
Existentially-quantified LRA

So far, we have considered formulas that may contain free, existentially quantified, and
universally quantified variables.

For the special case of conjunction of linear inequations in which all variables are exis-
tentially quantified, there are more efficient methods available.

Main idea: reduce satisfiability problem to optimization problem.

The Simplex Method

Developed independently by Kantorovich (1939), Dantzig (1948).

Polynomial-time average-case complexity; worst-case time complexity is exponential,
though.

Goal:

Solve a linear optimization (also called: linear programming) problem for given num-
bers aij , bi, cj ∈ R:

maximize
∑

1≤j≤n cjxj

for
∧

1≤i≤m

∑

1≤j≤n aijxj ≤ bi

or in vectorial notation:

maximize ~c⊤~x

for A~x ≤ ~b

Idea:

A~x ≤ ~b describes a convex polyhedron.

Pick one vertex of the polyhedron,
then follow the edges of the polyhedron towards an optimal solution.

By convexity, the local optimum found in this way is also a global optimum.

Details: see special lecture on optimization

Using an optimization procedure for checking satisfiability:

Goal: Check whether A~x ≤ ~b is satisfiable.

To use the Simplex method, we have to transform the original (possibly empty) poly-
hedron into another polyhedron that is non-empty and for which we know one initial
vertex.
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Every real number can be written as the difference of to non-negative real numbers.
Use this idea to convert A~x ≤ ~b into an equisatisfiable inequation system ~y ≥ ~0,
B~y ≤ ~b for new variables ~y.

Multiply those inequations of the inequation system B~y ≤ ~b in which the number on
the right-hand side is negative by −1. We obtain two inequation systems D1~y ≤ ~g1,
D2~y ≥ ~g2, such that ~g1 ≥ ~0, ~g2 > 0.

Now solve

maximize ~1⊤(D2~y − ~z)

for ~y, ~z ≥ ~0
D1~y ≤ ~g1

D2~y − ~z ≤ ~g2

where ~z is a vector of new variables with the same size as ~g2.

Observation 1: ~0 is a vertex of the polyhedron of this optimization problem.

Observation 2: The maximum is ~1⊤~g2 if and only if ~y ≥ ~0, D1~y ≤ ~g1, D2~y ≥ ~g2 has a
solution.
(⇒): If ~1⊤(D2~y − ~z) = ~1⊤~g2 for some ~z, then D2~y − ~z = ~g2, hence D2~y = ~g2 + ~z ≥ ~g2.
(⇐): ~1⊤(D2~y − ~z) can never be larger than ~1⊤~g2. If ~y ≥ ~0, D1~y ≤ ~g1, D2~y ≥ ~g2 has
a solution, choose ~z = D2~y − ~g2; then ~1⊤(D2~y − ~z) = ~1⊤~g2.

1.4 Non-linear Real Arithmetic

Tarski (1951): Quantifier elimination is possible for non-linear real arithmetic (or more
generally, for real-closed fields). His algorithm had non-elementary complexity, how-
ever.

Improved algorithms by Collins and Hong: Cylindrical algebraic decomposition (CAD).

Cylindrical Algebraic Decomposition

Given: First-order formula over atoms of the form fi(~x) ∼ 0, where the fi are polyno-
mials over variables ~x.

Goal: Decompose R
n into a finite number of regions such that all polynomials have

invariant sign on every region X:

∀i ( ∀~x ∈ X. fi(~x) < 0
∨ ∀~x ∈ X. fi(~x) = 0
∨ ∀~x ∈ X. fi(~x) > 0 )

Note: implementation needs exact arithmetic using algebraic numbers (i. e., zeroes of
univariate polynomials with integer coefficients).

16



1.5 Real Arithmetic incl. Transcendental Functions

Real arithmetic with exp/log: decidability unknown.

Real arithmetic with trigonometric functions: undecidable

The following formula holds exactly if x ∈ Z:

∃y (sin(y) = 0 ∧ 3 < y ∧ y < 4 ∧ sin(x · y) = 0)

(note that necessarily y = π).

Consequence: Peano arithmetic (which is undecidable) can be encoded in real arith-
metic with trigonometric functions.

However, real arithmetic with transcendental functions is decidable for formulas that are
stable under perturbations, i. e., whose truth value does not change if numeric constants
are modified by some sufficiently small ε.

Example:

Stable under perturbations: ∃x x2 ≤ 5

Not stable under perturbations: ∃x x2 ≤ 0
(Formula is true, but if we subtract an arbitrarily small ε > 0 from the right-hand
side, it becomes false.)

Unsatisfactory from a mathematical point of view, but sufficient for engineering appli-
cations (where stability under perturbations is necessary anyhow).

Approach:

Interval arithmetic + interval bisection if necessary (Ratschan).

Sound for general formulas; complete for formulas that are stable under perturbations;
may loop forever if the formula is not stable under perturbations.

1.6 Linear Integer Arithmetic

Linear integer arithmetic = Presburger arithmetic

Decidable (Presburger, 1929), but quantifier elimination is only possible if additional
divisibility operators are present:

∃x (y = 2x) is equivalent to divides(2, y) but not to any quantifier-free formula over
the base signature.
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Deciding Presburger Arithmetic using Finite Automata

Decidability of Presburger arithmetic can e. g. be shown by encoding Presburger formulas
as finite automata.

Encode tuples of naturals (or integers) as words of tuples of bits (least significant bit
first!):





15
1
4



 7→





1 1 1 1
1 0 0 0
0 0 1 0



 7→





1
1
0









1
0
0









1
0
1









1
0
0





Construct automata for atoms, e. g., for 2x = y:

• ◦
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,
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Translate logical operators into automata operators:

∧ 7→ ∩

∨ 7→ ∪

¬ 7→ complementation

∃x 7→ cylindrification: drop x-component in transition labels

satisfiability of formulas 7→ non-emptyness test for automata

Finite automata yield an easy proof for the decidability of Presburger arithmetic; in
practice, however, methods that are based on decision procedures for linear rational
arithmetic are more efficient, at least for the existentially quantified fragment.
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The Omega Test

Omega test (Pugh, 1991): variant of Fourier–Motzkin for conjunctions of (in-)equations
in linear integer arithmetic.

Idea:

• Perform easy transformations, e. g.:
3x + 6y ≤ 8 7→ 3x + 6y ≤ 6 7→ x + 2y ≤ 2
3x + 6y = 8 7→ ⊥
(since 3x + 6y must be divisible by 3).

• Eliminate equations
(easy, if one coefficient is 1; tricky otherwise).

• If only inequations are left:
no real solutions → unsatisfiable for Z

“sufficiently many” real solutions → satisfiable for Z

otherwise: branch

What does “sufficiently many” mean?

Consider inequations ax ≤ s and bx ≥ t with a, b ∈ Z and polynomials s, t.

If these inequations have real solutions, the interval of solutions ranges from 1

b
t to 1

a
s.

The longest possible interval of this kind that does not contain any integer ranges
from i + 1

b
to i − 1 − 1

a
for some i ∈ Z; it has the length 1 − 1

a
− 1

b
.

Consequence:

If 1

a
s > 1

b
t + (1 − 1

a
− 1

b
), or equivalently, bs ≥ at + ab − a − b + 1 is satisfiable, then

the original problem must have integer solutions.

It remains to consider the case that bs ≥ at is satisfiable (hence there are real solutions)
but bs ≥ at + ab− a− b + 1 is not (hence the interval of real solutions need not contain
an integer).

In the latter case, bs ≤ at + ab − a − b holds, hence for every solution of the original
problem:

t ≤ bx ≤ b
a
s ≤ t + (b − 1 − b

a
)

and if x is an integer, t ≤ bx ≤ t +
⌊

b − 1 − b
a

⌋

⇒ Branch non-deterministically:
Add one of the equations bx = t + i for i ∈ {0, . . . , ⌊b − 1 − b

a

⌋

}.

Alternatively, if b > a:
Add one of the equations ax = s − i for i ∈ {0, . . . , ⌊a − 1 − a

b

⌋

}.
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Note: Efficiency depends highly on the size of coefficients. In applications from program
verification, there is almost always some variable with a very small coefficient. If all
coefficients are large, the branching step gets expensive.

Branch-and-Cut

Alternative approach: Reduce satisfiability problem to optimization problem (like Sim-
plex). ILP, MILP: (mixed) integer linear programming.

Two basic approaches:

Branching: If the simplex algorithm finds a solution with x = 2.7, add the inequation
x ≤ 2 or the inequation x ≥ 3.

Cutting planes: Derive an inequation that holds for all real solutions, then round it to
obtain an inequation that holds for all integer solutions, but not for the real solution
found previously.

Example:

Given: 2x − 3y ≤ 1
2x + 3y ≤ 5

−5x − 4y ≤ −7

Simplex finds an extremal solution x = 3

2
, y = 2

3
.

From the first two inequations, we see that 4x ≤ 6, hence x ≤ 3

2
.

⇒ Add the inequation x ≤ ⌊3

2
⌋ = 1, which holds for all integer solutions, but cuts off

the solution (3

2
, 2

3
).

In practice:

Use both: Alternate between branching and cutting steps.
Better performance than the individual approaches.

1.7 C-Arithmetic

In languages like C: Bounded integer arithmetic (modulo 2n), in device drivers also
combined with bitwise operations.

Bit-Blasting (encode everything as boolean circuits, use DPLL):

Naive encoding: possible, but often too inefficient.

If combined with over-/underapproximation techniques (Bryant, Kroening, et al.):
successful.

20


