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Solvability of Parametric Conditions – Examples 2011-10-19

Example (Real numbers)

Consider real parameters a, b, c.

(i) ax + b = 0 has a solution x ∈ R iff a 6= 0 ∨ b = 0.

(ii) ax3 + bx + c = 0 has a solution x ∈ R iff a 6= 0 ∨ b 6= 0 ∨ c = 0.

Proof.

(i) “⇐:” For b = 0 set x = 0, and for a 6= 0 set x = −b/a.

“⇒:” Let a = 0 and b 6= 0. Then ax + b = 0←→ b = 0.

(ii) “⇐:” For a = 0 we are in situation (i). Let a 6= 0, w.l.o.g. a > 0.

Then limx→∞ ax3 + bx + c =∞, limx→−∞ ax3 + bx + c = −∞,

and by the intermdiate value theorem there is a zero.

“⇒:” Analogously to (i).
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Example (Set theory)

Consider P(M) for M 6= ∅ and parameters A, B ranging over P(M).

¬X ⊆ A ∧ X ∩ B = ∅ has a solution X ∈ P(M) iff A ∪ B 6= M.

Proof.
Exercise.
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Example (Integers)

Consider integer parameters a, b, c.

2x = a ∧ b < x ∧ x < c has a solution x ∈ Z iff a is even and 2b < a < 2c.

Proof.
“⇒:” 2x = a ∧ b < x ∧ x < c ←→ 2x = a ∧ 2b < 2x ∧ 2x = 2c.

The only possible solution x = a/2 exists iff a is even.

Equivalently replacing 2x with a then yields our condition.

“⇐:” Set x = a/2, which is possible since a is even. 2(a/2) = a, and our

condition implies b < a/2 and a/2 < c.
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Example (Undirected graph)

Consider (V ,E) with V = {1,2,3,4}, E = {{1,2}, {1,4}, {2,3}, {3,4}, {2,4}},
and let a, b be parameters ranging over V .

{x ,a} ∈ E ∧ {x ,b} ∈ E ∧ ¬{a,b} ∈ E has a solution x ∈ V iff

a = b ∨ (a = 1 ∧ b = 3) ∨ (a = 3 ∧ b = 1).

Proof.
Exercise.
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Example (Linear equations in one indeterminate over R)

Let a1, . . . , am ∈ R such that a1 6= 0. Consider real parameters c1, . . . , cm.
m∧

i=1
aix + bi = 0 has a solution x ∈ R iff

m∧
i=2

aib1 = a1bi .

Proof.
Let b1, . . . , bm ∈ R.
“⇒:” Let i ∈ {2, . . . ,m} such that aib1 6= a1bi . If ai = 0, then bi 6= 0 , and it

follows that in particular aix + bi = 0 has no solution. If ai 6= 0, then

x = −bi/ai is the only solution of aix + bi = 0. Similarly x = −b1/a1 is the

only solution of a1x + b1 = 0. But our assumption aib1 6= a1bi is

equivalent to −b1/a1 6= −bi/ai .

“⇐:” Set x = −b1/a1, which obviously solves a1x + b1 = 0. Consider now

aix + bi = 0 for i ∈ {2, . . . ,m}. We know aib1 = a1bi . If ai = 0 then also

bi = 0, and our considered equation is trivial. Otherwise, we equivalently

obtain −bi/ai = −b1/a1 = x , i.e., x solves our considered equation.
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Example (Linear equations in two indeterminates over R)

Let a1, . . . , am, b1, . . . , bm ∈ R, such that a1 6= 0 and a2b1 − a1b2 6= 0.

Consider real parameters c1, . . . , cm.
m∧

i=1
aix1 + bix2 + ci = 0 has a solution (x1, x2) ∈ R2 iff

m∧
i=3

(aib1 − a1bi )(a2c1 − a1c2) = (a2b1 − a1b2)(aic1 − a1ci ).

Proof.
Exercise.

Hint: Temoporarily consider x2 a parameter and use the previous result.

Introduction and Foundations · Parametric Conditions · 10/170



Example (One linear constraint over R)

Consider real parameters a, b.

ax + b 6 0 has a solution x ∈ R iff a 6= 0 ∨ b 6 0.

Proof.
Exercise.
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Syntax: Elementary Languages

A language is a triplet L = (F ,R, σ) with F ∩R = ∅ und σ : F ∪R → N.

The elements f ∈ F are function symbols.

The elements R ∈ R are relation symbols.

For z ∈ F ∪R we call σ(z) the arity of z.

Example

The language of ordered rings is LOR = ({0,1,+,−, ·}, {6}, σ), where

σ(0) = σ(1) = 0, σ(−) = 1, σ(+) = σ(·) = σ(6) = 2.

A language is finite if F ∪R is finite.

Finite languages can be written like LOR = (0(0),1(0),+(2),−(1), ·(2);6(2)).

f ∈ F with σ(f ) = 0 is a constant symbol.

L is an algebraic language if R = ∅.

L is a relational language if F = ∅.
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Syntax: Extension Languages and Sublanguages

Consider languages L = (F ,R, σ) and L′ = (F ′,R′, σ ′).
Then L′ is an extension of L, if

F ⊆ F ′, R ⊆ R′, σ = σ ′|F∪R.

Accordingly, L is a sublanguage of L′.
We write L ⊆ L′.

Example

LR = (0,1,+,−, · ) ⊆ (0,1,+,−, · ;6) = LOR

The language of ordered rings is an extension of the language of rings.

The language of rings is an sublanguage of the language of ordered rings.
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Syntax: Special Symbols, Variables, and the Alphabet

We fix a set X = {(, ), ,, =} of special symbols.

We fix an inifinite set V of variables.

The alphabet of a language L = (F ,R, σ) is ZL = X ∪ V ∪ F ∪R.

Z∗L is the set of all finite words über ZL.
ε ∈ Z∗ is the empty word.

The length |w | of a word w ∈ Z∗L is the number of contained alphabet

characters counting multiplicites.

Convention
Our choices of V, F and R are always such that:

(1) X , V, F and R are pairwsie disjoint.

(2) w ∈ Z∗L and |w | 6= 1 =⇒ w /∈ ZL

We shortly write Z and Z∗ whenever L is obvious from the context.
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Syntax: Terms and Atomic Formulas

L-terms are words t ∈ Z∗ obtained by composition of variables and (possibly

constant) function symbols according to their arity.

TL ⊆ Z
∗ is the set of all L-terms.

V(t) ⊆ V is the (finite) set of variables contained in t ∈ TL.

Conventions
Formally, all terms are in prefix notation.
We use infix notation (with precedence rules) for our convenience.

Atomic L-formulas are words ϕ ∈ Z∗ that are

(a) equations t1 = t2, where t1, t2 ∈ TL.

(b) predicates R(t1, . . . ,tn) where R ∈ R with σ(R) = n, and t1, . . . , tn ∈ TL.

AL ⊆ Z
∗ is the set of all atomic L-formulas.

V(ϕ) ⊂ V is the (finite) set of variables contained in ϕ ∈ AL.

We shortly write T and A whenever L is obvious from the context.
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Semantics: Structures

Consider a language L = (F ,R, σ).

An L-Structure is a triplet A = (A, ιF , ιR).

A 6= ∅ is the universe of A.

The interpretation ιF assigns to each f ∈ F , σ(f ) = n a function f A : An → A.

The functions f A for f ∈ F are the functions of A.

For constant symbols c ∈ F with σ(c) = 0 we call cA ∈ A a constant of A.

The interpretation ιR assigns to R ∈ R, σ(R) = n a function RA : An → {⊥,>}.
The symbol ⊥ means “false,” and the symbol > means “true.”

The functions RA for R ∈ R are the Relations of A.

You want it more formally?

ιF : F →
⋃

n∈N A(An), ιR : R→
⋃

n∈N{⊥,>}
(An).
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Semantics: Classification of L-Structures and an Example

Consider a language L = (F ,R, σ) and an L-structure A = (A, ιF , ιR).

If L is an algebraic language, then A is called an algebra.

If L is a relational language, then A called a relational structure.

A is called finite if its universe A is finite.

Example (The real numbers as an ordered ring)

Consider the language LOR = (0,1,+,−, ·;6) of ordered rings.

One LOR-structure is R = (R, ιF , ιR):

ιF (0) = 0R ∈ R und ιF (1) = 1R ∈ R.

ιF (+) = +R, where +R : R × R→ R is the regular addition in R.

ιF (−) = −R and ιF (·) = ·R analogously.

ιR(6) = 6R, where 6R : R × R→ {⊥,>} with 6R(x , y) = > ⇔ x 6 y in R.

LOR is finite but R is infinite.
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Structures Over Finite Languages

Consider a finite language L = (f (k1)

1 , . . . , f (km)
m ; R(l1)

1 , . . . ,R(ln)
n ).

Then L-structures can be specified like A = (A;ω1, . . . , ωm;%1, . . . , %n),

where (ωi : Aki → A) = ιF (fi ) and (%j : Alj → {⊥,>}) = ιR(Rj ).

The definitions of ωi and %j can often be derived from their names.

Example (The real numbers as an ordered ring)

L = (0,1,+,−, ·;6), R = (R; 0,1,+,−, ·;6)

Examples

For L = (◦(2), ε(0)) we have L-structures (Z; +,0), (Q; ·,1), and (Z∗; ◦, ε).

Note
The notation A = (A;ω1, . . . , ωm;%1, . . . , %n) must never be abused for

specifing the language.
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Restrictions and Expansions

Consider languages L = (F ,R, σ) ⊆ (F ′,R′, σ ′) = L′.
Let A = (A, ιF ′ , ιR′) be an L′-structure.

Constraining interpretations yields an L-structure A|L = (A, ιF ′ |F , ιR′ |R).

A|L is the L-restriction of A.

A is an L′-expansion of A|L.

Example

Consider LR = (0,1,+,−, · ) ⊆ (0,1,+,−, · ;6) = LOR .

R = (R; 0,1,+,−, ·;6) is an LOR-Structure, and R|LR
= (R; 0,1,+,−, ·).

The ring of real numbers is the LR-restriktion of the ordered ring.

The ordered ring of real numbers is an LOR-expansion the ring.

(R; 0,1,+,−, ·;>) is another LOR-expansion of (R; 0,1,+,−, ·).
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Motivation of Extended Terms

We are going to interprete funtion symbols as functions.

Terms are going to describe functions, too.

Example (Polynomial functions)

f : R3 → R mit f (x , y , z) = x4 + 2xy − 5y

Using L = (0,1,+,−, ·) we define f using a term.

f is suffixed with a list of variables serving as formal parameters.

The order of variables is relevant.

All variables of the term must be listed.

It is admissible to list further variables (z in our example).

Proceed this way without having to name functions (in the formal theory):

(x4 + 2xy − 5y)(x , y , z)

Generalize this idea to atomic formulas.
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Extended Terms and Atomic Formulas 2011-10-26

Consider a language L = (F ,R, σ).

Let t ∈ T , x1, . . . , xn ∈ V pairwise different such that V(t) ⊆ {x1, . . . , xn}.

Then (x1, . . . , xn) is an extension of t .

The ordered pair (t, (x1, . . . , xn)) is an extended term.

Convenient notation t(x1, . . . , xn).

For V(t) = ∅ we do not distinguish between t() and t .

T (x1, . . . , xn) := { (t, (x1, . . . , xn)) | t ∈ T und V(t) ⊆ {x1, . . . , xn} }

Note
Notation t(x1, . . . , xn) contains implicit assertion about the variables of t .

Similarly, T (x1, . . . , xn) constrains the possible choices for t .

Analogously: extended atomic formulas ϕ(x1, . . . , xn), A(x1, . . . , xn).
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Semantics: Term Functions and Definable Relations

Consider a language L = (F ,R, σ) and an L-structure A.

Let t(x1, . . . , xn) be an extended term.

The term function tA : An → A is defined recursively wrt. |t | ∈ N:

(i) t = c ∈ F with σ(c) = 0 =⇒ tA(a1, . . . ,an) = cA.

(ii) t = xi ∈ V for i ∈ {1, . . . ,n} =⇒ tA(a1, . . . ,an) = ai .

(iii) t = f (t1, . . . , tm) mit f ∈ F , σ(f ) = m > 0 and t1, . . . , tm ∈ T =⇒
tA(a1, . . . ,an) = f A(tA

1 (a1, . . . ,an), . . . , tA
m(a1, . . . ,an)

)
using extended terms t1(x1, . . . , xn), . . . , tm(x1, . . . , xn).

Let ϕ(x1, . . . , xn) be an extended atomic formula.

Define ϕA : An → {⊥,>} as follows:

(i) ϕ = (t1 = t2) =⇒ ϕA(a1, . . . ,an) = > ⇔ tA
1 (a1, . . . ,an) = tA

2 (a1, . . . ,an).

(ii) ϕ = R(t1, . . . , tm) for R ∈ R with σ(R) = m =⇒
ϕA(a1, . . . ,an) = RA(tA

1 (a1, . . . ,an), . . . , tA
m(a1, . . . ,an)

)
,

using extended terms t1(x1, . . . , xn), . . . , tm(x1, . . . , xn).
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Semantics: Validity and Models

Consider a language L = (F ,R, σ) and an L-structure A.

Let ϕ(x1, . . . , xn) be an extended atomic formula.

ϕ(x1, . . . , xn) is valid in A at the point (a1, . . . ,an) ∈ An, if ϕA(a1, . . . ,an) = >.

Notation: A |= ϕ(a1, . . . ,an).

Observation

A |= ϕ(a1, . . . ,an) for all (a1, . . . ,an) ∈ An does not depend on the extension.

ϕ is valid in A, if ϕA(a1, . . . ,an) = > for all (a1, . . . ,an) ∈ An.

Alternatively, we say A is a model of ϕ. Notation: A |= ϕ.

A set Φ of atomic formulas is valid in A, if A |= ϕ for all ϕ ∈ Φ.

Alternatively, we say A is a model of Φ. Notation: A |= Φ.
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Example: Trivial Models

Consider a language L = (F ,R, σ).

Let M = {m} for a set m. We are going to define an L-structure M on M:

For f ∈ F with σ(f ) = n set f M(m, . . . ,m) := m.

For R ∈ R with σ(R) = n set RM(m, . . . ,m) := >.

M is the trivial L-structure with universe M.

Lemma
M |= Φ for all Φ ⊆ A. In particular, each set of atomic formulas has a model.

Proof.
Let ϕ ∈ Φ, and let ϕ(x1, . . . , xn) be an extended atomic formula.

Case 1: ϕ = (t1 = t2). Then tM
1 (m, . . . ,m) = m = tM

2 (m, . . . ,m) , thus

ϕM(m, . . . ,m) = (t1 = t2)M(m, . . . ,m) = >.

Case 2: ϕ = R(t1, . . . , tk ). Then ϕM(m, . . . ,m) = R(t1, . . . , tk )M(m, . . . ,m) =

RM(tM
1 (m, . . . ,m), . . . , tM

k (m, . . . ,m)
)

= RM(m, . . . ,m) = >.
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Syntax: First-Order Formulas

Consider a language L.

We fix a set O = {false, true,¬,∧,∨,−→,←→} of logical operators.

We say false, true, not, and, or, if . . . then, if and only if.

We assume Z ∩ O = ∅ and define Z′ = Z ∪ O.

We fix a set {∀, ∃} of quantifier symbols.

We say for all, there exists.

We assume Z′ ∩ {∀, ∃} = ∅ and define Z′′ = Z′ ∪ {∀, ∃}.

The set Q1 of first-order L-formulas is the smallest subset of Z′′∗ such that

(i) A ⊆ Q1 und {false, true} ⊆ Q1.

(ii) ϕ ∈ Q1 =⇒ ¬(ϕ) ∈ Q1

(iii) ϕ, ψ ∈ Q1 =⇒ (ϕ) ∧ (ψ), (ϕ) ∨ (ψ), (ϕ) −→ (ψ), (ϕ)←→ (ψ) ∈ Q1

(iv) ϕ ∈ Q1 und x ∈ V =⇒ ∀x(ϕ), ∃x(ϕ) ∈ Q1.
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Syntax: Special Types of Formulas

Atomic formulas, negated atomic formulas, true, and false are base formulas.

Note
Base formulas correspond to literals in propositional logic.

Let ϕ, ψ ∈ Q1.

(ϕ) ∧ (ψ) ∈ Q1 is a conjunction.

(ϕ) ∨ (ψ) ∈ Q1 is a disjunction.

(ϕ) −→ (ψ) ∈ Q1 is an implication with antecedens ϕ und succedens ψ .

(ϕ)←→ (ψ) ∈ Q1 is a biimplication.

A word ∀x ∈ Z′′∗ with x ∈ V is a universal quantifier.

∀x(ϕ) ∈ Q1 is a universally quantified formula with matrix ϕ.

A word ∃x ∈ Z′′∗ with x ∈ V is an existential quantifier.

∃x(ϕ) ∈ Q1 is an existentially quantified formula with matrix ϕ.

Introduction and Foundations · Languages and Formulas · 26/170



Precedence Conventions

For reducing the number of parentheses in informal notations we agree:

= and operators in R bind stronger than ¬.

¬ binds stronger than all other logical operators and quantifiers.

∧ binds stronger than ∨.

∨ binds stronger than −→.

−→ binds stronger than←→.

Parentheses around quantified subformulas may be omitted.

Implication is right associative: ϕ1 −→ ϕ2 −→ ϕ3 = ϕ1 −→ (ϕ2 −→ ϕ3).

Example for L = (1, ·)(
¬(p = 1)

)
∧
(
∀a(∀b(∃q(·(p,q) = ·(a,b)) −→

(∃q(·(p,q) = a) ∨ ∃q(·(p,q) = b))))
)
∈ Q1

is written as ¬p = 1 ∧ ∀a∀b(∃q(p · q = a · b) −→ ∃q(p · q = a) ∨ ∃q(p · q = b)).

We always make explicit the scope of quantifiers with parentheses.
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Syntax: Free vs. Bound Occurrences of Variables

An occurrence of x ∈ V in ϕ ∈ Q1 is an appearance inside a term.

An occurrence of x within a subformula ∃x(. . . ) or ∀x(. . . ) is bound.

All other occurrences are free.

Vf (ϕ) is the set of all variables that occur freely in ϕ.

Vb(ϕ) is the set of all variables that occur boundly in ϕ.

V(ϕ) := Vf (ϕ) ∪ Vb(ϕ) is the set of all variables occurring in ϕ.

Example

L = (f (1),g(2)), ϕ = ∃w∀w
(
w = f (y)

)
∧ ∃x

(
f (x) = y

)
∨ ∀z

(
g(w , y) = w

)
The variable z does not occur in ϕ.

Vf (ϕ) = {w , y}, Vb(ϕ) = {w , x} and V(ϕ) = {w , x , y}.

Vf (ϕ) ∩ Vb(ϕ) 6= ∅.

There are no “free variables” or “bound variables”!

Introduction and Foundations · Languages and Formulas · 28/170



Syntax: Quantifier-Free Formulas and Sentences

(i) A ⊆ Q1 und {false, true} ⊆ Q1.

(ii) ϕ ∈ Q1 =⇒ ¬(ϕ) ∈ Q1

(iii) ϕ, ψ ∈ Q1 =⇒ (ϕ) ∧ (ψ), (ϕ) ∨ (ψ), (ϕ) −→ (ψ), (ϕ)←→ (ψ) ∈ Q1

(iv) ϕ ∈ Q1 und x ∈ V =⇒ ∀x(ϕ), ∃x(ϕ) ∈ Q1.

The set Q0 ⊆ Q1 of quantifier-free formulas is formed using only (i)–(iii).

From now on formulas are first-order formulas, and we write Q := Q1.

A sentence is a formula ϕ ∈ Q with Vf (ϕ) = ∅.

Q∅ ⊆ Q is the set of all sentences.

Example for LR = (0,1,+,−, ·)

(a + b) · c = a · c + b · c ∈ Q0

false ∨ ∀a∀b∀c
(
(a + b) · c = a · c + b · c

)
∨ 1 = 0 ∈ Q∅
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Extended Formulas and Closures

Let ϕ ∈ Q, x1, . . . , xn ∈ V pairwise different such that Vf (ϕ) ⊆ {x1, . . . , xn}.

The ordered pair (ϕ, (x1, . . . , xn)) is an extended formula.

Convenient notation as with atomic formulas: ϕ(x1, . . . , xn).

Extended sentences (ϕ,∅) are written as ϕ() and can be identified with ϕ.

Let ϕ(x1, . . . , xn) be an extended atomic formula.

The sentence ∀ϕ := ∀x1 . . . ∀xnϕ is a universal closure of ϕ.

The sentence ∃ϕ := ∃x1 . . . ∃xnϕ is an existential closure of ϕ.

Alternative notation for the universal closure: ϕ̄ := ∀ϕ.

For Φ ⊆ Q we define Φ̄ := { ϕ̄ | ϕ ∈ Φ }.
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Semantics of First-Order Formulas

We agree that ⊥ < >. Consider an L-structure A, and an extended formula

ϕ(x1, . . . , xn). We define ϕA : An → {⊥,>}. Let a1, . . . , an ∈ A:

For ϕ ∈ A we define ϕA(a1, . . . ,an) as usual.

falseA(a1, . . . ,an) = ⊥ und trueA(a1, . . . ,an) = >.

(¬ψ)A(a1, . . . ,an) = > ⇐⇒ ψA(a1, . . . ,an) = ⊥.

(ψ1 ∧ ψ2)A(a1, . . . ,an) = min{ψA
1 (a1, . . . ,an), ψA

2 (a1, . . . ,an)}.

(ψ1 ∨ ψ2)A(a1, . . . ,an) = max{ψA
1 (a1, . . . ,an), ψA

2 (a1, . . . ,an)}.

(ψ1 −→ ψ2)A(a1, . . . ,an) = > ⇐⇒ ψA
1 (a1, . . . ,an) 6 ψA

2 (a1, . . . ,an).

(ψ1 ←→ ψ2)A(a1, . . . ,an) = > ⇐⇒ ψA
1 (a1, . . . ,an) = ψA

2 (a1, . . . ,an).

If ϕ = ∀x(ψ), then ψ(x1, . . . , xn, x) is an extended formula;(
∀x(ψ)

)A
(a1, . . . ,an) = min

{
ψA(a1, . . . ,an,a) ∈ {⊥,>}

∣∣ a ∈ A
}

If ϕ = ∃x(ψ) then ψ(x1, . . . , xn, x) is an extended formulas;(
∃x(ψ)

)A
(a1, . . . ,an) = max

{
ψA(a1, . . . ,an,a) ∈ {⊥,>}

∣∣ a ∈ A
}
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Validity, Models, Model Classes, and Semantic Equivalence

Consider a language L and an L-structure A.

For ϕ ∈ Q with extension (x1, . . . , xn), a1, . . . , an ∈ A, and Φ ⊆ Q
define A |= ϕ(a1, . . . ,an), A |= ϕ, and A |= Φ in analogy to atomic formulas.

Note

A |= ϕ ⇐⇒ A |= ∀ϕ and A |= Φ ⇐⇒ A |= Φ̄

Let A be a class of L-structures.

ϕ ∈ A is valid in A, if A |= ϕ for all A ∈ A. Notation: A |= ϕ.

Φ ⊆ A is valid in A, if A |= Φ for all A ∈ A. Notation: A |= Φ.

For fixed L the model class of Φ ⊆ Q is Mod(Φ) = {A | A |= Φ}.

ϕ ∈ Q is generally valid, if A |= ϕ for all L-structures A. Notation: |= ϕ

Φ ⊆ Q is generally valid, if A |= Φ for all L-structures A. Notation: |= Φ

ϕ, ψ ∈ Q are semantically equivalent, if |=ϕ←→ ψ . Notation: ϕ ≈ ψ .
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Some Axiomatizations

LM = (1, ◦), ΞM =
{

(x ◦ y) ◦ z = x ◦ (y ◦ z), x ◦ 1 = x , 1 ◦ x = x
}
.

Example (Monoids)

M = Mod(ΞM ) is the class of all monoids as LM -structures.

Example (Groups)

Set Ξ := ΞM ∪ {∀x∃y(x ◦ y = 1)}.
Then GM = Mod(Ξ) is the class of all groups as LM -structures.

Exercise
1. Axiomatize groups in the language LS = (◦) ⊆ LM of semigroups.

2. Axiomatize rings in the language LR = (0,1,+,−, ·).

3. Axiomatize integral domains in the language LR .
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Important Semantic Equivalences for Boolean Operators (1)

Consider a language L, and let χ , ψ , ϕ ∈ Q:

χ ∧ ψ ≈ ψ ∧ χ
χ ∨ ψ ≈ ψ ∨ χ (commutativity)

χ ∧ (ψ ∧ ϕ) ≈ (χ ∧ ψ) ∧ ϕ
χ ∨ (ψ ∨ ϕ) ≈ (χ ∨ ψ) ∨ ϕ (associativity)

χ ∧ χ ≈ χ , χ ∨ χ ≈ χ (idempotence)

χ ∧ (χ ∨ ψ) ≈ χ
χ ∨ (χ ∧ ψ) ≈ χ (absorption)

χ ∧ (ψ ∨ ϕ) ≈ (χ ∧ ψ) ∨ (χ ∧ ϕ)

χ ∨ (ψ ∧ ϕ) ≈ (χ ∨ ψ) ∧ (χ ∨ ϕ) (distributivity)

¬(χ ∧ ψ) ≈ ¬χ ∨ ¬ψ
¬(χ ∨ ψ) ≈ ¬χ ∧ ¬ψ (de Morgan)

¬¬χ ≈ χ (involution)
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Important Semantic Equivalences for Boolean Operators (2)

χ ∧ true ≈ χ
χ ∨ false ≈ χ (neutrality)

¬false ≈ true

¬true ≈ false

χ ∧ false ≈ false

χ ∨ true ≈ true (definiteness)

χ ∧ ¬χ ≈ false

χ ∨ ¬χ ≈ true (tertium non datur)

χ ←→ ψ ≈ (χ −→ ψ) ∧ (ψ −→ χ)

χ −→ ψ ≈ ¬χ ∨ ψ (reduction to ∧, ∨, ¬)

χ −→ ψ ≈ ¬ψ −→ ¬χ (contrapositive)

χ ←→ ψ ≈ ¬ψ ←→ ¬χ (contrapositive)

¬(χ −→ ψ) ≈ χ ∧ ¬ψ (negation of implication)

¬(χ ←→ ψ) ≈ χ ∧ ¬ψ ∨ ψ ∧ ¬χ (negation of biimplication)
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Important Semantic Equivalences with Quantifiers

∃x(ϕ ∨ ψ) ≈ ∃x(ϕ) ∨ ∃x(ψ)

∃x(ϕ ∧ ψ) ≈ ∃x(ϕ) ∧ ψ , if x /∈ Vf (ψ)

∀x(ϕ ∧ ψ) ≈ ∀x(ϕ) ∧ ∀x(ψ)

∀x(ϕ ∨ ψ) ≈ ∀x(ϕ) ∨ ψ , if x /∈ Vf (ψ)

¬∃x(ϕ) ≈ ∀x(¬ϕ)

¬∀x(ϕ) ≈ ∃x(¬ϕ)

Exercise
Show the following:

∃x(ϕ ∧ ψ) 6≈ ∃x(ϕ) ∧ ∃x(ψ)

∀x(ϕ ∨ ψ) 6≈ ∀x(ϕ) ∨ ∀x(ψ)

∀x∃y(ϕ) 6≈ ∃x∀y(ϕ)
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Syntax: Substitution 2011-11-02

Consider a language L.

Let x1, . . . , xn pairwise different, and let t1, . . . , tn ∈ T .

Let t ∈ T .

t [t1/x1, . . . , tn/xn] ∈ T is obtained by replacing in t all occurrences of xi by ti .

Example for L = (f (3),g(1))

f
(
x ,g(y),g(g(z))

)[
f (y , x , z)/x , z/y , x/z

]
≡ f
(
f (y , x , z),g(z),g(g(x))

)
Let ϕ ∈ Q.

ϕ[t1/x1, . . . , tn/xn] ∈ Q is obtained by replacing in ϕ all free occurrences of xi by ti .

Example for L = (f (3),g(1))

x = g(y) ∧ ∃x(y = g(x))[f (x , y , z)/x , x/y ] ≡ f (x , y , z) = g(x) ∧ ∃x(x = g(x))
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Semantics of Substitution

Lemma
Consider a language L.

Let t1(y1, . . . , ym), . . . , tn(y1, . . . , ym) be extended terms.

Let A be an L-structure, and let b1, . . . , bm ∈ A.

(i) Let t(x1, . . . , xn) be an extended Term.

Set t ′ := t [t1/x1, . . . , tn/xn]. Then for t ′(y1, . . . , ym) we have

t ′A(b1, . . . ,bm) = tA(tA
1 (b1, . . . ,bm), . . . , tA

n (b1, . . . ,bm)
)
.

(ii) Let ϕ(x1, . . . , xn) be an extended formula with Vb(ϕ) ∩ {y1, . . . , ym} = ∅.

Set ϕ′ := ϕ[t1/x1, . . . , tn/xn]. Then for ϕ′(y1, . . . , ym) we have

ϕ′A(b1, . . . ,bm) = ϕA(tA
1 (b1, . . . ,bm), . . . , tA

n (b1, . . . ,bm)
)
.

The identical extensions (y1, . . . , ym) for t1, . . . , tn are not really a restriction.

V(ti ) ⊆ {y1, . . . , ym}, thus Vb(ϕ) ∩ {y1, . . . , ym} = ∅ =⇒ Vb(ϕ) ∩
n⋃

i=1
V(ti ) = ∅.
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Exercises

1. Prove Part (i) of the Lemma.

2. Rephrase Part (ii) in terms of validity, i.e., using “|=.”

3. Derive from Part (ii) a result for general validity,

i.e. “|=” without reference to extended formulas or particular points.

Introduction and Foundations · Languages and Formulas · 39/170



Informal Notations Made Precise

In Mathematics, quantifier symbols are often used informally.

Example

Consider the language L = (0,1,+,−, ·;>).

"‘∃δ > 0 : ϕ"’ stands for ∃δ(δ > 0 ∧ ϕ).

"‘∀ε > 0 : ϕ"’ stands for ∀ε(ε > 0 −→ ϕ).

"‘∃!x : ϕ"’ stands for ∃x(ϕ ∧ ∀y(ϕ[y/x ] −→ y = x)).

"‘∃>1x : ϕ"’ stands for ∃x∃y(x 6= y ∧ ϕ ∧ ϕ[y/x ]).

Notice that for “∀ε > 0 : ϕ” and “∃δ > 0 : ϕ” in fact

¬∀ε(ε > 0 −→ ϕ) ≈ ∃ε(ε > 0 ∧ ¬ϕ), ¬∃δ(δ > 0 ∧ ϕ) ≈ ∀δ(δ > 0 −→ ¬ϕ).
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Normal Forms for Terms in a Fixed L-Structure

Consider a language L and a set T (x1, . . . , xn) of extended terms.

Then every L-structure A induces an equivalence relation ∼A on T (x1, . . . , xn):

t(x1, . . . , xn) ∼A t ′(x1, . . . , xn) :⇐⇒ tA = t ′A.

N ⊆ T (x1, . . . , xn) is a set of normal forms for T (x1, . . . , xn) in A, if

for each t(x1, . . . , xn) ∈ T (x1, . . . , xn) there is t ′(x1, . . . , xn) ∈ N such that

t ′(x1, . . . , xn) ∼A t(x1, . . . , xn).

N if a set of unique (or canonical) normal forms in A, if

there is exactly one such t ′(x1, . . . , xn) ∈ N .

Example for LR = (0,1,+,−, ·), T (x), and R = (R; 0,1,+,−, ·)
Z[x ] is a set of unique normal forms for T (x) in R.

The coefficients are formally Terms 0, 1 + · · ·+ 1 oder −(1 + · · ·+ 1).

The coefficient 0 occurs only for the zero polynomial.
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Normal Forms for Formulas

Consider a language L and Q′ ⊆ Q.

Then N ⊆ Q′ is a set of normal forms for Q′, if

for each ϕ ∈ Q′ there is ν ∈ N such that ν ≈ ϕ.

Lemma (Negation Normal Forms)

The set NNNF ⊆ Q
0 of ∧-∨-combinations of base formulas is a set of normal

forms for quantifier-free formulas.

Proof.
Rewrite “←→” and “−→” in terms of “¬,” “∧,” “∨.”

Apply de Morgan to move inside all “¬” to the atomic formulas.

Eliminate “¬¬” by involution.

We say that formulas in NNNF are in negation normal form (NNF).
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Conjunctive and Disjunctive Normal Forms

We generalize our notions of conjunctions and disjunctions:

For n ∈ N and ϕ1, . . . , ϕn ∈ Q conjunctions and disjunctions are

n∧
i=1

ϕi =


true, n = 0

ϕ1, n = 1

ϕ1 ∧ . . . ∧ ϕn, n > 1

and
n∨

i=1

ϕi =


false, n = 0

ϕ1, n = 1

ϕ1 ∨ . . . ∨ ϕn, n > 1

Lemma (Disjunctive and Conjuncive Normal Forms)

The set NDNF ⊆ Q
0 of disjunctions of conjunctions of base formulas and

the set NCNF ⊆ Q
0 of conjunctions of disjunctions of base formulas

are sets of normal forms for quantifier-free formulas.

Proof.
Compute an equivalent NNF and then apply the laws of distributivity.

DNFs and CNFs are exponential in the size of the original formula in general!
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Prenex Normal Forms

A prenex formula is Q1x1 . . .Qnxn(ψ) ∈ Q with Qi ∈ {∃, ∀}, xi ∈ V, and ψ ∈ Q0.

Lemma (Prenex Normal Form)
The set NPNF ⊆ Q of prenex formulas is a set of normal forms for formulas.

Proof.
Let ϕ ∈ Q. We show by induction on |ϕ| ∈ N that there is ϕ ≈ ϕ′ ∈ NPNF.
Rewrite “←→” and “−→” in terms of “¬,” “∧,” “∨.”

Case 1: For ϕ ∈ A we observe A ⊆ NPNF, so we can set ϕ′ := ϕ.

Case 2: For ϕ = Qx(ψ) we find ψ ≈ ψ ′ ∈ NPNF, and we set ϕ′ := Qx(ψ ′).

Case 3: For ϕ = ¬ψ , we find ψ ≈ ψ ′ ∈ NPNF, and we know how to equivalently
move the negation inside the prenex quantifier block of ψ ′.

Case 4: For ϕ = ψ1 % ψ2 with % ∈ {∧,∨} we find ψ1 ≈ Q1x1 . . .Qnxn(ψ ′1) and
ψ2 ≈ Q̄1x̄1 . . . Q̄mx̄m(ψ ′2) with ψ ′1, ψ ′2 ∈ Q

0. We may assume w.l.o.g.
{x1, . . . , xn} ∩ V(ψ ′2) = ∅ and {x̄1, . . . , x̄m} ∩ V(ψ ′1) = ∅ (else rename
bound variables). Set ϕ′ := Q1x1 . . .QnxnQ̄1x̄1 . . . Q̄mx̄m(ψ ′1 % ψ

′
2).
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Normal Forms for Formulas in a Fixed L-Structure

Consider a language L, and Q′ ⊆ Q.

Every L-structure A induces an equivalence relation ≈A on Q′:
ϕ ≈A ϕ

′ :⇐⇒ A |= ϕ←→ ϕ′.

N ⊆ Q′ is a set of (unique/canonical) normal forms for Q′ in A, if

for each ϕ ∈ Q′ there is (exactly one) ϕ′ ∈ N such that ϕ′ ∼A ϕ.

A positive formula is an ∧-∨-combination of atomic formulas.

Example (Positive Normal Forms over the Reals)

L′OR = (0,1,+,−, ·;6,>, <,>, 6=), R = (R; 0,1,+,−, ·;6,>, <,>, 6=):.

1. The set NPOS ⊆ Q
0 of positive formulas is a set of normal forms for Q0 in R.

2. Consider A{x1,...,xn} = {ϕ ∈ A | V(ϕ) ⊆ {x1, . . . , xn} }. Then

{ f % 0 ∈ A{x1,...,xn} | % ∈ {6,>, <,>,=, 6=}, f ∈ Z[x1, . . . , xn] }

is a set of normal forms for Ax1,...,xn
in R. Much better but still not unique:

primitive polynomials f with positive head coefficients.
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Quantifier Elimination

Consider a language L, a class A of L-structures, and Φ ⊆ Q.

A admits quantifier elimination (QE) for Φ, if

for each ϕ ∈ Φ there is ϕ′ ∈ Q0 such that A |= ϕ′ ←→ ϕ.

A quantifier elimination procedure (QEP) for Φ and A is an algorithm that

given ϕ ∈ Φ computes ϕ′ ∈ Q0 such that A |= ϕ′ ←→ ϕ.

If A = {A}, then we simply say A admits QE for Φ / QEP for A and Φ.

If Φ = Q, then we need not explicitly refer to Φ.

Introduction and Foundations · Quantifier Elimination · 46/170



Quantifier Elimination Without Introducing New Variables

Lemma
Consider a language L = (F ,R, σ) and a class A of L-structures.
Let ϕ ∈ Q, ϕ′ ∈ Q0 such that A |= ϕ′ ←→ ϕ.
Assume that at least one of the following conditions holds:

(i) Vf (ϕ) 6= ∅

(ii) There is c ∈ F with σ(c) = 0.

Then one can compute ϕ′′ ∈ Q0 such that A |= ϕ′′ ←→ ϕ and V(ϕ′′) ⊆ Vf (ϕ).

Proof.
The construction of ϕ′′ depends on the condition that holds in the Lemma:

(i) Let y ∈ Vf (ϕ), V(ϕ′) r Vf (ϕ) = {z1, . . . , zn}. Set ϕ′′ := ϕ′[y/z1, . . . , y/zn].

(ii) Let V(ϕ′) r Vf (ϕ) = {z1, . . . , zn}. Set ϕ′′ := ϕ′[c/z1, . . . , c/zn].
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Quantifier Elimination and Addition of Constants

Lemma
Consider languages L = (F ,R, σ), L′ = (F ′,R, σ ′) ⊇ L such that σ ′(f ) = 0 for

all f ∈ F ′ r F . Let A be a class of L-structures that admits QE. Let A′ be a

class of L′-structures such that A′|L ∈ A for each A′ ∈ A
′. Then A

′ admits QE,

and every QEP for A induces a QEP for A′.

Proof.
Let ϕ be an L′-formula. Then there exist c1, . . . , cn ∈ F

′ with σ(ci ) = 0, y1,

. . . , yn ∈ V r V(ϕ), and an L-formula ψ such that ϕ = ψ [c1/y1, . . . , cn/yn].

Compute ψ ′ ∈ A such that A |= ψ ′ ←→ ψ . It follows that A′ |= ψ ′ ←→ ψ and

furthermore A
′ |= ψ ′[c1/y1, . . . , cn/yn]←→ ψ [c1/y1, . . . , cn/yn].
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Quantifier Elimination and Subclasses

Consider a language L, Φ ⊆ Q.

Obviously . . .

Consider a class A of L-structures that admits QE for Φ. Let A′ ⊆ A.
Then A

′ admits QE, and every QEP for A and Φ is also a QEP for A′ and Φ.
This holds in particular for A′ = {A} for some L-structure A.

Less obviously, the converse does not hold:

Example

Consider L = (), A = ({1}), B = ({1,2}). We are soon going to show that both
A and B have a QEP. Here we show that A = {A,B} does not admit QE:
Consider ϕ = ∃x(¬x = y). Assume for a contradiction that there is ϕ′ ∈ Q0

with A |= ϕ′ ←→ ϕ. We may assume w.l.o.g that V(ϕ′) ⊆ Vf (ϕ) = {y} 6= ∅.
The only atomic formula possibly occurring in ϕ′ is y = y , which is semantically
equivalent to true. It follows that ϕ′ ≈ true or ϕ′ ≈ false, in particular
A |= ϕ′ ←→ true or A |= ϕ′ ←→ false. But A |= ϕ←→ false and
B |= ϕ←→ true. Hence A 6|= ϕ′ ←→ ϕ, a contradiction.
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It Is Sufficient to Consider 1-Primitive Formulas 2011-11-09

Denote by B ⊆ Q0 the set of all base formulas.

A 1-primitive L-formula is of the form ∃x
∧n

i=1ϕi for x ∈ V, n ∈ N, and ϕi ∈ B.

Denote by P ⊆ Q the set of all 1-primitive L-formulas.

Theorem
If a class A of L-structures admits QE for P , then A admits QE (for Q),

and every QEP for P in A induces a QEP for A (and Q).

Proof.
Let ϕ ∈ Q. Induction on the number k of quantifiers: If k = 0, then we are done.

For k > 0 transform ϕ into PNF yielding ϕ̄ := Q1x1 . . .Qk xkψ . We are going to

eliminate Qk xk from Qk xkψ . By means of ∀xkψ ≈ ¬∃xk¬ψ we may

w.l.o.g. assume that Qk = ∃. Transform ψ into DNF yielding ∃xk
∨

i

∧
j ψij . Now

A |= ∃xk
∨

i

∧
j ψij ←→

∨
i ∃xk

∧
j ψij ←→

∨
i ψ
′
i with ψ ′i ∈ Q

0,

and the remaining quantifiers can be eliminated by induction hypothesis.
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Some Remarks on QE for 1-Primitive Formulas

Minimize Quantifier Scope in 1-Primitive Formulas

Recall that ∃x(ϕ ∧ ψ) ≈ ∃x(ϕ) ∧ ψ , if x /∈ Vf (ψ).

It thus suffices to consider 1-primitive formulas ∃x
∧n

i=1ϕi , where each ϕi

actually contains x .

Denote by P+ ⊆ P the set of all positive 1-primitive L-formulas.

Restriction to Positive 1-Primitive Formulas
Consider L and A such that every negative base formula is equivalent to a

positive quantifier-free formula.

(i) If A admits QE for P+, then A admits QE (for Q).

(ii) If there is a QEP for A and P+ and an algorithm computing positive

quantifier-free equivalents for negative base formulas, then this induces a

QEP for A (and Q).

Introduction and Foundations · Quantifier Elimination · 51/170



A Remark on Complexity

Thinking about 1-primitive formulas is a good first approach when looking for

quantifier elimination procedures.

Due to the iterated DNF computations in combination with logical negation for

universal quantifiers, our procedure based on quantifier elimination for P is not

elementary recursive in general.

In the end, one hopefully finds something better.
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Quantifier Elimination for Infinite Sets

Consider L = (), and denote by A the class of all infinite sets as L-structures.

Consider a 1-primitive Formula

ϕ := ∃x
(

m∧
i=1

x = yi ∧
n∧

j=1

¬x = zj

)
with yi , zj ∈ V.

Since x = x ≈ true and ¬x = x ≈ false, we assume w.l.o.g. that

x /∈ {y1, . . . , ym, z1, . . . , zn}.

Case 1: If m > 0, then A |= ϕ←→ ∃x(x = y1) ∧
m∧

i=2
y1 = yi ∧

n∧
j=1
¬y1 = zj , which

is in turn equivalent to

m∧
i=2

y1 = yi ∧
n∧

j=1

¬y1 = zj ∈ Q0.

Case 2: If m = 0, then A |= ϕ←→ true ∈ Q0.

Introduction and Foundations · Quantifier Elimination · 53/170



Quantifier Elimination for Two Particular Finite Sets

Theorem
Consider L = ().

(i) The L-structure A = ({1}) admits quantifier elimination.

(ii) The L-structure B = ({1,2}) admits quantifier elimination.

Proof.
We proceed as for infinite sets:

∃x
(

m∧
i=1

x = yi ∧
n∧

j=1
¬(x = zj )

)
with yi , zj ∈ V.

Only Case 2, m = 0, is different:

For n = 0 we trivially have true in both cases. Let n > 1. Then

(i) A |= ∃x
n∧

j=1
¬x = zj ←→ false,

(ii) B |= ∃x
n∧

j=1
¬x = zj ←→

n∧
j=2

z1 = zj .
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Definable Sets

An extended L-formula ϕ(x1, . . . , xn) defines a set in A as follows:

[ϕ]A := { (a1, . . . ,an) ∈ An | A |= ϕ(a1, . . . ,an) }

B ⊆ An is a definable set in A if there is ϕ(x1, . . . , xn) with B = [ϕ]A.

B is a quantifier-free definable set in A if there is a suitable quantifier-free ϕ.

Theorem
A admits QE iff in A every definable set is quantifier-free definable.

Proof.
For extended formulas ϕ(x1, . . . , xn), ϕ′(x1, . . . , xn), we have

A |= ϕ←→ ϕ′ iff [ϕ]A = [ϕ′]A.
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Definable Functions and Projections

For f : An → Am define

graph(f ) = { (a1, . . . ,an,b1, . . . ,bm) ∈ An+m | (b1, . . . ,bm) = f (a1, . . . ,an) }.

f : An → Am is a (quantifier-free) definable function in A, if

the set graph(f ) is (quantifier-free) definable.

For B ⊆ An+1 we define the projection

πn+1(B) := { (a1, . . . ,an) ∈ An | exists an+1 ∈ A such that (a1, . . . ,an+1) ∈ B }.

Example

Consider extended L-terms t1(x1, . . . , xn), . . . , tm(x1, . . . , xn).

Define f : An → Am by f (a1, . . . ,an) = (tA
1 (a1, . . . ,an), . . . , tA

m(a1, . . . ,an)).

Then we have

graph(f ) = { (a1, . . . ,an,b1, . . . ,bm) ∈ An+m | A |= ϕ(a1, . . . ,an,b1, . . . ,bm) },

where ϕ(x1, . . . , xn, y1, . . . , ym) for ϕ =
∧m

j=1 yj = tj .

Hence f is quantifier-free definable.
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Characterization of QE 1

Theorem
Consider an L-structure A. FAE:

(i) A admits QE.

(ii) For every quantifier-free definable set B ⊆ An+1

its projection πn+1(B) ⊆ An is quantifier-free definable, too.

(iii) For every definable function f : An → Am and every quantifier-free

definable set B ⊆ An, the range f (B) is quantifier-free definable.

Proof

(i)⇒ (iii) Consider ψ(x1, . . . , xn, y1, . . . , ym) with [ψ ]A = graph(f ) and

ϕ(x1, . . . , xn) with [ϕ]A = B. Then f (B) = [χ ′]A for χ ′(y1, . . . , yn),

where χ ′ ∈ Q0 with A |= χ ′ ←→ ∃x1 . . . ∃xn(ϕ ∧ ψ).

(iii)⇒ (ii) By the previous example πn+1 is a (quantifier-free) definable function.
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Characterization of QE 2

Theorem
Consider an L-structure A. FAE:

(i) A admits QE.

(ii) For every quantifier-free definable set B ⊆ An+1

its projection πn+1(B) ⊆ An is quantifier-free definable, too.

(iii) For every definable function f : An → Am and every quantifier-free

definable set B ⊆ An, the range f (B) is quantifier-free definable.

Proof.
(ii)⇒ (i) Consider a 1-primitive formula ∃xψ . Let ψ(x1, . . . , xn, x) be an

extended formula. Set B := [ψ ]A. By (ii) we have ψ ′ ∈ Q0 with

[ψ ′]A = πn+1(B). By definition πn+1(B) = [∃xψ ]A. It follows that

[ψ ′]A = [∃xψ ]A and hence A |= ψ ′ ←→ ∃xψ .
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An Example from Real Algebraic Geometry

A semialgebraic set is a set described by a finite sequence of polynomial

equations fi (x1, . . . , xn) = 0 and polynomial inequalities gj (x1, . . . , xn) > 0,

or a union of such sets.

Theorem

The projection of semialgebraic set along a coordinate axis is again a

semialgebraic set.

According to our previous result, this theorem is equivalent to the following fact:

For L = (0,1,+, ·;>) the real numbers R = (R; 0,1,+, ·;>) admit QE.
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Completeness and Decision Procedures

Consider a class A 6= ∅ of L-structures and a set Φ ⊆ Q of L-sentences.

A decision procedure (DP) for A and Φ is an algorithm that given ϕ ∈ Φ

decides whether A |= ϕ or not A |= ϕ.

A is decidable for Φ is there exists a DP for A and Φ.

A is complete for Φ if for every ϕ ∈ Φ either A |= ϕ or A |= ¬ϕ.

Example forLR = (0,1,+,−, ·) and A = {Z/2,Z/3}

A is not complete for Q0 ∩ Q∅: neither A |= 1 + 1 = 0 nor A |= ¬1 + 1 = 0.

A is decidable for Q0 ∩ Q∅: all Boolean combinations of (variable-free)

equations can be evaluated to either true or false in both Z/2 and Z/3.

If A = {A}, then we may simply say that A is decidable for Φ.

Obviously, {A} is always complete for any Φ.

If Φ = Q, then we need not explicitly refer to Φ.
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QE and Completeness

Theorem
Consider a class A of L-structures, and assume that A admits QE.

(i) If A is complete for A{x} = {ϕ ∈ A | V(ϕ) ⊆ {x} }, then A is complete.

(ii) If there is c ∈ F with σ(c) = 0 and A is complete for A∅ = A ∩Q∅,

then A is complete.

Proof.

(i) Consider ϕ ∈ Q∅. By QE there is ϕ′ ∈ Q0 such that A |= ϕ′ ←→ ϕ.

Denote {y1, . . . , yn} := V(ϕ′). Then for ϕ′′ = ϕ′[x/y1, . . . , x/yn] ∈ Q0
{x} we

have A |= ϕ′′ ←→ ϕ′ ←→ ϕ. Now for every atomic formula α in ϕ′′ we

have either A |= α or A |= ¬α. It follows that either A |= ϕ′′ or A |= ¬ϕ′′.

(ii) Consider ϕ ∈ Q∅. By QE and a previous result there is ϕ′′ ∈ Q0
∅ such that

A |= ϕ′′ ←→ ϕ. Now argue as in (i).
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QE and Decidability

Theorem
Consider a class A of L-structures, and assume that A admits QE.

(i) If A is decidable for Q0
{x} = {ϕ ∈ Q0 | V(ϕ) ⊆ {x} }, then A is decidable.

(ii) If there is c ∈ F with σ(c) = 0 and A is decidable for Q∅,

then A is decidable.

(iii) If A is complete and decidable for A{x}, then A is complete and decidable.

(iv) If there is c ∈ F with σ(c) = 0 and A is complete and decidable for A∅,

then A is complete and decidable.

Proof.
Exercise!
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Some Applications of the Previous Theorem

Example

For L = () the class A of infinite sets is complete and decidable:

A is complete and decidable for A{x} = {x = x} because x = x ≈ true.

Now apply part (iii) of the previous theorem.

Theorem
Let L be finite, and let A be a finite L-structure. Then A is decidable.

Proof.
Let A = {a1, . . . ,an}. We switch to L(A) ⊇ L obtained by adding a1, . . . , an as

new constant symbols. The L(B)-expansion A′ of A admits QE: For a

1-primitive formula ϕ = ∃xψ we have A′ |= ϕ←→
∨n

i=1 ψ [ai/xj ]. A′ is trivially

complete. Atomic sentences in A′ are decidable as all relations and functions in

A′ are finite sets. Now apply part (iv) of the previous theorem.
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More Decidability Results

Theorem
Let A = {A1, . . . ,An} be a finite class of L-structures. If every single one of the

A1, . . . , An is decidable for Φ ⊆ Q∅, then A is decidable for Φ.

Proof.
Let ϕ ∈ Φ. Then A |= ϕ ⇐⇒ A1 |= ϕ and . . . and An |= ϕ, which can be

checked independently in finite time.

Theorem
Let A be complete and decidable for Φ ⊆ Q∅. Then so is every A ∈ A.

Proof.
By completeness we have for ϕ ∈ Φ and for every single A ∈ A that

A |= ϕ ⇐⇒ A |= ϕ. Thus every DP for A and Φ is also a DP for A and Φ.
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The Previous Theorem Gets Wrong Without Completeness 2011-11-16

Theorem
Let A be complete and decidable for Φ ⊆ Q∅. Then so is every A ∈ A.

Example

Consider L = (0(0), s(1); R(1)).

Let M ⊆ N be not recursive.

Set A := (N; 0, s; M), B := (N; 0, s; Nr M) and A := {A,B}.

Consider Φ = {R(sn(0)) ∈ A∅ | n ∈ N }.

Then for every R(sn(0)) ∈ Φ we have

A |= R(sn(0)) ⇐⇒ n ∈ M and B |= R(sn(0)) ⇐⇒ n /∈ M.

It follows that not A |= R(sn(0)), i.e., A is decidable for Φ.

But a DP for either A or B would render M recursive.
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An Important Though Impractical Model Theoretical Result

Theorem
Consider a countable language L and A = Mod(Ξ), where Ξ is recursively

enumerable. Let Φ ⊆ Q∅ be recursive.

If A is complete for Φ, then A is decidable for Φ.

Proof.
Using Gödel’s completeness theorem the set Φ′ = {ϕ ∈ Φ | A |= ϕ } is

recursively enumerable, say, Φ′ = {ϕn | n ∈ N }. Let ϕ ∈ Φ. Due to the

completeness of A we have either ϕ ∈ Φ′ or ¬ϕ ∈ Φ′. So there is n ∈ N such

that either ϕ = ϕn or ¬ϕ = ϕn, and ϕn will show up after n steps of

enumerating Φ′.
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Homomorphisms and Isomorphy

Consider L-structures A and B and a map h : A→ B.

For a ∈ A we shortly write ha instead of h(a).

h is a homomorphism from A to B (notation h : A→ B), if

(i) hf A(a1, . . . ,an) = f B(ha1, . . . ,han) for all n ∈ N, f ∈ F with σ(f ) = n.

(ii) RA(a1, . . . ,an) 6 RB(ha1, . . . ,han) for all n ∈ N, R ∈ R with σ(R) = n.

h is an isomorphism from A to B, if

(i) h is a bijective homomorphism from A to B.

(ii) RA(a1, . . . ,an) = RB(ha1, . . . ,han) for all n ∈ N, R ∈ R with σ(R) = n.

A and B are isomorphic (notation A ∼= B), if

there exists an isomorphism from A to B.

∼= is reflexive, transitive, and symmetric.
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An Example for Homomorphisms and the “Isomorphielemma”

Example for L = (0,+;6)

idN : (N; 0,+;<)→ (N; 0,+;6) is a homomorphism but not an isomorphism.

idN is not a homomorphism from (N; 0,+;6) to (N; 0,+;<).

Theorem
Consider L-structures A, B such that there exists an isomorphism h : A→ B.

Let ϕ(x1, . . . , xn) be an extended formula, and let a1, . . . , an ∈ A.

Then A |= ϕ(a1, . . . ,an) ⇐⇒ B |= ϕ(ha1, . . . ,han).

Proof.
Exercise.
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Substructures

Consider L-structures A and B.

B is a substructure of A (notation B ⊆ A), if

(i) B ⊆ A

(ii) f B = f A|Bn for f ∈ F with σ(f ) = n.

(iii) RB = RA|Bn for R ∈ R with σ(R) = n.

Vice versa, A is an extension structure of B.

Do not confuse this with restriction and expansion!

⊆ is reflexive, transitive, and antisymmetric.

Exercise

(i) Consider LR = (0,1,+,−, ·). Is Z ⊆ Q? Is Z/4 ⊆ Z?

(ii) Consider an L-structure A and B ⊆ A. There is B ⊆ A with universe B,

if and only if B is closed under the functions f A for f ∈ F .

In the positive case B is uniquely determined by A and B.
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Elementary Equivalence and Elementary Substructures

Consider L-structures A and B.

A and B are elementary equivalent (notation A ≡ B), if

A |= ϕ ⇐⇒ B |= ϕ for all ϕ ∈ Q.

A and B are elementary equivalent over C ⊆ A ∩ B (notation A ≡C B), if

for all extended formulas ϕ(x1, . . . , xn) and all c1, . . . , cn ∈ C it holds that

A |= ϕ(c1, . . . , cn) ⇐⇒ B |= ϕ(c1, . . . , cn).

A is an elementary substructure of B (notation A � B), if A ⊆ B and A ≡ B.

Vice versa, B is called an elementary extension of A.

Exercise
(i) If A ≡C B and D ⊆ C, then A ≡D B.

(ii) A ≡ B⇐⇒ A ≡∅ B

(iii) A ∼= B =⇒ A ≡ B, but not vice versa.

(iv) Find an example for A ⊆ B but not A ≡A B.
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Model Completeness and Substructure Completeness

Consider a class A of L-structures.

A is model complete, if for all A, B ∈ A

it holds that A ⊆ B =⇒ A � B.

A is substructure complete, if for all A, B ∈ A and all L-structures C

it holds that C ⊆ A and C ⊆ B =⇒ A ≡C B.

Exercise
(i) A is substructure complete =⇒ A is model complete

(ii) A is complete ⇐⇒ A ≡ B for all A, B ∈ A
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Substructure Completeness and Completeness

Theorem
Consider a substructure complete class A of L-structures. Assume that there is

an L-structure C such that for all A ∈ A there is C′ such that C ∼= C′ ⊆ A.

Then A is complete.

Proof.
Let A, B ∈ A, and let C ∼= CA ⊆ A and C ∼= CB ⊆ B.

Let hA : CA → C and hB : CB → C be corresponding isomorphisms.

Obtain A′ from A by renaming all elements c ∈ CA ⊆ A to hAc ∈ C.

Obtain B′ from B analogously.

Then A′ ∼= A, B′ ∼= B, C ⊆ A′, and C ⊆ B′.

It follows that A ∼= A′ ≡C B′ ∼= B, hence A ≡ B.
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Quantifier Eliminability Corresponds to Substructure Completeness 1

Theorem
If a class A of L-structures admits QE, then A is substructure complete.

Proof.
Let A, B ∈ A, and let C ⊆ A and C ⊆ B. Let ϕ(x1, . . . , xn) be an extended

L-formula. As A admits QE, there is an extended quantifier-free L-formula

ϕ′(x1, . . . , xn) such that A |= ϕ′ ←→ ϕ. Let c1, . . . , cn ∈ C. Then

A |= ϕ(c1, . . . , cn) ⇐⇒ A |= ϕ′(c1, . . . , cn) ⇐⇒ C |= ϕ′(c1, . . . , cn) ⇐⇒
B |= ϕ′(c1, . . . , cn) ⇐⇒ B |= ϕ(c1, . . . , cn). That is A ≡C B.

Example

The class of all infinite sets as ()-structures is substructure complete and thus

also model complete.
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Quantifier Eliminability Corresponds to Substructure Completeness 2

Consider a class A of L-structures.

A is elementary, if there is Ξ ⊆ Q∅ such that A = Mod(Ξ).

Theorem
If an elementary class A of L-structures is substructure complete,

then A admits QE.

The proof requires

the compactness theorem for first-order logic, and

Robinson’s diagram method.
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A Concluding Remark on Model Completeness

An existential formula is of the form ∃x1 . . . ∃xnϕ for ϕ ∈ Q0.

A universal formula is of the form ∀x1 . . . ∀xnϕ for ϕ ∈ Q0.

Theorem
Let A be an elementary class of L-structures. FAE:

(i) A is model complete.

(ii) For every ϕ ∈ Q there is an existential formula ϕ′ such that

A |= ϕ′ ←→ ϕ.

(iii) For every ϕ ∈ Q there is a universal formula ϕ′ such that

A |= ϕ′ ←→ ϕ.

Exercise
Show “(ii)⇒ (iii).”
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A Suitable Language for the Class of All Sets 2011-11-23

We know already
For the empty language ():

The class {{1}, {1,2}} does not admit QE.

It follows that the class S of all nonempty sets does not admit QE.

The class of all infinite sets admits QE.

We consider now L = (∅,R, σ) with R = {C(0)
n | 2 6 n ∈ N }.

Define

ϕn := Cn ←→ ∃x1 . . . ∃xn

∧
16i<j6n

¬xi = xj .

Then S := Mod({ϕn | 2 6 n ∈ N }) is the class of all nonempty sets, where

for S ∈ S we have S |= Cn if and only if |S| > n.
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A Quantifier Elimination Procedure for S

Theorem
There is a QEP for S.

Proof.
Following our proof for the class of all infinite sets as ()-structures, the only

case that remains to be considered is

ϕ := ∃x
n∧

j=1

¬x = zj , where x /∈ {z1, . . . , zn} ⊆ V.

For k ∈ {1, . . . ,n} the following quantifier-free formula states that exactly k of

the z1, . . . , zk are pairwise different:

ψk :=
n∨

j1=1

· · ·
n∨

jk =1

[
n∧

j=1

k∨
i=1

zj = zji
∧

k∧
i=1

i−1∧
h=1

¬zji
= zjh

]
∈ Q0.

Now S |= ϕ←→
∨n

k=1(Ck+1 ∧ ψk ).
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We Need a Lemma

Lemma
(i) Consider a disjunction ψ =

∧
j ψj of base formulas in at most one variable

x ∈ V. Then one can compute an interval Mψ ⊆ Nr {0} such that

(a) For finite S ∈ S we have S |= ψ ⇐⇒ |S| ∈ Mψ .
(b) For infinite S ∈ S we have S |= ψ iff Mψ is unbounded from above.

(ii) For each ϕ ∈ Q0
{x} one can compute a fininte disjunction of intervals

Mϕ ⊆ Nr {0} with corresponding properties (a) and (b) as in (i).

Proof.
(i) The atomic formulas of ψ are x = x ≈ true or Cn for 2 6 n ∈ N. Since

S |= Cm −→ Cn for n 6 m, each ψ is equivalent to one of true, false, Cm,
¬Cm, or Cm ∧ ¬Cn for 2 6 m < n ∈ N. This yields Mψ = Nr {0}, Mψ = ∅,
Mψ = [m,∞), Mψ = [1,m − 1], or Mψ = [m,n − 1], respectively.

(ii) Compute a DNF ϕ′ =
∨

i ϕi , where ϕi =
∧

j ψij , such that S |= ϕ←→ ϕ′.
Apply (i) to all the ϕi and then obtain Mϕ = Mϕ′ =

⋃
i Mϕi

.
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Consequences of Our QEP

Corollary
(i) S is substructure complete and model complete.

(ii) S is not complete.

(iii) S is decidable.

(iv) For each n ∈ N the subclass Sn := {S | S ∈ S and |S| = n } ⊆ S is
complete and decidable.

Proof.
(i) Follows from QE.

(ii) Consider S, T ∈ S with |S| = 1 and |T| = 2. Then S |= ¬C2 and T |= C2.
Hence neither S |= C2 nor S |= ¬C2.

(iii) It suffices to show that S is decidable for Q0
{x}. Compute Mϕ according to

our Lemma. It follows that S |= ϕ⇐⇒ Mϕ = Nr {0}.

(iv) Exercise.
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A Quantifier Elimination Procedure for the Reals with Ordering 1

Consider L = (<(2)) and R = (R;<).

Theorem
There is a QEP for R.

Proof
We have positive normal forms because R |= ¬x = y ←→ x < y ∨ y < x and

R |= ¬x < y ←→ y < x ∨ y = x . It thus suffices to consider a 1-primitive

positive formula

∃x
[

m∧
i=1

x = yi ∧
n∧

j=1

zj < x ∧
p∧

k=1

x < uk

]
, where yi , zj , uk ∈ V.

Since x = x ≈ true and R |= x < x ←→ false, we may assume that x is not

among the yi , zj , uk . . . .
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A Quantifier Elimination Procedure for the Reals with Ordering 2

ϕ = ∃x
[

m∧
i=1

x = yi ∧
n∧

j=1

zj < x ∧
p∧

k=1

x < uk

]

Proof.
If m > 0, then

R |= ϕ←→
m∧

i=2

y1 = yi ∧
n∧

j=1

zj < y1 ∧
p∧

k=1

y1 < uk .

If m = 0, then we distinguish 3 subcases:

If n = 0, then R |= ϕ←→ true, because R has no minimum.

If p = 0, then R |= ϕ←→ true, because R has no maximum.

If n > 0 and p > 0, then

R |= ϕ←→
n∧

j=1

p∧
k=1

zj < uk .

“→:” < is transitive / “←:” there exists x ∈ R with maxj zj < x < mink uk .
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Decidability of the Reals with Ordering

Theorem
R is complete and decidable.

Proof.
It suffices to show that R is complete and decidable for A{x}. The only atomic

formulas to be considered are x = x and x < x , where x = x ≈ true and

R |= x < x ←→ false.

Exercise
In R decide the sentence ∀x∃y∀z(x < y ∧ (x < z −→ (z = y ∨ y < z))).
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Dense Orderings

What have we actually used in our proofs?
< is a strict ordering.

R has no minimum or maximum.

For a < b ∈ R there is x ∈ R such that a < x < b.

ΞDEO := {¬x < x , x < y ∨ x = y ∨ y < x , x < y ∧ y < z −→ x < z,

∀x∃y(x < y), ∀x∃y(y < x), ∀x∀y∃z(x < y −→ x < z ∧ z < y)}

ODE = Mod(ΞDEO) is the class of dense orderings without endpoints.

R ∈ ODE , and also (Q, <), (RrQ, <), (N × R, <lex) ∈ ODE .

Theorem
There is a QEP for ODE . Thus ODE is substructure complete and model

complete. Furthermore ODE is complete and decidable.
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Let Us Now Consider Natural Numbers

Consider again L = (<) and now (N;<).

Theorem
N = (N, <) does not admit QE.

Proof.
For ϕ = ∀x(x = y ∨ y < x) consider the extended formula ϕ(y). Then

[ϕ]N = {0}. On the other hand, A{y} = {y = y , y < y}, where considering the

extension (y) it holds that [y = y ]N = N and [y < y ]N = ∅. Since D = {∅, N} is

closed under complement and union, the sets in D are also the ones definable

by ϕ′ ∈ Q0
{y}. Hence for ϕ′ ∈ Q0

{y} and considering ϕ′(y) we have [ϕ′]N 6= [ϕ]N

and thus N 6|= ϕ′ ←→ ϕ.

When adding the constant symbol 0 to L, we have x = 0 as a possible

quantifier-free equivalent for ϕ in the proof.
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Next Attempt

Consider L = (0;<) and (N; 0;<).

Theorem
N = (N; 0;<) does not admit QE.

Proof.
For ϕ = 0 < y ∧ ∀x(0 < x −→ x = y ∨ y < x) consider the extended formula

ϕ(y). Then [ϕ]N = {1}. On the other hand,

A{y} = {0 = 0, 0 < 0, 0 = y , y = 0, 0 < y , y < 0, y = y , y < y},

where considering the extension (y) it holds that

[0 = 0]N = [y = y ] = N, [0 < 0]N = [y < 0]N = [y < y ]N = ∅,

[0 = y ]N = [y = 0]N = {0}, [0 < y ]N = Nr {0}.

Since D = {∅, {0}, Nr {0}, N} is closed under complement and union, the

sets in D are also the ones definable by ϕ′ ∈ Q0
{y}.
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Here Is How It Works 1

Consider L = (0, s(1);<) and N = (N; 0, s;<), where s(n) = n + 1.

Theorem
There is a QEP for N = (N; 0, s;<).

Proof.
In analogy to dense orderings we have positive normal forms. All terms are of

one of the forms sk (0), sk (x) for x ∈ V and k ∈ N, where in particular s0(0) = 0

and s0(x) = x . Consider a positive 1-primitive formula

∃x
[

m∧
i=1

ski (x) %i ai ∧
n∧

j=1

slj (x) %′j smj (x)

]
, %i ∈ {<,=, >}, %′j ∈ {<,=},

where ai ∈ T with x /∈ V(ai ).Since N |= slj (x) %′j smj (x)←→ true if lj %
′
j mj and

N |= slj (x) %′j smj (x)←→ false else, it suffices to consider

∃x
m∧

i=1

ski (x) %i ai .
. . .
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Here Is How It Works 2

ϕ = ∃x
m∧

i=1

ski (x) %i ai , %i ∈ {<,=, >}, ai ∈ T , x /∈ V(ai )

Proof.

N |= ϕ←→ ∃x
m∧

i=1

sk (x) %i a′i︸ ︷︷ ︸
ϕ′

, where k = maxi ki , a′i := sk−ki (ai ).

If there is at least one equation, say w.l.o.g. %1 is =, then

N |= ϕ′ ←→ ∃x(sk (x) = a′1) ∧
m∧

i=1

a′1 %i a′i

←→ (sk (0) < a′1 ∨ sk (0) = a′1) ∧
m∧

i=1

a′1 %i a′i

Assume now that there is no equation, i.e., %i ∈ {<,>}. . . .
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Here Is How It Works 3

ϕ′ = ∃x
m∧

i=1

sk (x) %i a′i , %i ∈ {<,>}, a′i ∈ T , x /∈ V(a′i )

Proof.

Case 1: %′i is < for all i ∈ {1, . . . ,m}. Then N |= ϕ′ ←→
∧m

i=1 sk (0) < a′i .

Case 2: %′i is > for all i ∈ {1, . . . ,m}. Then N |= ϕ′ ←→ true.

Case 3: w.l.o.g. there is p ∈ {1, . . . ,m} such that

ϕ′ = ∃x
[ p∧

i=1

sk (x) > a′i ∧
m∧

j=p+1

sk (x) < a′j

]

Then N |= ϕ′ ←→
p∧

i=1

m∧
j=p+1

s(a′i ) < a′j ∧
m∧

j=p+1

sk (0) < a′j .
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Discrete Orderings with Minimum

What have we actually used in our proofs?
< is a strict ordering.

N has a minimum.

s is the successor function.

Consider L = (0, s;<).

ΞDIO := {¬x < x , x < y ∨ x = y ∨ y < x , x < y ∧ y < z −→ x < z,

0 < x ∨ 0 = x , x < s(x),

x < y −→ s(x) < y ∨ s(x) = y , 0 < y −→ ∃x(s(x) = y)}

ODI = Mod(ΞDIO) is the class of discrete orderings with minimum.

It follows that ODI |= x < y ←→ s(x) < s(y), in particular s is injective.

(N; 0, s;<) ∈ ODE , and also (R>× N; (0,0), s;<lex) ∈ ODE with s(x ,n) = (x ,n + 1).
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Results on Discrete Orderings with Minimum

Theorem
(i) There is a QEP for ODI .

(ii) ODE is substructure complete and model complete.

(iii) ODI is complete and decidable.

Proof.
(i) Our proof for (N; 0, s;<) works with the axioms ΞDIO .

(ii) Follows from (i).

(iii) Since L contains a constant, it suffices to show that ODI is complete and

decidable for A∅ =
{

sk (0) % sl (0)
∣∣ k , l ∈ N, % ∈ {<,=}

}
. Each

sk (0) % sl (0) ∈ A∅ can be evaluated in ODI to either true or false by

computing k % l .
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The Additive Group of the Reals 2011-11-30

Consider L = (0,+,−) and R = (R; 0,+,−).

There is a set of normal forms for T (x1, . . . , xn) that can be described by linear

combinations

n∑
i=1

kixi , ki ∈ Z, where kixi =


0 if k = 0

xi + · · ·+ xi if ki > 0

(−xi ) + · · ·+ (−xi ) if ki < 0.

Since −(1) yields additive inverses in R there are normal forms for A(x1, . . . , xn)

of the form
n∑

i=1

kixi = 0, ki ∈ Z.

Alternatively, there are normal forms for A(x1, . . . , xn, x) of the form

kx =
n∑

i=1

kixi , k ∈ N, ki ∈ Z.
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Quantifier Elimination for the Additive Group of the Reals

Theorem
There is a QEP for R.

Proof.
We informally write s 6= t for ¬s = t . Consider a 1-primitive formula

ϕ = ∃x
[

m∧
i=1

kix = ai ∧
n∧

j=1
ljx 6= bj

]
,

where ki , lj ∈ Nr {0}, ai , bj ∈ T , x /∈ V(ai ), x /∈ V(bj ).

Set k = lcm(k1, . . . , km, l1, . . . , ln) ∈ N. Then there are k ′i , l ′j ∈ N such that

k ′i ki = k and l ′j lj = k . Set a′i = k ′i ai and b′j = l ′j bj . Then

R |= ϕ←→ ∃x
[

m∧
i=1

kx = a′i ∧
n∧

j=1
kx 6= b′j

]
←→ ∃y

[
m∧

i=1
y = a′i ∧

n∧
j=1

y 6= b′j

]
,

because for each y ∈ R there is x = y/k ∈ R with kx = y .

Now proceed as for infinite sets.
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Nontrivial Divisible Torsion-Free Abelian Groups

What have we actually used for our proof?
R is an additive Abelian group:{

(x + y) + z = x + (y + z), x + 0 = x , x + (−x) = 0, x + y = y + x
}
.

R is divisible:
{
∀x∃y(ny = x)

}
n∈Nr{0}.

R is torsion-free:
{
∀x(nx = 0 −→ x = 0)}n∈Nr{0}.

R is nontrivial: ∃x(¬x = 0).

Denote by ΞDAG0
the (infinite) set of these axioms.

DAG0 = Mod(ΞDAG0
)

is the class of nontrivial divisible torsion-free abelian groups.

R ∈ DAG0, but also (Qn,0,1,−), (Rn,0,+,−) ∈ DAG0 for n ∈ Nr {0}.
More generally (RS,0,+,−) ∈ DAG0 for S 6= ∅,

in particular (RR,0,+,−) and the subgroups (Cn(R,R),0,+,−) ⊆ (RR,0,+,−)

of n ∈ N times continuously differentiable functions.
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Results on Nontrivial Divisible Torsion-Free Abelian Groups

Exercise
Every G ∈ DAG0 is infinite.

Theorem
(i) There is a QEP for DAG0.

(ii) DAG0 is substructure complete and model complete.

(iii) DAG0 is complete and decidable. In particular, (R,0,+,−) is decidable.

Proof.
(i) Our proof for (R,0,+,−) works with the axioms ΞDAG0

.

(ii) Follows from (i).

(iii) It suffices to observe that DAG0 is complete and decidable for A∅, where

we can restrict to 0 = 0, which is the only variable-fee atomic formula in

normal form.
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The Additive Group of the Reals with Ordering

Consider L = (0,+,−;<) and R = (R; 0,+,−;<).

We obviously have the same normal forms for terms as without ordering.

Furthermore, we have positive normal forms as discussed for dense orderings.

Your advertisement could be placed here
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Quantifier Elimination for the Additive Group of the Reals with Ordering

Theorem
There is a QEP for R.

Proof.
Consider a positive 1-primitive formula

ϕ = ∃x
[

m∧
i=1

kix = ai ∧
n∧

i=1
lix < bi ∧

p∧
i=1

mix > ci

]
,

where ki , li , mi ∈ Nr {0}, ai , bi , ci ∈ T , x /∈ V(ai ), x /∈ V(bi ), x /∈ V(ci ).

In analogy to our proof without ordering we can transform

R |= ϕ ←→ ∃x
[

m∧
i=1

kx = a′i ∧
n∧

i=1
kx < b′i ∧

p∧
i=1

kx > c′i

]
←→ ∃y

[
m∧

i=1
y = a′i ∧

n∧
i=1

y < b′i ∧
p∧

i=1
y > c′i

]
,

and obtain a quantifier elimination problem for dense orderings.
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Definable Sets in the Ordered Group of the Reals

Corollary
The definable sets M ⊆ R in R are

D =
{
R, ∅, {0}, (−∞,0), (0,∞), Rr {0}, [0,∞), (−∞,0]

}
.

Proof.
Since R admits QE, the definable sets are exactly the quantifier-free definable

sets. Atomic formulas in A{x} in normal form are 0 = 0, 0 < 0, x = 0, x < 0,

0 < x , which yield to the first five sets in D, respectively. Logical negation

corresponding to set complement yields the remaining three sets. Then D is

closed under complement and union.

Some Simple QE Procedures · Divisible Ordered Abelian Groups · 97/170



Application: Linear Programming

Our QEP for (R; 0,+,−;<) is essentially Fourier–Motzkin Elimination.

It has been found by Fourier in 1831 and rediscovered by Motzkin in 1936.

Example

Maximize the objective function 3x + 4y subject to the constraints

3x + 2y 6 500, 0 6 x 6 100, 0 6 y 6 200.

We introduce a parameter e which will be interpreted as 1 at the end, and we

introduce a parameter z to denote a lower bound on the objective function:

∃x∃y(3x + 2y 6 500e ∧ 0 6 x ∧ x 6 100e ∧ 0 6 y ∧ y 6 200e ∧ z 6 3x + 4y)

Exercise
Compute an optimal point and the optimal value by quantifier elimination.
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Nontrivial Divisible Ordered Abelean Groups

What have we actually used for our proof?
Axioms of nontrivial divisible Abelean groups.

Axioms of strict orderings.

Monotony: x < y −→ x + z < y + z

Denote by ΞDOAG the set of these axioms.

DOAG = Mod(ΞDOAG)

is the class of nontrivial divisible ordered abelean groups.

All G ∈ DOAG are torsion-free, and <G is dense without minimum or maximum.

R ∈ DOAG and (Qn,0,+,−;<lex), (Rn; 0,+,−;<lex) ∈ DOAG for 1 6 n ∈ N.
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Results on Nontrivial Divisible Ordered Abelian Groups 2011-12-14

Theorem
(i) There is a QEP for DOAG.

(ii) DOAG is substructure complete and model complete.

(iii) DOAG is complete and decidable.

In particular, (R,0,+,−;<) is decidable.

Proof.
(i) Our proof for (R,0,+,−;<) works with the axioms ΞDOAG.

(ii) Follows from (i).

(iii) It suffices to observe that DOAG is complete and decidable for A∅, where

we can restrict to 0 = 0 and 0 < 0, which are the only variable-fee atomic

formulas in normal form.
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The Additive Group of the Integers with Ordering

Recall that already for the set N with ordering we needed s(1) in L.

Since we have addition now, we can more naturally take 1(0) instead.

Consider L = (0,1,+,−;<) and Z = (Z; 0,1,+,−;<).

Theorem
Z = (Z; 0,1,+,−;<) does not admit QE.

Proof.

For ϕ = ∃x(x + x = y) and the extended formula ϕ(y), we have [ϕ]Z = 2Z.

Note that 2Z ∩ N is neither finite nor co-finite in N. On the other hand, all atomic

formulas in A{y} are equivalent in Z to one of the normal forms z · 1 = 0,

z · 1 < 0, ny = z, ny < z, z < ny for n ∈ N, z ∈ Z. These define the sets

D = {∅,Z, {z ′}, (−∞, z ′], [z ′,∞) | z ′ ∈ Z }. For all I ∈ D we have I ∩ N finite or

co-finite in N. It follows for I, I′ ∈ D that (I ∪ I′) ∩ N = (I ∩ N) ∪ (I′ ∩ N) and

(Z r I) ∩ N = (Z ∩ N) r (I ∩ N) = Nr (I ∩ N) are finite or co-finite in N, too.
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Presburger Arithmetic

For n ∈ N and z, z ′ ∈ Z define z ≡m z ′ ⇐⇒ m | z − z ′ (“m divides z − z ′”).

Consider L′ = (0,1,+,−;<, {≡(2)
m }m∈Nr{0}), Z′ = (Z; 0,1,+,−;<, {≡m}m∈Nr{0}).

Relevant Properties of the Congruences

(C1) Z′ |= x + z ≡m y + z ←→ x ≡m y ←→ x − y ≡m 0

(C2) Z′ |= x ≡m y ←→ nx ≡nm ny for n ∈ Nr {0}

(C3) Z′ |=
m−1∨
i=0

x ≡m y + i

(C4) Z′ |= x ≡nm y −→ x ≡m y for n ∈ Nr {0}

Positive Normal Forms

Using (C3), we obtain Z′ |= ¬x ≡m y ←→
m−1∨
i=1

x ≡m y + i . Furthermore,

Z |= ¬x = y ←→ x < y ∨ y < x . Finally, using t 6 t ′ as an abbreviation for

t < t ′ + 1 it holds that Z′ |= ¬x < y ←→ y 6 x .
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Presburger Arithmetic Admits QE and is Decidable

Theorem (Presburger, 1929)

(i) There is a QEP for Z′ = (Z; 0,1,+,−;<, {≡m}m∈N).

(ii) Z′ = (Z; 0,1,+,−;<, {≡m}m∈N) is decidable.

(iii) Z = (Z; 0,1,+,−;<) is decidable.

Proof.
(i) On the next slides . . .

(ii) Atomic sentences are equivalent in Z′ to of one of the normal forms z = 0,

z < 0, z ≡m 0 for z ∈ Z and m ∈ N. These can be evaluated to either true

or false.

(iii) Follows immediately from (ii).
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Presburger’s Proof of (i) 1

Consider a positive 1-primitive formula

ϕ = ∃x
[

m∧
i=1

kix = ai ∧
n∧

i=1
lix < bi ∧

p∧
i=1

mix > ci ∧
q∧

i=1
rix ≡si

di

]
,

where ki , li , mi , ri , si ∈ Nr {0}, ai , bi , ci , di ∈ T , x /∈ V(ai ), x /∈ V(bi ), x /∈ V(ci ),

x /∈ V(di ). For the normal form of the congruences, we have used (C1). In

analogy to DOAG compute

k := lcm(k1, . . . km, l1, . . . , ln,m1, . . . ,mp, r1, . . . , rq) ∈ Nr {0}

and cofactors k ′i = k/ki , l ′i = k/li , m′i = k/mi , r ′i = k/ri . Set a′i = k ′i ai , b′i = l ′i bi ,

c′i = m′i ci , d ′i = r ′i di , and s′i = r ′i si to obtain Z′ |= ϕ←→ ϕ′, where

ϕ′ = ∃x
[

m∧
i=1

kx = a′i ∧
n∧

i=1
kx < b′i ∧

p∧
i=1

kx > c′i ∧
q∧

i=1
kx ≡s′i

d ′i

]
For the choice of s′i we have used (C2).
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Presburger’s Proof of (i) 2

ϕ′ = ∃x
[

m∧
i=1

kx = a′i ∧
n∧

i=1
kx < b′i ∧

p∧
i=1

kx > c′i ∧
q∧

i=1
kx ≡s′i

d ′i

]

For this ϕ′ we have in turn Z′ |= ϕ′ ←→ ϕ′′, where

ϕ′′ = ∃y
[

m∧
i=1

y = a′i ∧
n∧

i=1
y < b′i ∧

p∧
i=1

y > c′i ∧
q∧

i=1
y ≡s′i

d ′i ∧ y ≡k 0
]
.

If m > 0, then we obtain

Z′ |= ϕ′′ ←→
m∧

i=2
a′1 = a′i ∧

n∧
i=1

a′1 < b′i ∧
p∧

i=1
a′1 > c′i ∧

q∧
i=1

a′1 ≡s′i
d ′i ∧ a′1 ≡k 0.

Consider now the case m = 0. Set s = lcm(s′1, . . . , s
′
q, k) ∈ Nr {0}. Then using

(C4) we obtain Z′ |= ϕ′′ ←→ ϕ′′′, where

ϕ′′′ =
s−1∨
j=0

[
∃y
[

n∧
i=1

y < b′i ∧
p∧

i=1
y > c′i ∧ y ≡s j

]
∧

q∧
i=1

j ≡s′i
d ′i ∧ j ≡k 0

]
.
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Presburger’s Proof of (i) 3

ϕ′′′ = ∃y
[

n∧
i=0

y < b′i ∧
p∧

i=0

y > c′i ∧ y ≡s j

]

If n = 0 or p = 0, then one can choose y = j ± s · t for sufficiently large t ∈ N,

hence

Z′ |= ϕ′′′ ←→ true.

If, in contrast, n > 0 and p > 0, then

Z′ |= ϕ′′′ ←→
p∨

max=1

[ p∧
i=1

c′i 6 c′max ∧
s∨

j ′=1

n∧
i=1

(
c′max + j ′ < b′i ∧ c′max + j ′ ≡s j

)]
.

That is, we trial substitute the smallest point that is larger than the largest lower

bound cmax and satisfies the congruence.
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Divisibility Instead of Congruences

Using (C1) we have for x , y ∈ Z and m ∈ Nr {0} that x ≡m y iff m | x − y .

Instead of L′ and Z′ we could obviously use L′′ =
(
0,1,+,−;<, {D(1)

m }m∈Nr{0}
)

and Z′′ =
(
Z; 0,1,+,−;<, {Dm}m∈Nr{0}

)
, where Z′′ |= Dm(z) ⇐⇒ m | z.

Exercise

Consider L′′′ =
(
0,1,+,−;<, {E (1)

m }m∈Nr{0}
)

and
Z′′′ =

(
Z; 0,1,+,−, <, {Em}m∈Nr{0}

)
, where Z′′′ |= Em(z) ⇐⇒ z | m.

Then Z′′′ is decidable but does not admit QE.

Consider more generally L∗ = (0,1,+,−, ·;<, |(2)), Z∗ = (Z; 0,1,+,−;<, |).

Theorem
Z∗ = (Z; 0,1,+,−;<, |) is undecidable.

Since Z∗ is complete and decidable for A∅ it follows that Z∗ does not admit QE.
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Proof. 1

By Gödel’s incompleteness theorem N = (Nr {0},+, ·) is undecidable. Setting

ν := 0 < x and considering ν(x) we have [ν]Z∗ = Nr {0}. It now suffices to

show that ·N is definable in Z∗. Consider µ1(x , y , z) for

µ1 = 0 < x ∧ 0 < y ∧ 0 < z ∧ x | z ∧ y | z

∧ ∀w(0 < w ∧ x | w ∧ y | w −→ z | w).

Then Z∗ |= µ1(a,b, c) iff a, b, c ∈ Nr {0} and c = lcm(a,b).

Next, consider µ2(x , z) for
µ2 = µ1[x + 1/y ].

Then Z∗ |= µ2(a, c) iff a, c ∈ Nr {0} and

c = lcm(a,a + 1) = a · (a + 1) = a2 + a.

Next, consider µ3(x , z) for
µ3 = µ2[x + z/z].

Then Z∗ |= µ3(a, c) iff a, c ∈ Nr {0} and c = a2.
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Proof. 2

µ3(x , z), Z∗ |= µ3(a, c) iff a, c ∈ Nr {0} and c = a2.

Finally, consider µ4(x , y , z) for

µ4 = ∃u∃v∃w(µ3[u/z] ∧ µ3[y/x , v/z] ∧ µ3[x + y/x ,w/z] ∧ w = u + 2z + v).

Then Z∗ |= µ4(a,b, c) iff a, b, c ∈ Nr {0} and there are nu , nv , nw ∈ Nr {0}
such that

nu = a2, nv = b2, nw = (a + b)2, and nw = nu + 2c + nv ,

which is equivalent to c = ab.
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Application: Integer Programming

Exercise
Maximize the objective function x + y subject to the constraints

2x > 1, y > 0, y 6 10 − 7x

(a) over R,

(b) over Z.

Start with the elimination of y .
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Application: Verification of a Loop 1

input : a, b ∈ Z
output: c ∈ Z
begin

if a < b then x := a; y := b; else y := a; x := b;

while x < y do
x := x + 1; y := y − 1;

end

if x = y then c := x ; else c := y ;

end

The program terminates with output c ∈ Z on input a, b ∈ Z iff Z′ |= ϕ(a,b, c)

for ϕ(a,b, c), where

ϕ = ∃x∃y∃x ′∃y ′∃z
[
((a < b ∧ x = a ∧ y = b) ∨ (¬a < b ∧ y = a ∧ x = b))

∧ 0 6 z ∧ y ′ 6 x ′ ∧ x ′ − 1 < y ′ + 1 ∧ x ′ = x + z ∧ y ′ = y − z

∧ ((x ′ = y ′ ∧ c = x ′) ∨ (¬x ′ = y ′ ∧ c = y ′))
]
.
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Application: Verification of a Loop 2

ϕ = ∃x∃y∃x ′∃y ′∃z
[
((a < b ∧ x = a ∧ y = b) ∨ (¬a < b ∧ y = a ∧ x = b))

∧ 0 6 z ∧ y ′ 6 x ′ ∧ x ′ − 1 < y ′ + 1 ∧ x ′ = x + z ∧ y ′ = y − z

∧ ((x ′ = y ′ ∧ c = x ′) ∨ (¬x ′ = y ′ ∧ c = y ′))
]

Our QEP yields Z′ |= ϕ′ ←→ ϕ for

ϕ′ = a + b = 2c ∨ (2c 6 a + b ∧ a + b < 2c + 2 ∧ ¬a + b = 2c).

Exercise
1. That is c = . . . ?

2. Perform the QE.
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Z-Groups

Consider L′ = (0,1,+,−, ;<,≡m).

What Have We Actually Used for Our Proof of Presburger QE?
1. Z is an ordered abelian Group with minimial a positive element 1.

2. The relations ≡m for 1 < m ∈ N are defined by x ≡m y ←→ ∃z(x + mz = y).

3. For all 1 < m ∈ N it holds that
m−1∨
i=0

x ≡m i · 1.

Denote by ΞZGROUPS ⊆ Q the set of these axioms.

ZGROUPS = Mod(ΞZGROUPS)

is the class of Z-groups.

Z′ ∈ ZGROUPS, and also

(Q × Z; 0,1,+,−;<lex,≡m), (R × Z; 0,1,+,−;<lex,≡m) ∈ ZGROUPS.
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Results on Z-Groups

Theorem
(i) There is a QEP for ZGROUPS.

(ii) ZGROUPS is substructure complete and model complete.

(iii) ZGROUPS is complete and decidable.

Proof.
(iii) Variable-free atomic formulas in normal form, i.e. z = 0, z < 0, 0 < z,

z ≡m 0 for z ∈ Z, 1 < m ∈ N, are decidable.

Mojzesz Presburger

Über die Vollständigkeit eines gewissen Systems der Arithmetik
ganzer Zahlen, in welchem die Addition als einzige Operation
hervortritt

Dissertation, Warsaw 1929
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Power Sets as Boolean Algebras 2011-12-21

Consider a set M. For S ∈ P(M) define {S = M r S.

Consider LBA = (0(0),1(0),u(2),t(2),∼(1);6(2)), A0 = (P(M);∅,M,∩,∪, {;⊆).

Theorem
A0 = (P(M);∅,M,∩,∪, {;⊆) does not admit QE if |M | > 3.

Proof.
Consider ϕ(y) for ϕ = ∃x(¬x = 0 ∧ ¬x = y ∧ x 6 y). Then

[ϕ]A0 =
{

S ∈ P(M)
∣∣ |S| > 2

}
. In particular, ∅ /∈ [ϕ]A0 , and there are m1,

m2 ∈ M such that {m1} /∈ [ϕ]A0 , but {m1,m2} ∈ [ϕ]A0 and {m1,m2} 6= M. All

atomic formulas in A{y} are equivalent to one of true, false, y = 0, y = 1, which

define the sets D =
{
P(M),∅, {∅}, {M}

}
. Closing under complements and

unions we see that the following sets are definable by formulas in Q0
{y}:

D′ = D ∪
{
P(M) r {∅},P(M) r {M}, {∅,M},P(M) r {∅,M}

}
. However,

∅ ∈ P(M), {∅}, P(M) r {M}, {∅,M}, {m1,m2} /∈ ∅, {M}, and

{m1} ∈ P(M) r {∅}, P(M) r {∅,M}.
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Once Again, We Have to Extend the Language

Consider M 6= ∅ and A = P(M). For n ∈ N and S, T ∈ A define

S ⊂n T ⇐⇒ S ⊆ T and |T r S| > n.

In particular S ⊂0 T ⇐⇒ S ⊆ T and ∅ ⊂n T ⇐⇒ n 6 |T |.

Consider L′BA = (0(0),1(0),u(2),t(2),∼(1); {<n}n∈N)

and A = (P(M); ∅,M,∩,∪, {; {⊂n}n∈N).
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Some Normal Forms for Atomic Formulas and Terms 1

Lemma
(i) A |= s <0 t ←→ 0 = s u ∼ t

A |= s = t ←→ s <0 t ∧ t <0 s

A |= s <n t ←→ s <0 t ∧ 0 <n t u ∼ s

(ii) A |= 0 <n t ∧ 0 <n′ t ←→ 0 <max(n,n′) t

A |= ¬0 <n t ∧ ¬0 <n′ t ←→ ¬0 <min(n,n′) t

(iii) A |= ¬0 = t ←→ 0 <1 t

So we can restrict our attention to atomic formulas 0 = t and 0 <n t .

In a conjunction, 0 <n t need occur for at most one n ∈ N,

and also ¬0 <n t need occur for at most one n ∈ N.

Logically negated equations can be made positive.

Some Simple QE Procedures · Atomic Boolean Algebras · 117/170



Some Normal Forms for Atomic Formulas and Terms 2

Consider t ∈ T with V(t) = {x , y1, . . . , ym}.

Transform t into full DNF t ′. That is, A |= t = t ′, where

t ′ =
⊔
i∈I

(
x u ai

)
t
⊔
i∈J

(
∼ x u ai

)
, ai =

md

j=1
y (i)

j , y (i)
j ∈ {yj , ∼ yj}.

All the ai for i ∈ I ∪ J are pairwise different but I ∩ J 6= ∅ in general.

For i , i ′ ∈ I ∪ J we have A |= (x u ai ) u (∼ x u ai ′) = 0,

and if i 6= i ′, then even A |= ai u ai ′ = 0 and thus A |= (x u ai ) u (x u ai ′) = 0.

It follows that all unions in t ′ are disjoint unions for all choices of x , y1,

. . . , ym ∈ P(M).
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Some Normal Forms for Atomic Formulas and Terms 3

t ′ =
⊔
i∈I

(
x u ai

)
t
⊔
i∈J

(
∼ x u ai

)
∈ T

A |= 0 = t ′ ←→
∧
i∈I

0 = x u ai ∧
∧
i∈J

0 = ∼ x u ai

A |= 0 <n t ′ ←→
∨

06n1 ,n26n
n1+n2=n

[
0 <n1

⊔
i∈I

x u ai ∧ 0 <n2

⊔
i∈J
∼ x u ai

]

←→
∨

06n1 ,n26n
n1+n2=n

∨
{06ki6n1}i∈I∑

i∈I
ki =n1

∨
{06li6n2}i∈J∑

i∈J
li =n2

[∧
i∈I

0 <ki
x u ai ∧

∧
i∈j

0 <li
∼ x u ai

]
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Some Normal Forms for Atomic Formulas and Terms 4

We need only consider atomic formulas of the forms

0 = x u ai , 0 = ∼ x u ai , 0 <ki
x u ai , 0 <li

∼ x u ai for i ∈ I ∪ J.

A |= ai u ai ′ = 0 for i 6= i ′.

Equations occur only as positive base formulas (no "¬" in front of equations).

Lemma (Elimination of complements)

(i) A |= 0 = ∼ x u ai ←→ ai = x u ai

(ii) A |= 0 <li
∼ x u ai ←→ x u ai <li

ai

Theorem
There is a QEP for A = (P(M); ∅,M,∩,∪, {; {⊂n}n∈N).
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Proof. 1

It suffices to consider 1-primitive formulas of the form ϕ = ∃x
∧

i∈I

∧
Φi , where

Φi ⊆
{

0 = x u ai , ai = x u ai ,

0 <ki
x u ai , ¬0 <li

x u ai , x u ai <mi
ai , ¬x u ai <ni

ai

}
,

and A |= ai u ai ′ = 0 for i , i ′ ∈ I with i 6= i ′.Consider ϕ′ =
∧

i∈I ∃x
∧

Φi .

Obviously A |= ϕ −→ ϕ′. Vice versa, fix values for the y1, . . . , ym in P(M), and

for i ∈ I let si ∈ P(M) be a satisfying value for x in
∧

Φi . Set s =
⊔

i∈I si u ai .

Then for i ∈ I it holds that s u ai = si u ai . Hence s is a satisfying value for x in∧
i∈I

∧
Φi . We have shown that also A |= ϕ′ −→ ϕ, altogether A |= ϕ←→ ϕ′.

It thus suffices to independently consider 1-primitive formulas

ϕ′′i = ∃x
∧

Φi for i ∈ I.
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Proof. 2

ϕ′′ = ∃x
∧

Φ, Φ ⊆
{

0 = x u a, a = x u a,

0 <k x u a, ¬0 <l x u a, x u a <m a, ¬x u a <n a
}

If 0 = x u a ∈ Φ, then x = 0 is a solution of this equation,

and we can equivalently replace x u a with 0 in Φ.

If a = x u a ∈ Φ, then x = a is a solution of this equation,

and we can equivalently replace x u a with a in Φ.

A |= ∃x(0 <k x u a)←→ 0 <k a

A |= ∃x(¬0 <l x u a)←→
{

true if l > 0

false if l = 0

A |= ∃x(x u a <m a)←→ 0 <m a

A |= ∃x(¬x u a <n a)←→
{

true if n > 0

false if n = 0
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Proof. 3

ϕ′′ = ∃x
∧

Φ

Φ ⊆
{

0 <k x u a, ¬0 <l x u a, x u a <m a, ¬x u a <n a
}
, |Φ| > 2

A |= ∃x(0 <k x u a ∧ ¬0 <l x u a)←→
{

0 <k a if k < l
false if l 6 k

A |= ∃x(0 <k x u a ∧ x u a <m a)←→ 0 <k+m a

A |= ∃x(0 <k x u a ∧ ¬x u a <n a)←→
{

0 <k a if n > 0
false if n = 0

A |= ∃x(¬0 <l x u a ∧ x u a <m a)←→
{

0 <m a if l > 0
false if l = 0

A |= ∃x(¬0 <l x u a ∧ ¬x u a <n a)←→
{
¬0 <l+n−1 a if l · n > 0
false if l · n = 0

A |= ∃x(x u a <m a ∧ ¬x u a <n a)←→
{

true if m < n
false if n 6 m

Some Simple QE Procedures · Atomic Boolean Algebras · 123/170



Proof. 4

ϕ′′ = ∃x
∧

Φ

Φ ⊆
{

0 <k x u a, ¬0 <l x u a, x u a <m a, ¬x u a <n a
}
, |Φ| > 3

Exercise
∃x(0 <k x u a ∧ ¬0 <l x u a ∧ x u a <m a)←→ . . .

∃x(0 <k x u a ∧ ¬0 <l x u a ∧ ¬x u a <n a)←→ . . .

∃x(0 <k x u a ∧ x u a <m a ∧ ¬x u a <n a)←→ . . .

∃x(¬0 <l x u a ∧ x u a <m a ∧ ¬x u a <n a)←→ . . .
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Proof. 5

ϕ′′ = ∃x(0 <k x u a ∧ ¬0 <l x u a ∧ x u a <m a ∧ ¬x u a <n a)

ϕ′′ ←→


¬0 <l+n−1 a if k < l and m < n

false if l 6 k or n 6 m
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Decidability 2012-01-11

Corollary

(i) A = (P(M); ∅,M,∩,∪, {; {⊂n}n∈N) is decidable in L′BA.

(ii) A0 = (P(M); ∅,M,∩,∪, {; ⊆) is decidable in LBA.

Proof.
(i) We need only decide atomic sentences of the forms 0 = 0, 0 = 1, 0 <n 0,

0 <n 1 for n ∈ N: We have A |= 0 = 0←→ true,

A |= 0 = 1←→
{

true iff |A| = 1 iff M = ∅
false iff |A| > 1 iff M 6= ∅,

A |= 0 <n 0←→
{

true iff n = 0
false iff n > 0,

A |= 0 <n 1←→
{

true iff |A| > 2n iff |M | > n
false iff |A| < 2n iff |M | < n,

(ii) For ϕ ∈ A0 rewrite ⊆ as ⊂0, and decide ϕ in A.
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Atomic Boolean Algebras

Let B be a Boolean Algebra.

a ∈ B is an atom if a 6= 0, and there is no b ∈ B with 0 < b < a.

B is atomic if for all ∅ 6= b ∈ B there is an atom a ∈ B such that a 6 b.

What have we actually used in our proofs

1. Axioms of Boolean Algebras in L′BA.

2. Definition of <n for n ∈ N:

x <0 y ←→ x u y = x ,

x <1 y ←→ x <0 y ∧ ¬x = y ,{
x <n y ←→ ∃x1 . . . ∃xn−1(x <1 x1 ∧ x1 <1 x2 ∧ . . . ∧ xn−1 <1 y)

}
n>1

3. Atomicity:

∀x(0 <1 x −→ ∃y(0 <1 y ∧ ¬0 <2 y ∧ y <0 x))

Denote by ΞBA ⊆ Q the set of these axioms.

BA = Mod(ΞBA) is the class of atomic Boolean Algebras.
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Quantifier Eliminability and Decidability of BA

Corollary
BA has a QEP, is substructure complete and model complete but not

complete.

Corollary
BA is decidable.

Proof.

Consider ϕ ∈ Q∅. By QE compute ϕ′ ∈ Q0 such that BA |= ϕ′ ←→ ϕ. Recall

that in ϕ′ we need only decide atomic sentences of the forms 0 = 0, 0 = 1,

0 <n 0, 0 <n 1 for n ∈ N. Using our observations from the decision procedure

for A above, we can compute a finite union Mϕ of intervals in N such that for

B ∈ BA it holds that B |= ϕ′ iff there is n ∈ Mϕ such that |B| = 2n. Accordingly,

BA |= ϕ iff Mϕ = N.
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Polynomials

Consider LR = (0,1,+,−, ·).
Let ΞFIELDS ⊆ Q be a (finite) set of first-order axioms for fields.

Then FIELDS = Mod(ΞFIELDS) is the class of all fields.

Recall that 0 6= z ∈ Z is a short notation for ±(1 + · · ·+ 1) in LR .

The distributive representation of t ′ ∈ Z[x1, . . . , xn] is t ′ =
∑

m∈M amm, where

M is finite, 0 6= am ∈ Z, and m = xe1
1 . . . xen

n is a power product of variables.

The semidistributive representation wrt. x1 of t ′ ∈ Z[x1, . . . , xn] is
∑d

i=1 pix
i
1,

where pi ∈ Z[x2, . . . , xn] are polynomials in distributive representation.

We call degx1
(t ′) = d the x1-degree, lcx1

(t ′) = pd the leading x1-coefficient,

and t ′ an x1-polynomial.

Lemma
For each extended LR-term t(x1, . . . , xn) there is t ′ ∈ Z[x1, . . . , xn] in

semi-distributive representation wrt. x1 such that FIELDS |= t = t ′.

Basic Complex and Real QE · Some Parametric Polynomial Algorithms · 129/170



Pseudo-Reduction

Consider x-polynomials 0 6= f =
m∑

i=1
aix

i and g =
n∑

i=1
bix

i with m > n.

Define h := bnf − amxm−ng =
m−1∑
i=0

(bnai − ambi−(m−n))x
i .

Notice that either h = 0 or degx (h) < m.

We write f −→
g

h and say that h is obtained from f via x-reduction modulo g.

Iterated x-reduction f −→
g

f1 −→g . . . −→
g

fr is written as f ∗−→
g

fr .

If f = 0 or degx (f ) < degx (g), then there is no x-reduction modulo g possible.

We then call f in x-normal form modulo g.
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Pseudo-Division

For x-polynomials f , g there is a unique x-reduction chain f −→
g

f1 −→g . . . −→
g

fr
such that fr is in normal form modulo g.

There is then an x-polynomial q with degx (q) = degx (f ) − degx (g) such that

fr = lcx (g)r f − qg.

Equivalently, lcx (g)r f = qg + fr .

We call quotx (f ,g) := q the quotient of the x-division of f by g.

We call remx (f ,g) := fr the remainder of the x-division of f by g.
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Zeros of Remainders

Lemma
Let f (x , y1, . . . , ys), g(x , y1, . . . , ys) be nonzero x-polynomials. Let F ∈ FIELDS,

and let a, b1, . . . , bs ∈ F such that F |= lcx (g)(b1, . . . ,bs) 6= 0 and

F |= g(a,b1, . . . ,bs) = 0.

If f ∗−→
g

fr , then F |= f (a,b1, . . . ,bs) = 0←→ fr (a,b1, . . . ,bs) = 0.

In particular, F |= f (a,b1, . . . ,bs) = 0←→ remx (f ,g) = 0.

Proof.

We have f ∗−→
g

fr = lcx (g)f − qg for an x-polynomial q. Thus

F |= fr (a,b) = lcx (g)(b)f (a,b) − q(a,b)g(a,b).

Basic Complex and Real QE · Some Parametric Polynomial Algorithms · 132/170



Reducta

Consider an x-polynomial f =
n∑

i=0
aix

i with an 6= 0.

We call redx f =
n−1∑
i=0

aix
i the x-reductum of f .

Lemma
For F ∈ FIELDS and a, b1, . . . , bs ∈ F with F |= lcx (f )(b) = 0 we have

F |= f (a,b) = 0←→ redx (f )(a,b) = 0.
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QE for the Field of Complex Numbers 2012-01-18

Theorem (Tarski, 1935)
There is a QEP for C = (C; 0,1,+,−, ·) ∈ FIELDS.

Proof.
Consider a 1-primitive formula

ϕ = ∃x

 m∧
i=1

fi = 0 ∧
m′∧
i=1

gi 6= 0

 ,
where V(ϕ) ⊆ {x , y1, . . . , ys}.

Set g =
∏m′

i=1 gi , and recall that g = 1 for m′ = 0.

Then C |= ϕ←→ ϕ′, where ϕ′ = ∃x
[

m∧
i=1

fi = 0 ∧ g 6= 0
]

.

We are ging to distinguish three cases: m = 0, m = 1, m > 1. . . .
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Case 1: m = 0

ϕ′ = ∃x (g 6= 0)

Let g =
n∑

j=0
bjx

j , and consider ϕ′′ =
n∨

j=0
bj 6= 0.

We are going to show that C |= ϕ′ ←→ ϕ′′:

Consider (g 6= 0)(x , y1, . . . , ys), ϕ′′(y1, . . . , ys), and let c1, . . . , cs ∈ C.

There is d ∈ C such that gC(d , c1, . . . , cs) 6= 0C iff the univariate polynomial

g(x , c1, . . . , cs) :=
n∑

j=0

bC
j (c1, . . . , cs)x j

is not the zero polynomial iff ϕ′′C(c1, . . . , cs) = >. . . .
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Case 2: m = 1 1

ϕ′ = ∃x (f1 = 0 ∧ g 6= 0)

Let f1 =
∑n

j=0 ajx
j . Induction wrt. degx (f1) = n.

If n = 0, then C |= ϕ′ ←→ a0 = 0 ∧ ∃x(g 6= 0), and we are in Case 1.

If n > 0, then C |= ϕ′ ←→ ϕ′′ ∨ ϕ̃′′, where

ϕ′′ = an 6= 0 ∧ ϕ′, ϕ̃′′ = an = 0 ∧ ∃x(redx (f1) = 0 ∧ g 6= 0).

The quantifier in ϕ̃′′ can be eliminated by the induction hypothesis.

Let h = remx (gn, f1), say, h =
∑k

j=0 cjx
j = ar

ngn − qf1.

Recall that h = 0 or degx (h) < degx (f1).

We are going to show that C |= ϕ′′ ←→ ϕ′′′, where ϕ′′′ = an 6= 0 ∧
∨k

j=0 cj 6= 0:

Let b1, . . . , bs ∈ C such that aC
n (b) 6= 0C.

Let a ∈ C such that f C
1 (a,b) = 0C and gC(a,b) 6= 0C. It follows that

hC(a,b) = ar
n

C
(b)gnC

(a,b) 6= 0C. Thus the univariate polynomial
∑k

j=0 cC
j (b)xk

is not the zero polynomial, and hence ϕ′′′C(b) = >. . . .
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Case 2: m = 1 2

ϕ′′ = an 6= 0 ∧ ∃x (f1 = 0 ∧ g 6= 0), f1 =
∑n

j=0 ajx
j ,

h =
∑k

j=0 cjx
j = remx (gn, f1) = ar

ngn − qf1; h = 0 or degx h < degx f1.

To show: C |= ϕ′′ ←→ ϕ′′′, where ϕ′′′ = an 6= 0 ∧
∨k

j=0 cj 6= 0.

Let b1, . . . , bs ∈ C such that aC
n (b) 6= 0C.

Assume, vice versa, that ϕ′′′C(b) = >. Let g =
∑l

j=0 bjx
j . From f1 and g obtain

univariate polynomials f1(x ,b) and g(x ,b) by plugging in b, and factorize:

f1(x ,b) = aC
n (b)

∏N
j=1(x − αj )

µj , g(x ,b) = bC
l (b)

∏L
j=1(x − βj )

νj ,

where αj pairwise different, βj pairwise different,
∑N

j=1 µj = n, and
∑L

j=1 νj = l .

Assume for a contradiction that {α1, . . . , αN} ⊆ {β1, . . . , βL}. It follows that

gn(x ,b) = bn
l

C
(b)
∏L

j=1(x − βj )
νj n with νjn > νj , and for a suitable q′(x) ∈ C[x ]

we obtain f1(x ,b)q′(x) = ar
n

C
(b)gn(x ,b) = h(x ,b) + q(x ,b)f1(x ,b). Thus

h(x ,b) = (q′(x) − q(x ,b))f1(x ,b). Now ϕ′′′C(b) states that h(x ,b) 6= 0 and

thus h 6= 0. However, degx (f1) = degx (f1(x ,b)) 6 degx (h(x ,b)) 6 degx (h), a

contradiction. So ϕ′′C(b) = > with x from {α1, . . . , αN}r {β1, . . . , βL} 6= ∅. . . .
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Case 3: m > 1

ϕ′ = ∃x
[

m∧
i=1

fi = 0 ∧ g 6= 0
]

Induction on D =
∑m

i=1 degx (fi ). If D = 0, then degx (fi ) = 0 for all i , thus

C |= ϕ′ ←→
∧m

i=1 fi = 0 ∧ ∃x (g 6= 0), and we are in the Case 1. Consider now

D > 0. If there is only one i with deg fi > 0, then we are in Case 2. Assume

w.l.o.g. that degx (f1) > degx (f2) > 0. Using our Lemma above, we obtain

C |= ϕ′ ←→ ϕ′′ ∨ ϕ′′′, where

ϕ′′ = ∃x
[

lcx (f2) 6= 0 ∧ remx (f1, f2) = 0 ∧ f2 = 0 ∧
m∧

i=3
fi = 0 ∧ g 6= 0

]
ϕ′′′ = ∃x

[
lcx (f2) = 0 ∧ f1 = 0 ∧ redx (f2) = 0 ∧

m∧
i=3

fi = 0 ∧ g 6= 0
]
.

On both ϕ′′ and ϕ′′′ we can perform QE by induction hypothesis.

Basic Complex and Real QE · Algebraically Closed Fields · 138/170



Decidability of the Field of Complex Numbers

Theorem
C is decidable.

Proof.
It suffices to decide atomic sentences of the form z = 0 for z ∈ Z. We have

C |= z = 0←→
{

true if z = 0

false if z 6= 0.
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Algebraically Closed Fields

What have we actually used in our proofs?
1. Axioms of fields in LR .

2. Every nonconstant univariate polynomial has a zero:{
∀a0 . . . ∀an∃x

[
an 6= 0 −→

n∑
i=0

aix
i = 0

]}
n>0

Exercise
It follows that every nonconstant univariate polynomial factors into linear

factors. Furthermore, universes of algebraically closed fields are infinite,

because xn − 1 has got n different linear factors/zeros.

Denote by ΞACF the set of these axioms.

ACF = Mod(ΞACF) ⊂ FIELDS

is the class of algebraically closed fields.
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The Characteristic of a Field

Consider F ∈ FIELDS. There a two possible cases:

(a) There is p ∈ Nr {0} such that F |= p = 0 and F |= ¬n = 0 for all n < p.

(b) F |= ¬z = 0 for all z ∈ Z.

In Case (a) we say F has characteristic p, and we write char(F) = p.

In Case (b) we say F has characteristic 0, and we write char(F) = 0.

Denote by PRIMES ⊂ N the set of prime numbers.

Examples

char(C) = char(R) = char(Q) = 0

for p ∈ PRIMES we have Z/p ∈ FIELDS and char(Z/p) = p.

Exercise
For F ∈ FIELDS we have char(F) ∈ PRIMES ∪ {0}.

Basic Complex and Real QE · Algebraically Closed Fields · 141/170



QE and Completeness Results for ACF

Some facts from algebra
The characteristic is invariant under field extensions.

Every field has got an algebraically closed extension field.

It follows that ACF contains fields of arbitrary (prime or zero) characteristic.

Theorem
There is a QEP for ACF. It follows that ACF is substructure complete and model

complete. ACF is, however, not complete.

Proof.
We have constructed ACF in such a way that our QEP for C works there.

Consider Z/2, C ∈ ACF, where Z/2 is an algebraically closed extension field of

Z/2. Then Z/2 |= 1 + 1 = 0 but C |= ¬1 + 1 = 0.
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The Key to Decidability and Limited Completeness

Theorem
Consider LR and ϕ ∈ Q∅. One can compute a set Pϕ ⊆ PRIMES with the

following properties:

(i) Pϕ is either finite or co-finite.

(ii) For all F ∈ ACF with char(F) 6= 0 we have F |= ϕ iff char(F) ∈ Pϕ.

(iii) F |= ϕ for all F with char(F) = 0 iff Pϕ is co-finite.

Proof.
Compute a quantifier-free equivalent ϕ′ of ϕ. It suffices to construct Pϕ′ .

Induction on |ϕ′|: If ϕ′ is atomic, then ϕ′ is equivalent to z = 0 for z ∈ N. In

case z = 0 we choose Pϕ′ to be the set of all primes. In case z 6= 0 we choose

Pϕ′ to be the set of all prime factors of z. If ϕ′ = ¬ψ , set Pϕ′ = PRIMES r Pψ .

If ϕ′ = ψ1 ∨ ψ2, set Pϕ′ = Pψ1
∪ Pψ2

.
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Decidability of ACF and Complete Subclasses

For p ∈ PRIMES ∪ {0} set ACFp = {F | F ∈ ACF and char(F) = p }.

Theorem
ACFp is complete and decidable.

Proof.
If p ∈ PRIMES, then ACFp |= ϕ iff p ∈ Pϕ.

If p = 0 then ACFp |= ϕ iff Pϕ is co-finite.

Theorem
ACF is decidable.

Proof.
ACF |= ϕ iff Pϕ = PRIMES.
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The Lefschetz Principle

Corollary

Let ϕ ∈ Q∅. Assume that C |= ϕ. Then ACF0 |= ϕ, and one can compute

pϕ ∈ PRIMES such that ACFp |= ϕ for all p > pϕ.

Proof.
ACF0 |= ϕ follows from the completeness of ACF0.

Compute a quantifier-free equivalent ϕ′ of ϕ. The set of atomic formulas in ϕ′

is essentially { z = 0 | z ∈ N } for some finite N ⊂ N. For

p ∈ P = {p ∈ PRIMES | p > max N } it holds that ACFp |= ϕ′ iff C |= ϕ′. Hence

we can choose pϕ = min P.

The pϕ constructed in the proof is not necessarily the minimal possible choice.
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Signs of Univariate Real Polynomials 2012-01-25

Consider 0 6= f ∈ R[x ] with deg(f ) = d . Denote by VR(f ) = { c ∈ R | f (c) = 0 }

Assume that VR(f ) = {c1, . . . , cr } with c1 < · · · < cr . Obviously r 6 d .

Then f is sign invariant over each of the 2r + 1 intervals

(−∞, c1), c1, (c1, c2), . . . , cr , (cr ,∞).

Define ε = (ε1, . . . , ε2r+1) ∈ {0,1,−1}2r+1:

ε1 = sgn f (c1 − 1), ε2r+1 = sgn f (cr + 1),

ε2j = sgn f (cj ) = 0, ε2j+1 = sgn f
( c2j +c2j+1

2

)
(1 6 j < r).

Example

-2.4 -2 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2 2.4

f = x4 − 4x2

r = 3, c1 = −2, c2 = 0, c3 = 2

ε = (1,0,−1,0,−1,0,1)
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Combined Signs of Univariate Polynomials

Consider 0 6= f1, . . . , fn ∈ R[x ]. Then
⋃n

i=1 VR(fi ) = VR
(∏n

i=1 fi
)
.

Let VR(f1 · · · · · fn) = {c1, . . . , cr } with c1 < · · · < cr , where r 6
∑n

i=1 deg fi .

Define ε = (ε1, . . . , ε2r+1) ∈ {0,1,−1}n×(2r+1):

εi,1 = sgn fi (c1 − 1), εi,2r+1 = sgn fi (cr + 1),

εi,2j = sgn fi (cj ), εi,2j+1 = sgn fi
( c2j +c2j+1

2

)
(1 6 j < r).

The combined sign matrix CSM(f1, . . . , fn) := ε of (f1, . . . , fn)

is uniquely determined by (f1, . . . , fn).

Example

-5 -4 -3 -2 -1 0 1 2 3 4 5

f1 = x2 − 1, f2 = −x , r = 3, c1 = −1, c2 = 0, c3 = 1

CSM(f1, f2) =

[
1 0 −1 −1 −1 0 1

1 1 1 0 −1 −1 −1

]

Even columns contain at least one 0, odd columns never contain 0.
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Combined Signs: Zero Polynomials and Condensing

To obtain a non-empty matirx at least one of the fi must be non-constant.

We admit also zero polynomials in CSM(f1, . . . , fn), which create a zero line.

Given CSM(f1, . . . , fn), we can compute CSM(f1, . . . , fi−1, fi+1, . . . , fn) as follows:

1. Obtain C ∈ {0,1,−1}n−1×2r+1 by deleting the i-th line of CSM(f1, . . . , fn).

2. In C substitute subsequent identical columns by one such column.

Exercise

1. Compute CSM(x ,2x + 1,0, x2 − 1).

2. From CSM(x ,2x + 1,0, x2 − 1) derive CSM(x ,2x + 1).

Our examples and exercises were based on guessing zeros of the fj .

We now want to algorithmically obtain CSM(f1, . . . , fn).

Basic Complex and Real QE · Combined Sign Information · 148/170



Computation of Combined Sign Matrices

Consider n > 0, f1, . . . , fn ∈ R[x ] with
∏n

j=1 fj 6= 0.

We proceed by recursion on (d , k) wrt. 6lex,

where d = max{deg f1, . . . ,deg fn} and k = |{ j ∈ {1, . . . ,n} | deg fj = k }|.

If d = 0, then f1, . . . , fn ∈ R, and CSM(f1, . . . , fn) = [sgn f1, . . . , sgn fn]t .

Theorem
Let 0 6= f , g1, . . . , gn ∈ R[x ] with deg f > deg gj > 1 for j ∈ {1, . . . ,n}.
Let f ′ denote the formal derivative of f . Set f0 := rem(f , f ′) and fj := rem(f ,gj )

for j ∈ {1, . . . ,n}. Assume that we know CSM(g1, . . . ,gn, f
′, f0, . . . , fn).

Then we can compute CSM(f ,g1, . . . ,gn, f
′, f0, . . . , fn) and hence

CSM(f ,g1, . . . ,gn).

Lines for constant polynomials fj can be tenporarily removed for recursion.

Let (d ′, k ′) be the recursion parameter for CSM(g1, . . . ,gn, f
′, f0, . . . , fn).

If deg f = deg gj for some j , then d ′ = d but k ′ < k , else d ′ = d − 1 < d .
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Proof 1

We are given C′ = CSM(g1, . . . ,gn, f
′, f0, . . . , fn).

From this we compute C∗ = CSM(g1, . . . ,gn, f
′) ∈ {0,1,−1}(n+1)×(2r+1).

For obtaining C = CSM(f ,g1, . . . ,gn, f
′) ∈ {0,1,−1}(n+2)×(2s+1) for s > r we are

going to proceed in two steps:

1. Compute the sign of f for the even columns of C∗:

Let j ∈ {1, . . . , r − 1}. Column 2j of C∗ corresponds to a root cj of one of the

polynomials g1, . . . , gn, f ′. If f ′(cj ) = 0, then

f (cj ) = quot(f , f ′)(cj ) · f ′(cj ) + rem(f , f ′)(cj ) = rem(f , f ′)(cj ) = f0(cj ).

Thus sgn f (cj ) = sgn f0(cj ). Similarly, if gi (cj ) = 0, then sgn f (cj ) = sgn fi (cj ).

2. Compute entries for f for the odd columns of C∗, which possibly requires

replacing such columns by several ones . . .
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Proof 2

Let j ∈ {1, . . . , r − 1} and consider sgn f at column 2j + 1 of C∗:

sgn f at 2j 0 1 −1 −1 −1 0 1 1 1 −1

sgn f ′ at 2j + 1 1 1 1 1 1 −1 −1 −1 −1 −1

sgn f at 2j + 2 0 1 −1 0 1 −1

sgn f at 2j + 1 1 1 − 1 [−1,0,1] − 1 − 1 1 1 [1,0,−1] − 1

Exercise
Complete the proof by considering sgn f at the columns 1 and 2r + 1 of C∗.
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The Field of the Reals

Theorem
Consider LR = (0,1,+,−, ·) and R = (R; 0,1,+,−, ·).
Then R does not admit QE.

Proof.

Consider ϕ(y) for ϕ = ∃x(y = x · x). We have [ϕ]R = R> ⊂ R, which is neither

finite nor cofinite in R. Essentially A{y} = { f = 0 | f ∈ Z[y ] }. These define for

f = 0 the cofinite set R and for left hand side polynomials f 6= 0 the finite sets

VR(f ). It follows that quantifier-free formulas in y define only finite and cofinite

sets.

We are now going to consider LOR = (0,1,+,−, ;6).

Our aim is to show that R = (R; 0,1,+,−, ·;6) admits QE.
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A Parametric Generalization of Combined Sign Matrices

Theorem
For n > 0 consider x-polynomials f1, . . . , fn ∈ R[x , y1, . . . , ym]. Let

d = max{degx f1, . . . ,degx fn}. Let E ∈ {0,1,−1}n×(2r+1) for r 6 nd.

Then one can compute an extended quantifier-free LOR-formula

ψE ,n,d ,f1,...,fn
(y1, . . . , ym) such that for b1, . . . , bm ∈ R it holds that

R |= ψE ,n,d ,f1,...,fn
(b) ⇐⇒ CSM(f1(x ,b), . . . , fn(x ,b)) = E.

Proof.
We define �0 := ” = ”, �1 := ” > ”, �−1 := ” < ”. For d = 0 and

E = [ε1, . . . , εn]t ∈ {0,1,−1}n×1 we have f1, . . . , fn ∈ R[y1, . . . , ym], and we can

set ψ =
∧n

i=1 fi �εi
0. . . .
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Proof.

For d > 0 we proceed recursively as for the computation of CSM with the

following modifications:

We use x-pseudodivision. When multiplying with a suitable power of the

leading coefficient of the divisor, we must use even powers to preserve signs.

We have to introduce case distinctions on the vanishing of the leading

coefficient, and in the case, where it vanishes, use the reductum (with further

case distinctions).

Instead of computing signs of f , we conjunctuively collect the corresponding

conditions f �σ 0 taking σ from E .

Basic Complex and Real QE · Real Closed Fields · 154/170



The Ordered Field of the Reals

Theorem (Tarksi 1948 with a different proof)
There is a QEP for R = (R; 0,1,+,−, ·;6) in LOR .

Proof.

It suffices to consider a positive 1-primitive formula ϕ = ∃x
∧n

i=1 fi %i 0 with

% ∈ {=, <}. Let d = max{degx f1, . . . ,degx fn}. The set

M =
⋃

r6nd{0,1,−1}n×(2r+1) is finite. Let Mϕ be the finite set of all E ∈ M that

contain a column [ε1, . . . , εn]t such that εi = �%i
. Then

R |= ϕ←→
∨

E∈Mϕ
ψE ,n,d ,f1,...,fn

.
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Real Closed Fields

What have we used in our proofs?
1. Axioms of ordered fields:

(a) Axioms of fields.

(b) Monotonicity: x 6 y −→ x + z 6 y + z and x 6 y ∧ 0 6 z −→ xz 6 yz.

This implies characteristic 0.

2. Every nonnegative number has square root: 0 6 x −→ ∃y(y2 = x).

3. Every nonconstant univariate polynomial of odd degree has a zero:{
∀a0 . . . ∀a2n+1∃x

[
a2n+1 6= 0 −→

2n+1∑
i=0

aix
i = 0

]}
n>0.

Denote by ΞRCF the set of these axioms.

RCF = Mod(ΞRCF) ⊂ FIELDS is the class of real closed fields.

We have R ∈ RCF but Q = (Q; 0,1,+,−, ·;6) /∈ RCF.
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QE, Completeness, and Decidability for RCF

Theorem
RCF admits QE. It follows that RCF is substructure complete and thus model

complete. Furthermore, RCF is complete and decidable.

Proof.
It suffices to show that RCF is complete and decidable for atomic sentences,

which are equivalent to either z = 0 or z 6 0 for z ∈ Z. Monotonicity implies

that 0, ±(1 + · · ·+ 1) are ordered as in Z.

Basic Complex and Real QE · Real Closed Fields · 157/170



Completeness and Decidability for RCF Without Ordering

Corollary

The class RCF′ = {F|LR
| F ∈ RCF } of real closed fields in a the language of

rings without ordering does not admit QE. Hence RCF′ is not substructure

complete. RCF′ is, however, model complete, complete, and decidable.

Proof.
For model completeness we have to show that every LR-formula ϕ is

equivalent to an existential LR-formula. Consider an LR-formula ϕ. Then ϕ is

also an LOR-formula. By QE compute a positive quantifier-free LOR-formula ϕ′

such that RCF |= ϕ←→ ϕ′. From ϕ′ we obtain ϕ′′ by equivalently replacing all

atomic formulas 0 6 f with ∃rf (r
2
f = f ) and making prenex. Then we have

RCF |= ϕ←→ ϕ′ ←→ ϕ′′, and since ϕ′′ is an LR-formula it follows that

RCF′ |= ϕ←→ ϕ′′.
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Towards Efficient Real QE 2012-02-01

Recall that quantifier elimination procedures based on considering 1-primitive

formulas are not elementary recursive in general.

Theorem (Collins, 1975)
The time complexity procedure of real quantifier elimination is bounded from

above by 22O(nk )

, where k ∈ Nr {0} is fixed and n is the word length of the input

formula.

Theorem (Davenport–Heintz and independently Weispenning, 1988)

The time complexity of real quantifier elimination bounded from below by 22Ω(n)

,

where n is the word length of the input formula.
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Software

Collins proof was constructive:

He described cylindrical algebraic decomposition (CAD) as a QE method.

A first implementation QEPCAD was finished in 1983.

Considerable heuristic improvemend by Hong lead to partial CAD in 1995.

QEPCAD B is now maintained by Brown and freely available at

http://www.usna.edu/cs/~qepcad/B/QEPCAD.html.

Exercise
Download, compile, and try.
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Focus on Formulas with Low Degrees in the Quantified Variables

Let f be in distributive representation f =
∑

m∈M amx
em,1
1 · · · xem,n

n .

For I ⊆ {1, . . . ,n} the total degree in V = { xi | i ∈ I } of f is maxm∈M
∑

i∈I em,i .

Example

The total degree of 2a7x2yz + y3 − x + 1 in {x , y , z} is 4.

The total degree in V of an atomic LOR-formula f % 0, % ∈ {=,6} is that of f .

The total degree in V of a quantifier-free formula is the maximum of the total

degrees of the contained atomic formulas.

The total degree of a prenex formula ϕ = Q1x1 . . .Qnxnψ is the total degree in

{x1, . . . , xn} of ψ .

In particular, ϕ is linear if its total degree is 1, quadratic if its total degree is 2,

and cubic if its total degree is 3.

Exercise
Give some examples for linear and quadratic formulas.
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Weispfenning Has Shown Much More

The lower bound 22O(n)

holds even when restricting to linear formulas.

This is called the linear real quantifier elimination problem.

Looking at finer complexity parameters, linear QE looks nicer.

Theorem (Weispfenning 1988)
Consider the subset of prenex linear formulas Φc,q,a with at most c changes

between ∃ and ∀ in the quantifier block, at most q quantifiers, and at most a

different atomic formulas.Then the real quantifier elimination problem for Φc,n,a

is bounded from above by 22O(c)

, 2O(q), and O(ak ) for some k ∈ Nr {0} not

depending on Φc,q,a.

Note that the number of unquantified variables does not significantly

contribute to the complexity.

Partial CAD, in contrast, is doubly exponential in the number of all variables.
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QE by Virtual Substitution for Linear Formulas 1

Consider a linear formula ϕ = Q1x1 . . .Qnxnψ .

By induction on n it suffices to eliminate the innermost quantifier Qnxn.

If Qn = ∀, then we transform R |= ∀xnψ ←→ ¬∃xn¬ψ .

It thus suffices to eliminate ∃xnψ , and we may assume w.l.o.g. that ψ is positive.

Note that we have not computed any Boolean normal form.

ψ is an arbitrary ∧-∨-combination of atomic formulas axn < b, axn 6 b, b < 0,

b 6 0, where a ∈ T r {0}, b ∈ T with xn /∈ V(a) ∪ V(b).

Fix real values for all variables in V(ψ) r {xn}.

Then atomic formulas describe intervals (−∞, b
a ), ( b

a ,∞), (−∞, b
a ], [ b

a ,∞), ∅, R.

ψ describes ∅, R, or a finite union of intervals

(−∞, b
a ), ( b

a ,∞), (−∞, b
a ], [ b

a ,∞), ( b
a ,

b′

a′ ), [ b
a ,

b′

a′ ), ( b
a ,

b′

a′ ], [ b
a ,

b′

a′ ],

which contains one of the points b
a ± 1, b/a+b′/a′

2 .
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QE by Virtual Substitution for Linear Formulas 2

Consider ϕ = ∃xnψ . Let {aixn %i bi | i ∈ I }, where %i ∈ {<,6}, be the finite set

of atomic formulas in ψ containing x . Then

E =
{

(true,0),
(
ai 6= 0 ∧ aj 6= 0,

bi/ai +bj/aj
2

)
,
(
ai 6= 0, bi

ai
± 1
) ∣∣ i, j ∈ I

}
is an elimination set for ϕ with the property

R |= ϕ←→
∨

(γ,t)∈E

(
γ ∧ ψ [t//xn]

)
.

Notice that the test terms t contain division with even parametric divisors.

The guards γ guarantee that the t are at least semantically meaningful.

For all bounded intervals we substitute the midpoint.

For the unbounded intervals we substitute the endpoints ±1.

We substitute 0 for the case that all other guards are false.

Recall that for regular substitution we have [t/xn] : T → T .

We define a virtual substitution [t//xn] : A→ Q0:

(aixn %i bi )
[ p

q//xn

]
:= aipq %i biq

2.

This substitution result is linear in {x1, . . . , xn−1}, which is important.
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Examples for Advanced Virtual Substitution

Instead of the
(
ai 6= 0, bi

ai
+ 1
)

for all i ∈ I for the unbounded interval
( bi

ai
,∞
)

we

can use (true,∞), where

(aixn < bi )[∞//xn] := ai < 0

(aixn 6 bi )[∞//xn] := ai < 0 ∨ (ai = 0 ∧ 0 6 bi ).

Consider
(
ai 6= 0 ∧ aj 6= 0,

bi/ai +bj/aj
2

)
used for an interval with endpoints bi

ai
,

bj
aj

.

If both bi
ai

and
bj
aj

origin from strict constraints aixn < bi , ajxn < bj , then it suffices

to subsitute
(
ai 6= 0, bi

ai
− ε
)
,
(
aj 6= 0,

bj
aj
− ε
)
, where

(aixn < bi )
[ p

q − ε//xn

]
:= aipq < biq

2 ∨ (aipq = biq
2 ∧ 0 < ai )

(aixn 6 bi )
[ p

q − ε//xn

]
:= (aixn < bi )

[ p
q − ε//xn

]
∨ (ai = 0 ∧ bi = 0).

If w.l.o.g. bi
ai

origins from a weak constraint aixn 6 bi , then we use
(
ai 6= 0, bi

ai

)
.

This reduces |E | from O(|I |2) to O(|I |).
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Understanding the Complexity Results

Consider ϕ = Qn−1xn−1∃xnψ .

We obtain E and compute R |= ϕ←→ ϕ′, where

ϕ′ = Qn−1xn−1

∨
(γ,t)∈E

(
γ ∧ ψ [t//xn]

)
.

In the case that Qn−1 = ∃, we can transform

R |= ϕ′ ←→
∨

(γ,t)∈E

∃xn−1

(
γ ∧ ψ [t//xn]

)
.

This yields for the next step |E | many independent QE problems ϕ′′1 , . . . , ϕ′′|E |.

Test terms produced for some ϕ′′i need not be substituted into ϕ′′j for j 6= i .

Therefore, the complexity is only exponential in the quantifiers

but doubly exponential in the quantifier changes.
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Quadratic Formulas

Consider a quadratic formula ϕ = Q1x1 . . . ∃xnψ .

ψ is an arbitrary ∧-∨-combination of linear atomic formulas and, in addition,

ax2
n + bxn + c % 0 for a ∈ T r {0}, b, c ∈ T with x /∈ V(a) ∪ V(b) ∪ V(c).

Fix real values for all variables in V(ψ) r {x}.

Then all atomic formulas describe finite unions of intervals, where ax2
n + bxn + c

contributes interval boundaries ±∞ and −b±
√

b2−4ac
2a .

We have to explain how to perform virtual substitutions (f % 0)
[ p1±

√
p2

q //x
]
.

Exercise

Let f ∈ [x1, . . . , xn]. There are P1, P2, Q such that f
[ p1+p2

√
p3

q /xn

]
=

P1+P2
√

p3
Q .

Using this we have, e.g.,

(f = 0)
[ p1+p2

√
p3

q //xn

]
= (xn = 0)

[P1+P2
√

p3
Q //xn

]
:= P1P2 6 0 ∧ P2

1 − P2
2 p3 = 0.

The substitution result is not quadratic in {x1, . . . , xn−1} in general.
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Beyond the Quadratic Case

We have just seen that eliminating an innermost quantifier from a quadratic

formula, the result is not necessarily quadratic anymore.

It is not clear in advance if the elimination of several quantifiers from a quadratic

formula using our quadratic method will succeed.

With linear formulas this problem does not exist.

Weispfenning (1997) has shown that virtual substitution is flexible enough to

generalize to arbitrary total degrees.

In particular, the fact that roots of polynomials beyond degree 4 cannot be

expressed with root expressions is no obstacle.

The (incomplete) method for the quadratic case is successfully used in practice.

In case of degree violations one switches to partial CAD.

Implementations of virtual substitution for the cubic case appear promising.
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Software

The virtual substitution methods, partial CAD, and many other QE procedures

are implemented in the package Redlog of the open-source computer algebra

system Reduce.

Reduce/Redlog is freely available at Sourceforge

http://sourceforge.net/apps/mediawiki/reduce-algebra/

index.php?title=Installation.

Exercise
SVN checkout, compile, and try.

Comprehensive information on Redlog can be found at

http://www.redlog.eu.

The online database Remis there, contains many application examples for QE.
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