CITIUS ALTIUS FORTIUS:
Lessons learned from the Theorem Prover WALDMEISTER

Thomas Hillenbrand
Max-Planck-Institut für Informatik
Saarbrücken
Unit Equational Logic

- Example: group axiomatization

\[\mathcal{E} : (x + y) + z = x + (y + z) \quad x + 0 = x \quad x + (-x) = 0 \]

Word problem: Does \(\mathcal{E} \models x = - - x \) hold?

- Tackle word problem with Knuth-Bendix completion
 – idea: equations \(l = r \) oriented into rewrite rules \(l \to r \)
 – aim: \(\mathcal{E} \models s = t \) iff \(s \downarrow \equiv t \downarrow \)
 – price: saturation of rules necessary

- Perform fully automated proof search
 Return proof log in case of success
WALDMEISTER Searching for a Proof

**
************************* COMPLETION – PROOF *************************
**

new rule: 1 +(x1,0) -> x1
new rule: 2 +(x1,-(x1)) -> 0
new rule: 3 +(+(x1,x2),x3) -> +(x1,+(x2,x3))
new rule: 4 +(x1,+(0,x2)) -> +(x1,x2)
new rule: 5 +(x1,-(0)) -> x1
new rule: 6 +(x1,+(x1),x2)) -> +(0,x2)
new rule: 7 +(0,-(-(x1))) -> +(0,x1)
new rule: 8 +(x1,-(-(x2))) -> +(x1,x2)
remove rule: 7
new rule: 9 +(0,x1) -> x1
remove rule: 4
simplify rhs of rule: 6
new rule: 10 -(0) -> 0
remove rule: 5
new rule: 11 -(-(x1)) -> x1
remove rule: 8
joined goal: 1 c ?= -(-(c)) to c

+--------------------------+
| this proves the goal |
+--------------------------+

Proved Goals:
No. 1: c ?= -(-(c)) joined, current: c = c
1 goal was specified, which was proved.

Waldmeister states: Goal proved.
WALDMEISTER Presenting a Proof

Consider the following set of axioms:

Axiom 1: \(x + 0 = x \)
Axiom 2: \(x + (-x) = 0 \)
Axiom 3: \((x + y) + z = x + (y + z) \)

This theorem holds true:

Theorem 1: \(x = -x \)

Proof:

Lemma 1: \(0 + (-x) = x \)

\[
\begin{align*}
0 + (-x) &= \text{by Axiom 2 RL} \\
(x + (-x)) + (-x) &= \text{by Axiom 3 LR} \\
x + ((-x) + (-x)) &= \text{by Axiom 2 LR} \\
x + 0 &= \text{by Axiom 1 LR} \\
x &= \text{by Axiom 1 LR}
\end{align*}
\]

Lemma 2: \(x + (-y) = x + y \)

\[
\begin{align*}
x + (-y) &= \text{by Axiom 1 RL} \\
(x + 0) + (-y) &= \text{by Axiom 1 RL} \\
x + (0 + (-y)) &= \text{by Axiom 3 LR} \\
x + y &= \text{by Axiom 1 LR}
\end{align*}
\]

Lemma 3: \(0 + x = x \)

\[
\begin{align*}
0 + x &= \text{by Lemma 2 RL} \\
0 + (-x) &= \text{by Lemma 1 LR} \\
x &= \text{by Lemma 1 LR}
\end{align*}
\]

Theorem 1: \(x = -x \)

\[
\begin{align*}
x &= \text{by Lemma 3 RL} \\
0 + x &= \text{by Lemma 2 RL} \\
0 + (-x) &= \text{by Lemma 1 LR} \\
-x &= \text{by Lemma 3 LR}
\end{align*}
\]
Aim of this Talk

- FTP organizers:
 ... would like to learn more about WALDMEISTER, what makes it so efficient ...

<table>
<thead>
<tr>
<th></th>
<th>WM</th>
<th>E-SETH</th>
<th>E</th>
<th>Gandalf</th>
<th>Vampire</th>
<th>Otter</th>
<th>SCOTT</th>
<th>CiME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solved</td>
<td>70</td>
<td>40</td>
<td>36</td>
<td>27</td>
<td>25</td>
<td>17</td>
<td>17</td>
<td>15</td>
</tr>
<tr>
<td>Av. Time</td>
<td>3.2</td>
<td>24.0</td>
<td>15.6</td>
<td>78.9</td>
<td>76.5</td>
<td>45.1</td>
<td>130.7</td>
<td>36.6</td>
</tr>
</tbody>
</table>

- What are the underlying concepts?
Outline: Lessons Learned...

- **CITIUS**: on algorithms and data structures
- **ALTIUS**: on integrating “intelligence”
- **FORTIUS**: on the proof procedure
CITIUS:

Tailor your Algorithms and Data Structures!
Design and analysis of A&D core subject of computer science

Highly valuable in actual construction of theorem prover

To be achieved:
- efficient algorithm \leadsto efficient implementation

Use problem of *term indexing* as an example
Term Indexing

- Provers incrementally construct data base of facts. Inference application involves complex retrieval from data base.

- Retrieval conditions: central term-level operations constitute major part of system’s work.

- Remedy: retrieval in set-based fashion. Process at a time one query against a compiled data base!
Perfect Discrimination Trees

- Interpret term as string of its symbols
- Index strings in a trie data structure
- Gain: Sharing of common prefixes

- Example: Index for term set
 \[f(x_1, x_1) \]
 \[f(x_1, b) \]
 \[f(a, g(x_1)) \]
 \[f(g(x_1), g(x_2)) \]
 \[f(g(b), a) \]
Perfect Discrimination Trees

- Interpret term as string of its symbols
 Index strings in a trie data structure
 Gain: Sharing of common prefixes

- Optimization: collapse subtrees that contain one leaf node only into a single node

- May cut away more than half of the nodes
PDTs favour term traversal “from left to right”
corresponding term structure:
linear instead of tree-like

- *flatterns* accelerate preorder term traversal
 more expensive wrt. memory
 but allocation intertwined with free-list memory management
Retrieval of Generalizations

\[\sigma = \emptyset \]
Retrieval of Generalizations

\[\sigma = \emptyset \]
Retrieval of Generalizations

\[(C)\]

\[
\begin{align*}
 f \\
 a \\
 b \\
\end{align*}
\]

\[
\begin{align*}
 x_1 \\
 b \\
\end{align*}
\]

\[
\begin{align*}
 x_1 \\
 g \\
 x_2 \\
\end{align*}
\]

\[
\begin{align*}
 x_1 \\
 g \\
 a \\
\end{align*}
\]

\[\sigma = \emptyset\]
Retrieval of Generalizations

(B)

\[\sigma = \emptyset \]
Retrieval of Generalizations

\[\sigma = \{x_1 \leftarrow a\} \]
Retrieval of Generalizations

\[\sigma = \{ x_1 \leftarrow a \} \]
• Reduction of tree size pays off:
 – less memory locations to be inspected during retrieval
 – fewer cache faults, and therefore first-class execution

• Array representation of nodes possible
 hence low-level operations
 on tree very simple!
Further Examples

- Implementation of reduction orderings:
 - arrangement of conditions to evaluate
 - cheap but effective filters

- Computation of normal forms:
 - different strategies of rewriting
 - different combinations of standard and ordered rewrite steps
 - different strategies for recycling of substitutes

- On a larger scale:
 comparison of indexing techniques
 joint work with R. Nieuwenhuis, A. Riazanov, A. Voronkov
A method for COMParing Indexing Techniques for automated deduction

What is Compit?

If you use automated deduction for your application, you probably use some kind of indexing technique for terms. This technique may even be crucial to the efficiency of your program. But do you know how efficient it really is? Compared to others?

If you are an implementor and you need to know which indexing technique is likely to behave best for your application, or if you are a developer of new indexing techniques, you need to be able to compare techniques in order to get intuition about where to search for improvements, and in order to provide scientific evidence of the superiority of new techniques over other previous ones.

Are you sure your implementation works error free?

If you are an implementor, you need to debug your implementation. Why not use COMPIT for this and solve several problems in one step?

See our tutorial page for a use case.

Compit is a test-framework which allows you to compare indexing techniques for automated deduction. More on Compit you can find in the IJCAR paper “On the Evaluation of Indexing Techniques for Theorem Proving”.

How to use Compit to compare your own indexing technique with the ones already included in the test-framework you can see on our tutorial page.

Indexing techniques already included in the testing framework

COMPIT tackles the following indexing problems: retrieval of generalization (forward matching) and unification. It is intended to cope with instances (backward matching) soon.

The following indexing techniques are already included in the framework:

- Code Trees as implemented in the Vampire Prover
- Context Trees, as described in this IJCAR paper
- Discrimination Trees as implemented in the Waldmeister prover

Statistics on experiments currently available
Observation: complexity analysis of indexing techniques difficult

Therefore: compare implementations of different techniques on benchmarks corresponding to real runs of real provers

Speed in 2000: code trees : discr. trees : context trees
1.91 : 1.37 : 1.00

Participants have improved their implementations since e.g. PDTs nearly twice as fast just by more compact node format

Do not advocate that e.g. PDTs are the best but advocate: that you...

tailor your algorithms and data structures!
FORTIUS:
Design your Proof Procedure Carefully!
Calculus and Proof Procedure

- Unfailing completion: given as set of inference rules
 expanding: \[s[l'] = t \quad l = r \]
 critical pair
 \[(s[r] = t)\sigma \]
 contracting: rewrite-based simplification rules

- Parameter: reduction ordering
 additional control constraint: fairness

- Non-deterministic algorithm!
 how to resolve non-determinism?

- Common solution: given-clause algorithm (Overbeek 1971)
Given-clause Algorithm

- Approach: incrementally precompute all expansion steps assess candidate equations heuristically by weighting function φ

- Active facts \mathcal{A} for rewriting and superposition passive facts \mathcal{P}: critical pairs descending from \mathcal{A}

\[s=t: \varphi(s=t) \text{ min.} \]

\[\mathcal{A} \xrightarrow{s=t} \mathcal{P} \]

\[\text{CP}^>(s=t, \mathcal{A}) \]
FUNCTION WALDMEISTER(ℰ, ℂ, >, ϕ) : BOOL

1: (𝒜, ℙ) := (∅, ℰ)
2: WHILE ¬trivial(ℂ) ∧ ℙ ̸= ∅ DO
3: e := minϕ(ℙ); ℙ := ℙ \ {e}
4: e := NormalizeAR(e)
5: IF ¬redundant(e) THEN
6: (𝒜, ℙ₁) := InterredAR(𝒜, e)
7: 𝒜 := 𝒜 ∪ {OrientAR(e)}
8: ℙ₂ := CPAR(e, 𝒜)
9: ℙ := Update(ℙ ∪ ℙ₁ ∪ ℙ₂) Normalize...
10: ℂ := NormalizeAR(ℂ)
11: END
12: END
13: RETURN trivial(ℂ)
FUNCTION \textsc{Waldmeister}(\mathcal{E}, \mathcal{C}, >, \varphi) : BOOL

1: \((\mathcal{A}, \mathcal{P}) := (\emptyset, \mathcal{E}) \)

2: WHILE \(\neg \text{trivial}(\mathcal{C}) \wedge \mathcal{P} \neq \emptyset \) DO

3: \(e := \min_{\varphi}(\mathcal{P}); \; \mathcal{P} := \mathcal{P} \setminus \{e\} \)

4: \(e := \text{Normalize}_{\mathcal{A}}(e) \)

5: IF \(\neg \text{redundant}(e) \) THEN

6: \((\mathcal{A}, P_1) := \text{Interred}_{\mathcal{A}}(\mathcal{A}, e) \)

7: \(\mathcal{A} := \mathcal{A} \cup \{\text{Orient}_{\mathcal{A}}(e)\} \)

8: \(P_2 := \text{CP}_{\mathcal{A}}(e, \mathcal{A}) \)

9: \(\mathcal{P} := \text{Normalize}_{\mathcal{A}}(\mathcal{P} \cup P_1 \cup P_2) \)

10: \(\mathcal{C} := \text{Normalize}_{\mathcal{A}}(\mathcal{C}) \)

11: END

12: END

13: RETURN \(\text{trivial}(\mathcal{C}) \)
FUNCTION \textsc{waldmeister}(\mathcal{E}, \mathcal{C}, >, \varphi) : \text{BOOL}

1: \((\mathcal{A}, \mathcal{P}) := (\emptyset, \mathcal{E})\)

2: \textbf{WHILE} \neg \text{trivial}(\mathcal{C}) \land \mathcal{P} \neq \emptyset \textbf{ DO}

3: \quad e := \min_{\varphi}(\mathcal{P}); \quad \mathcal{P} := \mathcal{P} \setminus \{e\}

4: \quad e := \text{Normalize}_\mathcal{A}(e)

5: \textbf{IF} \neg \text{redundant}(e) \textbf{ THEN}

6: \quad (\mathcal{A}, P_1) := \text{Interred}_\mathcal{A}(\mathcal{A}, e)

7: \quad \mathcal{A} := \mathcal{A} \cup \{\text{Orient}_\mathcal{A}(e)\}

8: \quad P_2 := \text{CP}_\mathcal{A}(e, \mathcal{A})

9: \quad \mathcal{P} := \mathcal{P} \cup \text{Normalize}_\mathcal{A}(P_1 \cup P_2)

10: \quad \mathcal{C} := \text{Normalize}_\mathcal{A}(\mathcal{C})$

\textbf{DISCOUNT loop – lazy}

11: \textbf{END}

12: \textbf{END}

13: \textbf{RETURN} \text{trivial}(\mathcal{C})
Representation of \(\mathcal{P} \)

- \(\mathcal{P} \) ordered under \(\varphi \mapsto \) priority queue

- Typically \(|\mathcal{P}|\) exceeding \(|\mathcal{A}|\) by three orders of magnitude so space can become a problem

- Representations for elements of \(\mathcal{P} \):

 Flatterms

 \[
 f - x_1 - f - a - x_2 - f - x_1 - x_2
 \]

 Stringterms

 \[
 f|x_1|f|a|x_2|f|x_1|x_2
 \]

 implizit

 \(<s[l]_p=t, l=r>\)
Space Behaviour over Time
Problem with the overlap representation:

\[((s = t) \downarrow_i) \downarrow_j\] vs. \[(s = t) \downarrow_j\]

- Rewrite relation changes over time
 reproduction not exact (confluence not given!)
 negative effects on proof search

- Requirement for \(P\): behave neutral wrt. proof search!
 Requirement for \(A\): remember history!

- History of \(A\) turns simple compression scheme complete...
Iterated Compression

\[\langle w_1, s_1 = t_1, i, j_1, p_1 \rangle \langle w_2, s_2 = t_2, i, j_2, p_2 \rangle \ldots \langle w_n, s_n = t_n, i, j_n, p_n \rangle \]

\[\downarrow \downarrow \downarrow \downarrow \downarrow \]

\[\langle w_1, i, j_1, p_1 \rangle \langle w_2, i, j_2, p_2 \rangle \ldots \langle w_n, i, j_n, p_n \rangle \]

\[\downarrow \downarrow \leftarrow \rightarrow \rightarrow \rightarrow \]

\[\langle w_1', i, j_1, * \rangle \ldots \langle w_k', i, j_k, * \rangle \]

\[\downarrow \downarrow \leftarrow \]

\[\langle w, i, *, * \rangle \]
On Remembering History

- Saving for each $k \leq j$ the indexing structure for A_k introduces new space problem

- Employ *one* index for all $\rightarrow_k, k \leq j$
 - use age constraints
 - match ordering problem
 - additional benefit: detailed proof objects for free

- Most rewrite steps (> 90%) performed with \rightarrow_j
 use two indexes: one for \rightarrow_j, one for all $\rightarrow_k, k \leq j$

- Elegant solution with perfect discrimination trees...
The Match Ordering Problem

- Query term may be matched by *several* indexed terms:
 \[f(a, a, b) \quad \triangleright \quad \begin{cases}
 f(a, b, a) \\
 f(x_1, x_2, b) \quad \rightarrow \sigma_1 \\
 f(x_1, x_1, x_2) \quad \rightarrow \sigma_2
 \end{cases} \]

- Ordering between matches determined by indexing structure in practice: use first match

- For exact reproduction: store not only all equations, but the ordering relation between the matching terms as well! problem when one index is used for all \(\rightarrow_k, k \leq j \)

- PDTs: match ordering solely determined by traversal strategy
Discrimination Trees for $\rightarrow_k, k \leq j$

Match $f(a, a, b)$ at $t = 3$: \times ✔ ✔
A Simple Strategy for Compression

- Employ *two buffers*:
 - constant-size cache for individuals up to some weight limit
 - rest buffer: per A-element an entry $\langle w, i, *, * \rangle$ for the rest
 - hence $|P| = O(|A|)$

- Cache full \mapsto move heavier half into second buffer and adapt weight limit

- Minimum selection: from cache individually, from rest buffer by recomputation

- Trade-off between space and time but only a small fraction of P ever selected
Benefits of Refined Proof Procedure

- Laziness works!

- Huge reduction of space consumption at the price of modest run-time overhead
 no discarding – completeness can be retained

- System ready for more demanding problems
 – e.g. $\text{Winker}_2 \Rightarrow \text{Boolean}:$ overnight problem the standard way
 – starting point for easily implemented parallelization

- Prover substantially strengthened if you...

 \textit{design your proof procedure carefully!}
ALTIUS:
Integrate more Intelligence!
Tackling Redundancy

- Observation: Performance of unfailing completion not satisfactory when AC axioms are involved

- *Ordered* completion: equation $s = t$ redundant if every ground instance has a smaller proof

- Instances employed in *Waldmeister*: if s and t
 - AC-equal (subsystem ACC’ ground convergent), or
 - joinable under all variable ordering constraints
 - finding: then keep redundant equations *for simplification*

- Full confluence trees: turned out to be computationally too expensive here
Experimental Evaluation

- Number of CPs for representative examples:

<table>
<thead>
<tr>
<th>Problem</th>
<th>WM</th>
<th>WM-AC</th>
<th>WM-GJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROB005-1</td>
<td>305 000</td>
<td>33 000</td>
<td>18 000</td>
</tr>
<tr>
<td>RNG027-5</td>
<td>418 000</td>
<td>49 000</td>
<td>54 000</td>
</tr>
<tr>
<td>LAT023-1</td>
<td>130 000</td>
<td>66 000</td>
<td>54 000</td>
</tr>
<tr>
<td>RNG035-7</td>
<td>237 000</td>
<td>161 000</td>
<td>148 000</td>
</tr>
<tr>
<td>GRP180-1</td>
<td>83 000</td>
<td>88 000</td>
<td>65 000</td>
</tr>
</tbody>
</table>

- All in all, cheap alternative to completion modulo AC
Representing the Conjecture

- Idea: instead of term pairs, consider sets of rewrite successors in order to join left- and right-hand side earlier.
- Example: GRP141-1 when 0 rewrite rules derived

\[
\begin{array}{cc}
 & u \\
\bullet & \bullet
\end{array}
\begin{array}{cc}
 & u \\
\bullet & \bullet
\end{array}
\begin{array}{cc}
 & v \\
\bullet & \bullet
\end{array}
\begin{array}{cc}
 & v \\
\bullet & \bullet
\end{array}
\]
Representing the Conjecture

- Idea: instead of term pairs, consider sets of rewrite successors in order to join left- and right-hand side earlier
- Example: GRP141-1 when 2 rewrite rules derived
Representing the Conjecture

- Idea: instead of termpairs, consider sets of rewrite successors in order to join left- and right-hand side earlier
- Example: GRP141-1 when 13 rewrite rules derived

\[
\begin{align*}
&u \\
&v
\end{align*}
\]

\[
\begin{align*}
&u \\
&v
\end{align*}
\]
Representing the Conjecture

- Idea: instead of term pairs, consider sets of rewrite successors in order to join left- and right-hand side earlier
- Example: GRP141-1 when 19 rewrite rules derived
Representing the Conjecture

- Idea: instead of termpairs, consider sets of rewrite successors in order to join left- and right-hand side earlier
- Example: GRP141-1 when 30 rewrite rules derived
Beneﬁt Derived from Successor Sets

- Proofs are found
 - in many cases with less steps of saturating the axiomatization
 - at least with no more steps

- Some proofs only found with enlarging

- Focus of completion-based proving slightly shifts from axioms to conjecture

- Extension: consider (some) rewrite predecessors as well

- Danger of combinatorical explosion \(\rightsquigarrow\) escalation strategy
Automating Control: Weighting Function

- Comparison of different weighting functions in various domains

<table>
<thead>
<tr>
<th></th>
<th>addweight</th>
<th>gtweight</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOO003-2</td>
<td>>300</td>
<td>0.1</td>
</tr>
<tr>
<td>BOO007-2</td>
<td>>300</td>
<td>81.8</td>
</tr>
<tr>
<td>BOO008-4</td>
<td>61.1</td>
<td>7.0</td>
</tr>
<tr>
<td>LCL153-1</td>
<td>2.1</td>
<td>>300</td>
</tr>
<tr>
<td>LCL154-1</td>
<td>2.0</td>
<td>>300</td>
</tr>
<tr>
<td>LCL155-1</td>
<td>1.2</td>
<td>>300</td>
</tr>
<tr>
<td>Σ Boolean</td>
<td>22 / 29</td>
<td>29 / 29</td>
</tr>
<tr>
<td></td>
<td>25.4</td>
<td>4.5</td>
</tr>
<tr>
<td>Σ Wajsberg</td>
<td>21 / 25</td>
<td>17 / 25</td>
</tr>
<tr>
<td></td>
<td>0.9</td>
<td>0.9</td>
</tr>
</tbody>
</table>

- *Must* employ different classifications on different structures!
 Automating Control: Reduction Ordering

- Lexicographic path ordering: lifts operator precedence to terms
- Knuth-Bendix ordering: orders terms according to their length

<table>
<thead>
<tr>
<th></th>
<th>LPO</th>
<th>KBO</th>
</tr>
</thead>
<tbody>
<tr>
<td>COL063-4</td>
<td>223.0</td>
<td>0.0</td>
</tr>
<tr>
<td>COL063-6</td>
<td>>300</td>
<td>0.0</td>
</tr>
<tr>
<td>COL064-6</td>
<td>>300</td>
<td>0.0</td>
</tr>
<tr>
<td>(\Sigma) BT fragment</td>
<td>21 / 27</td>
<td>25 / 27</td>
</tr>
<tr>
<td></td>
<td>16.6</td>
<td>0.5</td>
</tr>
<tr>
<td>(\Sigma) non-associative rings</td>
<td>21 / 38</td>
<td>11 / 38</td>
</tr>
<tr>
<td></td>
<td>3.0</td>
<td>1.4</td>
</tr>
<tr>
<td>(A>C)(*)->>++0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Sigma) lattice-ordered groups</td>
<td>98 / 102</td>
<td>90 / 102</td>
</tr>
<tr>
<td></td>
<td>12.7</td>
<td>23.8</td>
</tr>
<tr>
<td>(+>>\wedge->\vee>0)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Must** employ different orderings on different structures!
Control Component

• Concept: match known axiomatizations on input specification \mathcal{E}

• Stage 1: extract known axioms

\[
\begin{align*}
\mathcal{E}: \\
+(x, + (y, z)) &= +(+(x, y), z) \\
+(x, 0) &= x \\
+(x, -(x)) &= 0
\end{align*}
\]

Table 1:

\[
\begin{align*}
F(x, F(y, z)) &= F(F(x, y), z) \implies \text{Ass}(F) \\
F(x, E) &= x \implies \text{Neut}_r(F, E) \\
F(x, I(x)) &= E \implies \text{Inv}_r(F, I, E)
\end{align*}
\]

• Stage 2: match known structures on extracted axiom set

extracted axioms: \{Ass(+), \text{Neut}_r(+, 0), \text{Inv}_r(+, -, 0)\}

Table 2:

\[
\{\text{Neut}_r(F, E), \text{Ass}(F), \text{Inv}_r(F, I, E)\} \implies \text{Group}(F, I, E)
\]
Control Component

- Stage 2: match known structures on extracted axiom set

 extracted axioms:
 \{\text{Ass}(+), \text{Neut}_r(+, 0), \text{Inv}_r(+, -, 0)\}

 Table 2:
 \{\text{Neut}_r(F, E), \text{Ass}(F), \text{Inv}_r(F, I, E)\}
 \rightarrow \text{Group}(F, I, E)

- Stage 3: instantiate strategy

 detected axiomatization:
 \text{Group}(+,-,0)

 Table 3:
 \text{Group}(F, I, E)
 \rightarrow
 \geq \text{LPO}(I>F>E), \varphi := \text{gtweight}

- Start proof search with reduction ordering \text{LPO}(\neg>+>0)
 and weighting function \text{gtweight}
Lesson Learned from these Achievements

- Refinements on inference level a major means of advancing
- There is no general-purpose control strategy! therefore: specialization according to the algebraic structure
- Useful control knowledge should be integrated a step towards "push button technology"
- System finds more and more proofs if you...
 \textit{integrate more intelligence!}
Conclusion

- Many routine problems solved instantly
- Challenging ones may call for expertise
- Expressiveness of logics limited
 but: lessons should carry over to more general calculi
- Conviction: continuous specialization and refinement of deductive techniques is a prerequisite to future progress
Ongoing Work

- Stronger, constraint-based redundancy criteria for specific cases of interest

- Singleton axiomatizations for Sheffer stroke: OTTER and WALDMEISTER applied in writing of *A New Kind of Science*

- Intentions of integrating WALDMEISTER into MATHEMATICA
A Last Secret Finally Revealed

Waldmeister - Theorem Prover

http://www.mpi-sb.mpg.de/~hillen/waldmeister/

ABOUT WALDMEISTER | ALL TIME NEWS

As you might already know, Waldmeister (asperula odorata, woodruff) is an ingredient for a very popular potable. It is also liked as aroma for sodas. But no, the Waldmeister we are talking about here, you cannot use for your potion. Well, maybe you try and make such a potion. If you are a logic-wizzard after drinking from it, please contact us... Because the Waldmeister we are talking about here is a highly efficient theorem prover.

So be welcomed in the world of Waldmeister, which is the world of logical theorems.

Waldmeister is a theorem prover for unit equational logic. Its proof procedure is unolina Knuth-Bendix completion [BDP89]. Waldmeister's main advantage is that efficiency has been reached in terms of time as well as of space. Within that scope, a complete proof object is constructed at run-time. Read more about the implementation.

ALL TIME NEWS

For his book

A New Kind Of Science

which is hot from the press, Stephan Wolfram has employed our system to carry out investigations in the area of singleton axiom systems for Boolean algebra. Pages