Path-Based Query Computation by Automated Deduction

Peter Baumgartner AG 2

www.mpi-sb.mpg.de/~baumgart/

Background

Deduction Systems

- First-Order
- Classical and Knowledge Representation Logics
- Refutational and Model Computation
- Implementations

Applications

- Diagnosis
- Deductive Databases
- Computational Linguistics

This Talk

- Computing paths through database schema
- Express task in logic programming framework
- Use "KRHyper" Deduction System
- Connection to AG 5: complements XXL search engine?

KRHyper

 $\{\} \not\models (1)$

- Disjunctive logic programs
- Stratified default negation
- Model computation
- Perfect model semantics
- Serious implementation

 $E \leftarrow C$, not D

- Variant for predicate logic
- Extensions: minimal models, abduction, default negation

Description Logics (DL)

Old-fashioned, problematic graphical notation

ALC and successors:

PUBLICATION

BOOK

ARTICLE

PUBLICATION

BOOK

ARTICLE

author.PERSON

- Corresponds to decidable fragment of first-order logic
- Standard sevices: consistency, classify, retrieve, ...
- The KR formalism for the "Semantic Web"

More DL Language Features

Class definitions:

PUBLICATION $\sqsubseteq \forall$ author.PERSON

author

creator

PUBLICATION

☐ ∃ author.PERSON

Inverse/trans. roles:

QVR:

Subroles:

author / colleague+

MANYAUTHORS ⊑

(≥ 10 author-).PUBLICATION

Concrete domains:

Nominals:

Cycles:

Assertions:

Int, String, ...

DL language alone and services offered by systems do not suffice to solve task below!

author(TACP,Knuth)

Context: Semistructured Data, Schema Integration

Task: Determine path based database queries

Solution: XPath (?) vs. Query generated from schema

Generate query:

- Steps: (1) Schema → DL → If-Then Rules
 - (2) Start and End → Assertions/If-Then Rules
 - (3) Path based query → Computed modell

RESEARCHER $\sqsubseteq \exists$ publications.

(ARTICLE ☐ PUBLICATION ☐ MONOGRAPH)

ARTICLE □ MONOGRAPH □ ⊥

PUBLICATION ⊒ BOOK ∐ ARTICLE

(2) Start and End → Assertions/If-Then rules

RESEARCHER(a) (Start)

 $\perp \leftarrow \text{not } \exists X \text{ B00K}(X)$ (End)

Solution (almost) trivial!

Conclusions

- Approach taken:
 - rather inexpressive DL
 - transformation to logic programming
 - model computation
 - purely declarative
- Did not succeed with "standard" Description Logic reasoners, although may be used complementary
- Further issues:
 - cycles in schema graph
 - numbers
 - first-order level reasoning useful?
- Presented first ideas only ...