are terms that may contain arbitrary arithmetic operations, say $\left(z_{1}+z_{3}^{2}\right)$ or even $\left(\sin z_{2}+e^{z_{5}}+3\right)$, but no bound variables. There is one additional problem, though. Why? How can you solve it?

Exercise 2.2:

Use the nondeterministic Nelson-Oppen method to show that the following formula is unsatisfiable in the combination of EUF and linear integer arithmetic:

$$
\exists x, y(x+y \approx 0 \wedge f(x)+f(-y) \approx 1)
$$

(If you choose the equations to split cleverly, the proof is quite short.)

Exercise 2.3:

Read the proof of Lemma 1.7 in the lecture notes. Explain the following step:
Since the equations $x \approx y$, with $x \sim y$, are entailed by F and since F is satisfiable, this means that this equation must come from the last disjunct.

Exercise 2.4:

The conditions of Thm. 1.8 are a bit stronger than necessary. Can you think about weaker conditions that are still sufficient to prove the theorem (with almost the same proof)?

Exercise 2.5:

Show that the theory described by the following set of axioms is not stably infinite.

$$
\begin{aligned}
& \forall x(x * 0 \approx 0) \\
& \forall x(x * 1 \approx x)
\end{aligned}
$$

Submit your solution (or solution attempt) by e-mail to uwe@mpi-inf.mpg.de, subject Ex 2. until May 24.

