Tutorials for "Automated Reasoning II" Exercise sheet 4

Exercise 4.1:

Convexity of theories is sometimes defined in such a way that one considers only equations between variables in the right-hand side of the implication. Prove that the two definitions are equivalent: A first-order theory \mathcal{T} is convex w.r.t. equations if and only if for every conjunction Γ of Σ-equations and non-equational literals and for all equations $x_{i} \approx x_{i}^{\prime}$ $(1 \leq i \leq n)$, whenever $\mathcal{T} \models \forall \vec{x}\left(\Gamma \rightarrow x_{1} \approx x_{1}^{\prime} \vee \cdots \vee x_{n} \approx x_{n}^{\prime}\right)$, then there exists some index j such that $\mathcal{T} \models \forall \vec{x}\left(\Gamma \rightarrow x_{j} \approx x_{j}^{\prime}\right)$.

Exercise 4.2:

Let $\Sigma=(\Omega, \emptyset)$ be a signature without predicate symbols (except built-in equality). For two Σ-algebras \mathcal{A} and \mathcal{B}, we define the product $\mathcal{A} \times \mathcal{B}$ as the Σ-algebra whose universe is the cartesian product of the universes of \mathcal{A} and \mathcal{B}, and where $f_{\mathcal{A} \times \mathcal{B}}\left(\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)\right)=$ $\left(f_{\mathcal{A}}\left(a_{1}, \ldots, a_{n}\right), f_{\mathcal{B}}\left(b_{1}, \ldots, b_{n}\right)\right)$.

A Σ-theory \mathcal{T} is called closed under products, if the product of any two models of \mathcal{T} is again a model of \mathcal{T}.
Prove: If \mathcal{T} is closed under products, then it is convex.

Exercise 4.3:

Prove: If the axioms of the Σ-theory \mathcal{T} are unversally quantified equational Horn clauses (that is, clauses where all atoms are equations and at most one of the literals is negated), then \mathcal{T} is convex. (You may use the previous exercise.)

Bring your solution (or solution attempt) to the tutorial on Nov. 28.

