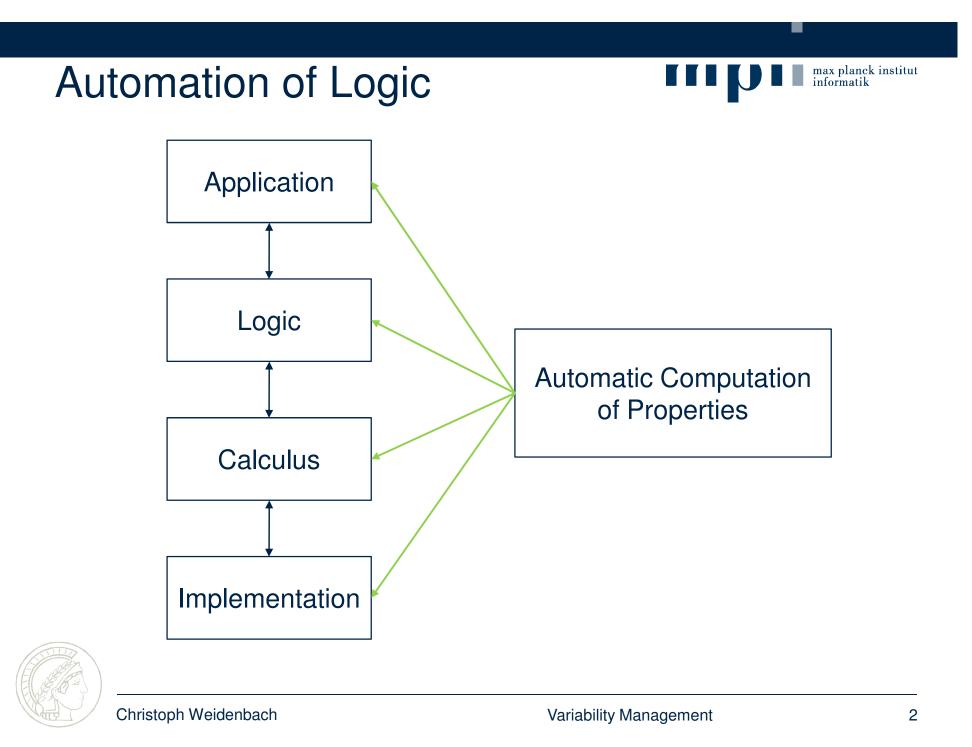


Variability Management

Prof. Dr. Christoph Weidenbach



Examples by PhD Thesis

- Dr. Matthias Horbach: second-order logic decidability
- Dr. Carsten Ihlemann: local theory extensions
- Tinxiang Lu: verifying correctness of PASTRY
- Arnaud Fietzke: combining first-order and prob. reasoning
- Patrick Wischnewski: reasoning in large ontologies
- ?: variability management (PROSTEP, Siemens)

max planck institut

informatik

develop "semantic" GOOGLE

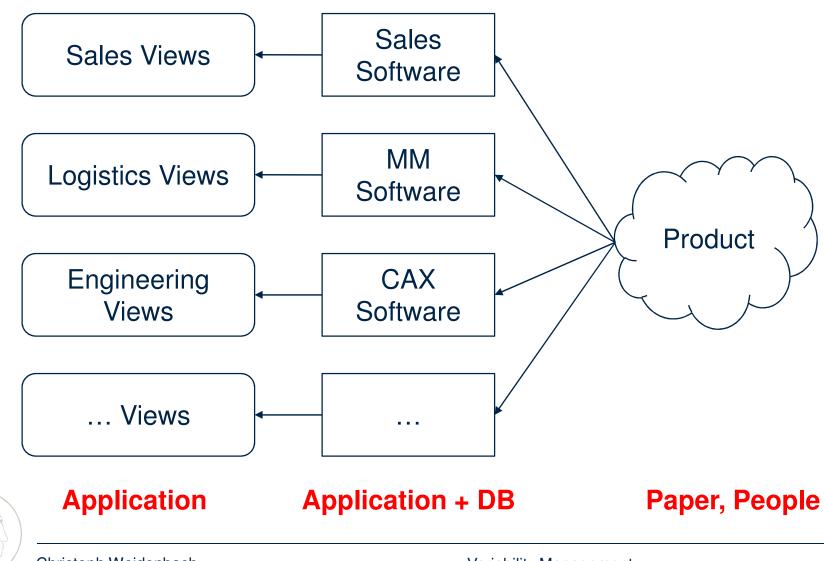
Configuration Today

The car industry:

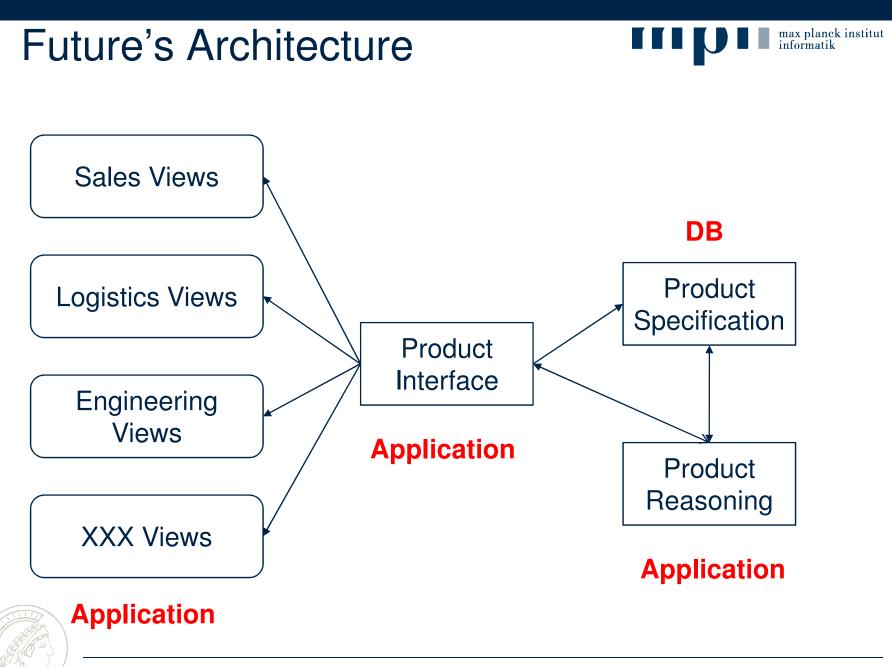
Opel Corsa

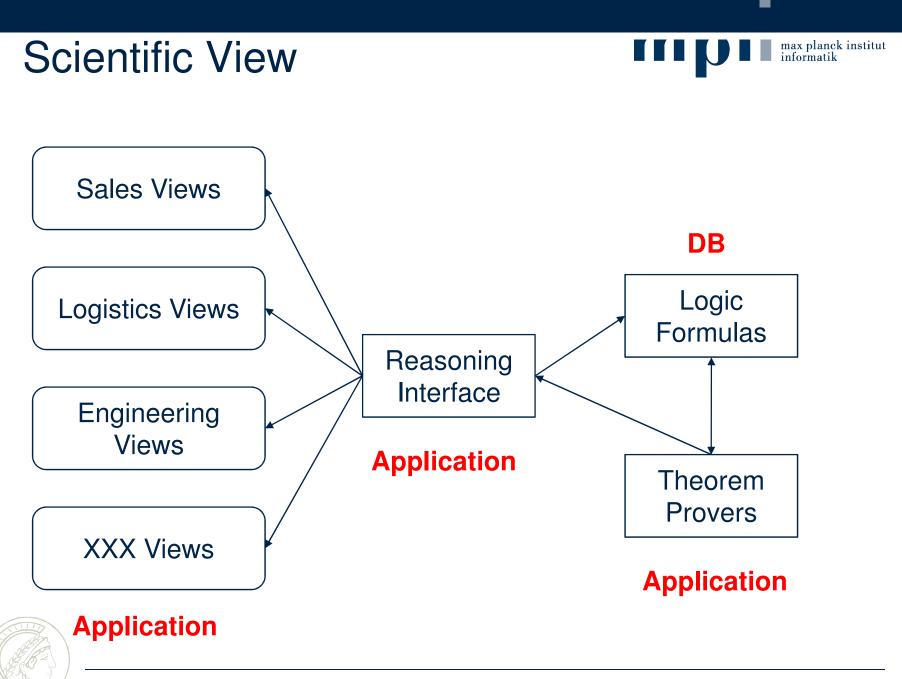
Today's Architecture

max planck institut informatik

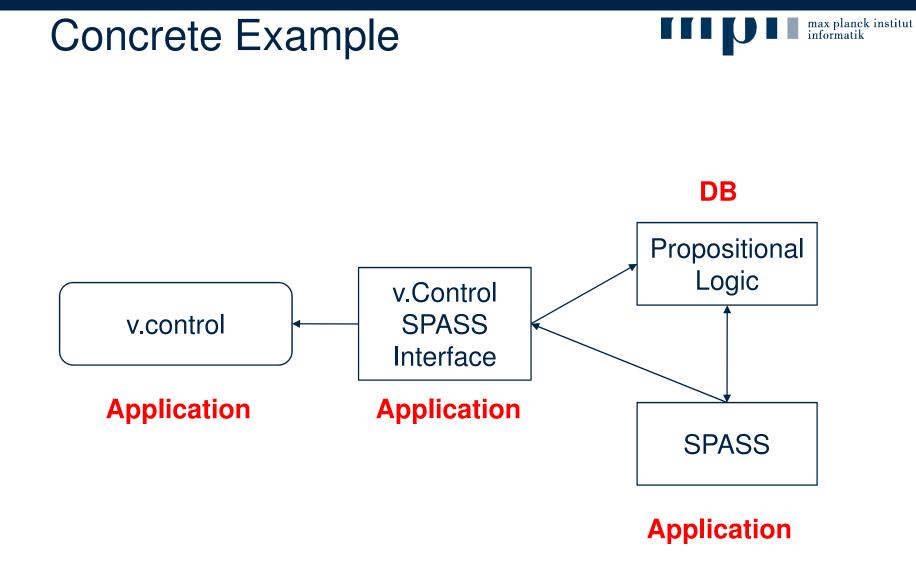


Christoph Weidenbach





Christoph Weidenbach



Opel Corsa

in cooperation with

Prof. Dr. Georg Rock, Uni App Sc Trier, PROSTEP IMP

Daniel Doenigus, PROSTEP IMP

Christoph Weidenbach

Propositional Logic

- Language: propositional variables can be true (1) or false (0)
- Connectives: \Rightarrow implication, \neg negation, \lor disjunction, \land conjunction
- Clause: disjunction of variables or their negations (literal)
- Validity: a formula is valid iff it is true for all possible assignments
- Assignment: setting all propositional variables 1 or 0, can also be expressed by showing the true literals
- we write $M \models C$ if the clause C is true by assignment M
- SAT: propositional satisfiability, find an assignment such that for a set of clauses all clauses are valid in the assignment

Unit Propagation

UProp
$$(N,M)$$

while (there is a clause $C' \lor L \in N$ such that
 $M \models \neg C'$ and $L \notin M$ and $\neg L \notin M$)
 $M := M \cup \{L\};$
return $M;$

$$\begin{aligned} \text{UProp}(\{\neg A \lor \neg B \lor E, \neg A \lor B, \neg E, D, A\}, \emptyset) \\ & \to M = \emptyset \\ & \to M = \{\neg E\} \\ & \to M = \{\neg E, D\} \\ & \to M = \{\neg E, D, A\} \\ & \to M = \{\neg E, D, A, B\} \end{aligned}$$

DPLL Procedure


```
DPLL(N,M)
if for all C \in N we have M \models C return true;
if there is some C \in N with M \models \neg C return false;
select a variable P occurring in N but not in M;
if (DPLL(N, UProp(N, M \cup \{P\}))) then
   return true;
else
   return DPLL(N, UProp(N, M \cup \{\neg P\}));
  \neg A \lor \neg B \lor E
                                         DPLL(N, \emptyset)
  \neg A \lor B
  \neg E
                  DPLL(N, UProp(N, \{A\})) DPLL(N, UProp(N, \{\neg A\}))
  A \lor D
                  DPLL(N, \{A, B, \neg E\}) \qquad DPLL(N, \{\neg A, D, \neg E\})
```


Propositional Logic Formulas

4-Holes \Rightarrow Wheels 5-Holes \Rightarrow Wheels 4-Holes $\Rightarrow \neg$ 5-Holes 5-Holes $\Rightarrow \neg$ 4-Holes $\begin{array}{l} \mathsf{Diesel} \Rightarrow \mathsf{Engines} \\ \mathsf{Gasoline} \Rightarrow \mathsf{Engines} \\ \mathsf{Diesel} \Rightarrow \neg \mathsf{Gasoline} \\ \mathsf{Gasoline} \Rightarrow \neg \mathsf{Diesel} \end{array}$

 $\mathsf{Diesel} \Rightarrow \neg 4\mathsf{-Holes}$

Reasoning: Corsa \rightarrow Wheels, Engines 4-Holes $\rightarrow \neg$ 5-Holes, \neg Diesel, Gasoline Gasoline $\rightarrow \neg$ Diesel

max planck institut

informatik

Challenge: Scalability

- worst case SAT searches 2^n nodes
- before 2009: approx. 1500 nodes
- in 2009: v.control + SPASS approx. 3000 nodes
- in x years: for a reasonable product approx. 60000 nodes

• SAT Seminar:

- http://www.mpi-inf.mpg.de/departments/rg1/teaching/sat-ws10/
- contact us on student assistant jobs, bachelor-master-PhD thesis

Thank you for your attention

