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Tutorials for “Automated Reasoning II”

Exercise sheet 5

Exercise 5.1:

Demonstrate that DPLL(T) becomes unsound if the DPLL procedure uses the pure literal
rule.

Exercise 5.2:

In many applications of DPLL or DPLL(T), one does not only want a yes/no answer,
but also an explanation for it. In the case of an unsatisfiable input, this explanation is an
“unsatisfiable core”, i.e., a (small) subset of the input clauses that is already sufficient to
show T -inconsistency. How can we get an unsatisfiable core from a DPLL(T) proof?

Exercise 5.3:

Many decision procedures detect the unsatisfiability of a set of literals by iteratively deriv-
ing new literals from given literals; if an inconsistent literal is derived at the end, the input
is unsatisfiable. Examples include Gaussian elimination or the Fourier-Motzkin procedure.

For such decision procedures, it is easy to generate explanations for unsatisfiability. We
associate a set E(L) of input literals to each literal L: for input literals L, E(L) := {L};
for literals L derived from ancestor literals L1, . . . , Ln, E(L) := E(L1)∪· · ·∪E(Ln). When
an inconsistent literal L0 is derived at the end, E(L0) yields the explanation.

However, the explanations computed in this way are not always minimal. Consider the
following set of equations in linear rational arithmetic:

x − 2z = 1 (1)
−x + y − 3w = 3 (2)

z − 2w = 0 (3)
2x − 2y + 3z = 5 (4)

If we use equation (1) to eliminate x from the other equations, then (2) to eliminate
y, then (3) to eliminate z, equation (4) is turned into 0 = 11. All four equations were
involved in this derivation; still {(1), (2), (3), (4)} is not a minimal explanation for the
contradiction. How could one efficiently find a smaller explanation? (Hint: Think about
linear combinations.)



Bring your solution (or solution attempt) to the tutorial on Dec. 12.


