Variability Management
or
How to construct a new car in 5 min
or
How to make your specification run

Prof. Dr. Christoph Weidenbach
Today’s Architecture

- Sales Views
- Logistics Views
- Engineering Views

Sales
Software

MM
Software

CAX
Software

Product

Application
Application + DB
Paper, People

Christoph Weidenbach
Variability Management
Sales Software Development

Customer View → Sales Software → Sales Requirements → Product

Christoph Weidenbach
Variability Management
(Dis)Advantages

Disadvantages

• changes to the product means changes to the software
• verification of the software not affordable
• architecture is not flexible
• no consistency between product and software
• no queries beyond single views

Advantages

• it works
What Cannot be Answered

- Can we build a car with weight less than x?
- Is there a reasonable substitution for part x?
- Can we produce car x without supplier y?
- Which parts of our portfolio are not used anymore?
- How long does it need to build a new car with properties x?
- Is it profitable to get rid of part x?
- What is the most profitable car we could build?
- How much does it cost to produce a real sports car?
- …
Future’s Architecture

Product Specification

- Sales Views
- Logistics Views
- Engineering Views
- XXX Views

Product Interface

- DB
- Product Specification
- Product Reasoning

Application

Application

Christoph Weidenbach

Variability Management
(Dis)Advantages

Advantages

• changes to the product automatically adjust software
• verification of the software for free
• architecture is highly flexible
• proven consistency between product and software
• support for overall product queries

Disadvantages

• it does not work yet
Scientific View

- Sales Views
- Logistics Views
- Engineering Views
- XXX Views

Reasoning Interface

- DB
- Logic Formulas
- Theorem Provers

Application
Concrete Example

- v.control
- v.Control SPASS Interface
- Propositional Logic
- DB
- SPASS

Application
Application
Application
Propositional Logic

• Language: propositional variables can be true (1) or false (0)
• Connectives: \(\Rightarrow \) implication, \(\neg \) negation, \(\lor \) disjunction, \(\land \) conjunction
• Clause: disjunction of variables or their negations (literal)
• Validity: a formula is valid iff it is true for all possible assignments
• Assignment: setting all propositional variables 1 or 0, can also be expressed by showing the true literals
• we write \(M \models C \) if the clause \(C \) is true by assignment \(M \)
• SAT: propositional satisfiability, find an assignment such that for a set of clauses all clauses are valid in the assignment
Unit Propagation

\[\text{UProp}(N, M) \]
while (there is a clause \(C' \lor L \in N \) such that \(M \models \neg C' \) and \(L \notin M \) and \(\neg L \notin M \))

\[M := M \cup \{L\}; \]

return \(M \);

\[\text{UProp}(\{\neg A \lor \neg B \lor C, \quad \neg A \lor B, \quad \neg C, \quad D, \quad A\}, \emptyset) \]
\[\rightarrow M = \emptyset \]
\[\rightarrow M = \{\neg C\} \]
\[\rightarrow M = \{\neg C, D\} \]
\[\rightarrow M = \{\neg C, D, A\} \]
\[\rightarrow M = \{\neg C, D, A, B\} \]
DPLL Procedure

DPLL(N, M)
if for all $C \in N$ we have $M \models C$ return true;
if there is some $C \in N$ with $M \models \neg C$ return false;
select a variable P occurring in N but not in M;
if (DPLL(N, UProp(N, $M \cup \{P\}$))) then
 return true;
else
 return DPLL(N, UProp(N, $M \cup \{\neg P\}$));

\[\neg A \lor \neg B \lor C \]
\[\neg A \lor B \]
\[\neg C \]
\[A \lor D \]

DPLL(N, \emptyset)

DPLL is sound and complete and terminating for SAT.
Propositional Logic Formulas

Corsa \Rightarrow Wheels \land Engines

- 4-Holes \Rightarrow Wheels
- 5-Holes \Rightarrow Wheels
- 4-Holes \Rightarrow \neg5-Holes
- 5-Holes \Rightarrow \neg4-Holes
- Diesel \Rightarrow Engines
- Gasoline \Rightarrow Engines
- Diesel \Rightarrow \negGasoline
- Gasoline \Rightarrow \negDiesel

Diesel \Rightarrow \neg4-Holes

Reasoning:
- Corsa \Rightarrow Wheels, Engines
- 4-Holes \Rightarrow \neg5-Holes, \negDiesel, Gasoline
- Gasoline \Rightarrow \negDiesel
Challenge: Scalability

- before 2009: approx. 1500 nodes
- in 2009: v.control + SPASS approx. 3000 nodes
- in x years: for a reasonable product approx. 60000 nodes
Thank you for your attention