Course: Quantifier Elimination

Thomas Sturm
http://www.mpi-inf.mpg.de/~sturm/

Winter Term 2011/2012

Contents I

Introduction and Foundations
Parametric Conditions
Languages and Formulas
Normal Forms
Quantifier Elimination
Definable Sets and Projections
Completeness and Decidability
Model Completeness and Substructure Completeness

Some Simple QE Procedures
Sets
Dense Orderings
Discrete Orderings
Divisible Abelian Groups
Divisible Ordered Abelian Groups
Presburger Arithmetic
Atomic Boolean Algebras

Contents II

Basic Complex and Real QE

Some Parametric Polynomial Algorithms
Algebraically Closed Fields
Combined Sign Information
Real Closed Fields

Efficient Real QE

IIIUII

Direct Links to the Lectures by Date

IIIUI

Solvability of Parametric Conditions - Examples

Example (Real numbers)

Consider real parameters a, b, c.
(i) $a x+b=0$ has a solution $x \in \mathbb{R}$ iff $a \neq 0 \vee b=0$.
(ii) $a x^{3}+b x+c=0$ has a solution $x \in \mathbb{R}$ iff $a \neq 0 \vee b \neq 0 \vee c=0$.

Proof.

(i) " $\Leftarrow: "$ For $b=0$ set $x=0$, and for $a \neq 0$ set $x=-b / a$.
" \Rightarrow :" Let $a=0$ and $b \neq 0$. Then $a x+b=0 \longleftrightarrow b=0$.
(ii) " $\Leftarrow:$ " For $a=0$ we are in situation (i). Let $a \neq 0$, w.l.o.g. $a>0$.

Then $\lim _{x \rightarrow \infty} a x^{3}+b x+c=\infty, \lim _{x \rightarrow-\infty} a x^{3}+b x+c=-\infty$, and by the intermdiate value theorem there is a zero.
$" \Rightarrow$:" Analogously to (i).

Example (Set theory)

Consider $P(M)$ for $M \neq \varnothing$ and parameters A, B ranging over $P(M)$.
$\neg X \subseteq A \wedge X \cap B=\varnothing$ has a solution $X \in P(M)$ iff $A \cup B \neq M$.

Proof.

Exercise.

Example (Integers)

Consider integer parameters a, b, c.
$2 x=a \wedge b<x \wedge x<c$ has a solution $x \in \mathbb{Z}$ iff a is even and $2 b<a<2 c$.

Proof.

$$
" \Rightarrow: " 2 x=a \wedge b<x \wedge x<c \longleftrightarrow 2 x=a \wedge 2 b<2 x \wedge 2 x=2 c .
$$

The only possible solution $x=a / 2$ exists iff a is even. Equivalently replacing $2 x$ with a then yields our condition.
" \Leftarrow :" Set $x=a / 2$, which is possible since a is even. $2(a / 2)=a$, and our condition implies $b<a / 2$ and $a / 2<c$.

Example (Undirected graph)

Consider (V, E) with $V=\{1,2,3,4\}, E=\{\{1,2\},\{1,4\},\{2,3\},\{3,4\},\{2,4\}\}$, and let a, b be parameters ranging over V.
$\{x, a\} \in E \wedge\{x, b\} \in E \wedge \neg\{a, b\} \in E$ has a solution $x \in V$ iff $a=b \vee(a=1 \wedge b=3) \vee(a=3 \wedge b=1)$.

Proof.

Exercise.

Example (Linear equations in one indeterminate over \mathbb{R})

Let $a_{1}, \ldots, a_{m} \in \mathbb{R}$ such that $a_{1} \neq 0$. Consider real parameters c_{1}, \ldots, c_{m}.
$\bigwedge_{i}^{m} a_{i} x+b_{i}=0$ has a solution $x \in \mathbb{R}$ iff $\bigwedge^{m} a_{i} b_{1}=a_{1} b_{i}$.

Proof.

Let $b_{1}, \ldots, b_{m} \in \mathbb{R}$.
" \Rightarrow :" Let $i \in\{2, \ldots, m\}$ such that $a_{i} b_{1} \neq a_{1} b_{i}$. If $a_{i}=0$, then $b_{i} \neq 0$, and it follows that in particular $a_{i} x+b_{i}=0$ has no solution. If $a_{i} \neq 0$, then $x=-b_{i} / a_{i}$ is the only solution of $a_{i} x+b_{i}=0$. Similarly $x=-b_{1} / a_{1}$ is the only solution of $a_{1} x+b_{1}=0$. But our assumption $a_{i} b_{1} \neq a_{1} b_{i}$ is equivalent to $-b_{1} / a_{1} \neq-b_{i} / a_{i}$.
" $\Leftarrow: "$ Set $x=-b_{1} / a_{1}$, which obviously solves $a_{1} x+b_{1}=0$. Consider now $a_{i} x+b_{i}=0$ for $i \in\{2, \ldots, m\}$. We know $a_{i} b_{1}=a_{1} b_{i}$. If $a_{i}=0$ then also $b_{i}=0$, and our considered equation is trivial. Otherwise, we equivalently obtain $-b_{i} / a_{i}=-b_{1} / a_{1}=x$, i.e., x solves our considered equation.

Example (Linear equations in two indeterminates over \mathbb{R})

Let $a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{m} \in \mathbb{R}$, such that $a_{1} \neq 0$ and $a_{2} b_{1}-a_{1} b_{2} \neq 0$.
Consider real parameters c_{1}, \ldots, c_{m}.
$\bigwedge_{i=1}^{m} a_{i} x_{1}+b_{i} x_{2}+c_{i}=0$ has a solution $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ iff
${ }_{i=1}$
${ }^{m}\left(a_{i} b_{1}-a_{1} b_{i}\right)\left(a_{2} c_{1}-a_{1} c_{2}\right)=\left(a_{2} b_{1}-a_{1} b_{2}\right)\left(a_{i} c_{1}-a_{1} c_{i}\right)$. $i=3$

Proof.

Exercise.

Hint: Temoporarily consider x_{2} a parameter and use the previous result.

Example (One linear constraint over \mathbb{R})

Consider real parameters a, b.
$a x+b \leqslant 0$ has a solution $x \in \mathbb{R}$ iff $a \neq 0 \vee b \leqslant 0$.

Proof.

Exercise.

Syntax: Elementary Languages

A language is a triplet $\mathcal{L}=(\mathcal{F}, \mathcal{R}, \sigma)$ with $\mathcal{F} \cap \mathcal{R}=\varnothing$ und $\sigma: \mathcal{F} \cup \mathcal{R} \rightarrow \mathbb{N}$.
The elements $f \in \mathcal{F}$ are function symbols.
The elements $R \in \mathcal{R}$ are relation symbols.
For $z \in \mathcal{F} \cup \mathcal{R}$ we call $\sigma(z)$ the arity of z.

Example

The language of ordered rings is $\mathcal{L}_{O R}=(\{0,1,+,-, \cdot\},\{\leqslant\}, \sigma)$, where
$\sigma(0)=\sigma(1)=0, \sigma(-)=1, \sigma(+)=\sigma(\cdot)=\sigma(\leqslant)=2$.
A language is finite if $\mathcal{F} \cup \mathcal{R}$ is finite.
Finite languages can be written like $\mathcal{L}_{O R}=\left(0^{(0)}, 1^{(0)},+{ }^{(2)}, \beth^{(1)}, .^{(2)} ; \leqslant^{(2)}\right)$.
$f \in \mathcal{F}$ with $\sigma(f)=0$ is a constant symbol.
\mathcal{L} is an algebraic language if $\mathcal{R}=\varnothing$.
\mathcal{L} is a relational language if $\mathcal{F}=\varnothing$.

Syntax: Extension Languages and Sublanguages

Consider languages $\mathcal{L}=(\mathcal{F}, \mathcal{R}, \sigma)$ and $\mathcal{L}^{\prime}=\left(\mathcal{F}^{\prime}, \mathcal{R}^{\prime}, \sigma^{\prime}\right)$.
Then \mathcal{L}^{\prime} is an extension of \mathcal{L}, if

$$
\mathcal{F} \subseteq \mathcal{F}^{\prime}, \quad \mathcal{R} \subseteq \mathcal{R}^{\prime}, \quad \sigma=\left.\sigma^{\prime}\right|_{\mathcal{F} \cup \mathcal{R}} .
$$

Accordingly, \mathcal{L} is a sublanguage of \mathcal{L}^{\prime}.
We write $\mathcal{L} \subseteq \mathcal{L}^{\prime}$.

Example

$$
\mathcal{L}_{R}=(0,1,+,-, \cdot) \subseteq(0,1,+,-, \cdot ; ; \leqslant)=\mathcal{L}_{O R}
$$

The language of ordered rings is an extension of the language of rings.
The language of rings is an sublanguage of the language of ordered rings.

Syntax: Special Symbols, Variables, and the Alphabet

We fix a set $\mathcal{X}=\{($,$) , , =\}$ of special symbols.
We fix an inifinite set \mathcal{V} of variables.
The alphabet of a language $\mathcal{L}=(\mathcal{F}, \mathcal{R}, \sigma)$ is $\mathcal{Z}_{\mathcal{L}}=\mathcal{X} \cup \mathcal{V} \cup \mathcal{F} \cup \mathcal{R}$.
Z_{L}^{*} is the set of all finite words über Z_{L}.
$\varepsilon \in Z^{*}$ is the empty word.
The length $|w|$ of a word $w \in Z_{L}^{*}$ is the number of contained alphabet characters counting multiplicites.

Convention

Our choices of \mathcal{V}, \mathcal{F} and \mathcal{R} are always such that:
(1) $\mathcal{X}, \mathcal{V}, \mathcal{F}$ and \mathcal{R} are pairwsie disjoint.
(2) $w \in Z_{L}^{*}$ and $|w| \neq 1 \Longrightarrow w \notin Z_{\mathcal{L}}$

We shortly write Z and Z^{*} whenever \mathcal{L} is obvious from the context.

Syntax: Terms and Atomic Formulas

\mathcal{L}-terms are words $t \in Z^{*}$ obtained by composition of variables and (possibly constant) function symbols according to their arity.
$\mathcal{J}_{\mathcal{L}} \subseteq Z^{*}$ is the set of all \mathcal{L}-terms.
$\mathcal{V}(t) \subseteq \mathcal{V}$ is the (finite) set of variables contained in $t \in \mathcal{J}_{\mathcal{L}}$.

Conventions

- Formally, all terms are in prefix notation.
- We use infix notation (with precedence rules) for our convenience.

Atomic \mathcal{L}-formulas are words $\varphi \in Z^{*}$ that are
(a) equations $t_{1}=t_{2}$, where $t_{1}, t_{2} \in \mathcal{J}_{\mathcal{L}}$.
(b) predicates $R\left(t_{1}, \ldots, t_{n}\right)$ where $R \in \mathcal{R}$ with $\sigma(R)=n$, and $t_{1}, \ldots, t_{n} \in \mathcal{J}_{\mathcal{L}}$.
$\mathcal{A}_{\mathcal{L}} \subseteq Z^{*}$ is the set of all atomic \mathcal{L}-formulas.
$\mathcal{V}(\varphi) \subset \mathcal{V}$ is the (finite) set of variables contained in $\varphi \in \mathcal{A}_{\mathcal{L}}$.
We shortly write \mathcal{J} and \mathcal{A} whenever \mathcal{L} is obvious from the context.

Semantics: Structures

Consider a language $\mathcal{L}=(\mathcal{F}, \mathcal{R}, \sigma)$.
An \mathcal{L}-Structure is a triplet $\mathbf{A}=\left(A, \iota_{\mathcal{F}}, \iota_{\mathcal{R}}\right)$.
$A \neq \varnothing$ is the universe of \mathbf{A}.
The interpretation $\iota_{\mathcal{F}}$ assigns to each $f \in \mathcal{F}, \sigma(f)=n$ a function $f^{A}: A^{n} \rightarrow A$.
The functions $f^{\mathbf{A}}$ for $f \in \mathcal{F}$ are the functions of \mathbf{A}.
For constant symbols $c \in \mathcal{F}$ with $\sigma(c)=0$ we call $c^{\mathbf{A}} \in \mathbf{A}$ a constant of \mathbf{A}.
The interpretation $\iota_{\mathcal{R}}$ assigns to $R \in \mathcal{R}, \sigma(R)=n$ a function $R^{\mathrm{A}}: A^{n} \rightarrow\{\perp, \mathrm{~T}\}$.
The symbol \perp means "false," and the symbol T means "true."
The functions $R^{\mathbf{A}}$ for $R \in \mathcal{R}$ are the Relations of \mathbf{A}.
You want it more formally?

$$
\left.\iota_{\mathcal{F}}: \mathcal{F} \rightarrow \bigcup_{n \in \mathbb{N}} A^{\left(A^{n}\right)}, \quad \iota_{\mathcal{R}}: \mathcal{R} \rightarrow \bigcup_{n \in \mathbb{N}\{ }\{, T\}\right\}^{\left(A^{n}\right)} .
$$

Semantics: Classification of \mathcal{L}-Structures and an Example

Consider a language $\mathcal{L}=(\mathcal{F}, \mathcal{R}, \sigma)$ and an \mathcal{L}-structure $\mathbf{A}=\left(A, \iota_{\mathcal{F}}, \iota_{\mathcal{R}}\right)$. If \mathcal{L} is an algebraic language, then \mathbf{A} is called an algebra.
If \mathcal{L} is a relational language, then \mathbf{A} called a relational structure.
A is called finite if its universe A is finite.

Example (The real numbers as an ordered ring)

Consider the language $\mathcal{L}_{\mathrm{OR}}=(0,1,+,-, \cdot ; \leqslant)$ of ordered rings.
One $\mathcal{L}_{O R}$-structure is $\mathbf{R}=\left(\mathbb{R}, \iota_{\mathcal{F}}, \iota_{\mathbb{R}}\right)$:

- $\iota_{\mathcal{F}}(0)=0^{\mathbb{R}} \in \mathbb{R}$ und $\iota_{\mathcal{F}}(1)=1^{\mathbb{R}} \in \mathbb{R}$.
- $\iota_{\mathcal{F}}(+)=+^{\mathbf{R}}$, where $+^{\mathbf{R}}: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is the regular addition in \mathbb{R}.
- $\iota_{\mathcal{F}}(-)=-^{\mathbf{R}}$ and $\iota_{\mathcal{F}}(\cdot)=.^{\mathbf{R}}$ analogously.
- $\iota_{\mathcal{R}}(\leqslant)=\leqslant^{\mathbf{R}}$, where $\leqslant^{\mathbf{R}}: \mathbb{R} \times \mathbb{R} \rightarrow\{\perp, \mathrm{T}\}$ with $\leqslant^{\mathbf{R}}(x, y)=\mathrm{T} \Leftrightarrow x \leqslant y$ in \mathbb{R}.
$\mathcal{L}_{O R}$ is finite but \mathbf{R} is infinite.

Structures Over Finite Languages

Consider a finite language $\mathcal{L}=\left(f_{1}^{\left(k_{1}\right)}, \ldots, f_{m}^{\left(k_{m}\right)} ; R_{1}^{\left(l_{1}\right)}, \ldots, R_{n}^{\left(l_{n}\right)}\right)$.
Then \mathcal{L}-structures can be specified like $\mathbf{A}=\left(A ; \omega_{1}, \ldots, \omega_{m} ; \varrho_{1}, \ldots, \varrho_{n}\right)$,
where $\left(\omega_{i}: A^{k_{i}} \rightarrow A\right)=\iota_{\mathcal{F}}\left(f_{i}\right)$ and $\left(\varrho_{j}: A^{l_{j}} \rightarrow\{\perp, \mathrm{~T}\}\right)=\iota_{\mathcal{R}}\left(R_{j}\right)$.
The definitions of ω_{i} and ϱ_{j} can often be derived from their names.

Example (The real numbers as an ordered ring)

$\mathcal{L}=(0,1,+,-, \cdot ; \leqslant), \quad \mathbf{R}=(\mathbb{R} ; 0,1,+,-, \cdot ; \leqslant)$

Examples

For $\mathcal{L}=\left(0^{(2)}, \varepsilon^{(0)}\right)$ we have \mathcal{L}-structures $(\mathbb{Z} ;+, 0),(\mathbb{Q} ; \cdot, 1)$, and $\left(Z^{*} ; \circ, \varepsilon\right)$.

Note

The notation $\mathbf{A}=\left(A ; \omega_{1}, \ldots, \omega_{m} ; \varrho_{1}, \ldots, \varrho_{n}\right)$ must never be abused for specifing the language.

Restrictions and Expansions

Consider languages $\mathcal{L}=(\mathcal{F}, \mathcal{R}, \sigma) \subseteq\left(\mathcal{F}^{\prime}, \mathcal{R}^{\prime}, \sigma^{\prime}\right)=\mathcal{L}^{\prime}$.
Let $\mathbf{A}=\left(A, \iota_{\mathcal{F}^{\prime}}, \iota_{\mathcal{R}^{\prime}}\right)$ be an \mathcal{L}^{\prime}-structure.
Constraining interpretations yields an \mathcal{L}-structure $\left.\mathbf{A}\right|_{\mathcal{L}}=\left(A,\left.\iota_{\mathcal{F}}\right|_{\mathcal{F}},\left.\iota_{\mathcal{R}^{\prime}}\right|_{\mathcal{R}}\right)$.
$\left.\mathbf{A}\right|_{\mathcal{L}}$ is the \mathcal{L}-restriction of \mathbf{A}.
\mathbf{A} is an \mathcal{L}^{\prime}-expansion of $\left.\mathbf{A}\right|_{\mathcal{L}}$.

Example

Consider $\mathcal{L}_{R}=(0,1,+,-, \cdot) \subseteq(0,1,+,-, \cdot ; \leqslant)=\mathcal{L}_{O R}$.
$\mathbf{R}=(\mathbb{R} ; 0,1,+,-, \cdot ; \leqslant)$ is an $\mathcal{L}_{O R}$-Structure, and $\left.\mathbf{R}\right|_{\mathcal{L}_{R}}=(\mathbb{R} ; 0,1,+,-, \cdot)$.
The ring of real numbers is the \mathcal{L}_{R}-restriktion of the ordered ring.
The ordered ring of real numbers is an $\mathcal{L}_{O R}$-expansion the ring.
$(\mathbb{R} ; 0,1,+,-, \cdot ; \geqslant)$ is another $\mathcal{L}_{O R}$-expansion of $(\mathbb{R} ; 0,1,+,-, \cdot)$.

Motivation of Extended Terms

We are going to interprete funtion symbols as functions.
Terms are going to describe functions, too.

Example (Polynomial functions)

$$
f: \mathbb{R}^{3} \rightarrow \mathbb{R} \text { mit } f(x, y, z)=x^{4}+2 x y-5 y
$$

- Using $\mathcal{L}=(0,1,+,-, \cdot)$ we define f using a term.
- f is suffixed with a list of variables serving as formal parameters.
- The order of variables is relevant.
- All variables of the term must be listed.
- It is admissible to list further variables (z in our example).

Proceed this way without having to name functions (in the formal theory):

$$
\left(x^{4}+2 x y-5 y\right)(x, y, z)
$$

Generalize this idea to atomic formulas.

Extended Terms and Atomic Formulas

Consider a language $\mathcal{L}=(\mathcal{F}, \mathcal{R}, \sigma)$.
Let $t \in \mathcal{J}, x_{1}, \ldots, x_{n} \in \mathcal{V}$ pairwise different such that $\mathcal{V}(t) \subseteq\left\{x_{1}, \ldots, x_{n}\right\}$.
Then $\left(x_{1}, \ldots, x_{n}\right)$ is an extension of t.
The ordered pair $\left(t,\left(x_{1}, \ldots, x_{n}\right)\right)$ is an extended term.
Convenient notation $t\left(x_{1}, \ldots, x_{n}\right)$.
For $\mathcal{V}(t)=\varnothing$ we do not distinguish between $t()$ and t.
$\mathcal{J}\left(x_{1}, \ldots, x_{n}\right):=\left\{\left(t,\left(x_{1}, \ldots, x_{n}\right)\right) \mid t \in \mathcal{J}\right.$ und $\left.\mathcal{V}(t) \subseteq\left\{x_{1}, \ldots, x_{n}\right\}\right\}$

Note

- Notation $t\left(x_{1}, \ldots, x_{n}\right)$ contains implicit assertion about the variables of t.
- Similarly, $\mathcal{J}\left(x_{1}, \ldots, x_{n}\right)$ constrains the possible choices for t.

Analogously: extended atomic formulas $\varphi\left(x_{1}, \ldots, x_{n}\right), \mathcal{A}\left(x_{1}, \ldots, x_{n}\right)$.

Semantics: Term Functions and Definable Relations

Consider a language $\mathcal{L}=(\mathcal{F}, \mathcal{R}, \sigma)$ and an \mathcal{L}-structure \mathbf{A}.
Let $t\left(x_{1}, \ldots, x_{n}\right)$ be an extended term.
The term function $t^{A}: A^{n} \rightarrow A$ is defined recursively wrt. $|t| \in \mathbb{N}$:
(i) $t=c \in \mathcal{F}$ with $\sigma(c)=0 \Longrightarrow t^{\mathrm{A}}\left(a_{1}, \ldots, a_{n}\right)=c^{\mathrm{A}}$.
(ii) $t=x_{i} \in \mathcal{V}$ for $i \in\{1, \ldots, n\} \Longrightarrow t^{\mathrm{A}}\left(a_{1}, \ldots, a_{n}\right)=a_{i}$.
(iii) $t=f\left(t_{1}, \ldots, t_{m}\right)$ mit $f \in \mathcal{F}, \sigma(f)=m>0$ and $t_{1}, \ldots, t_{m} \in \mathcal{J} \Longrightarrow$ $t^{\mathrm{A}}\left(a_{1}, \ldots, a_{n}\right)=f^{\mathrm{A}}\left(t_{1}^{\mathrm{A}}\left(a_{1}, \ldots, a_{n}\right), \ldots, t_{m}^{\mathrm{A}}\left(a_{1}, \ldots, a_{n}\right)\right)$
using extended terms $t_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, t_{m}\left(x_{1}, \ldots, x_{n}\right)$.
Let $\varphi\left(x_{1}, \ldots, x_{n}\right)$ be an extended atomic formula.
Define $\varphi^{A}: A^{n} \rightarrow\{\perp, T\}$ as follows:
(i) $\varphi=\left(t_{1}=t_{2}\right) \Longrightarrow \varphi^{\mathrm{A}}\left(a_{1}, \ldots, a_{n}\right)=\mathrm{T} \Leftrightarrow t_{1}^{\mathrm{A}}\left(\mathrm{a}_{1}, \ldots, a_{n}\right)=t_{2}^{\mathrm{A}}\left(a_{1}, \ldots, a_{n}\right)$.
(ii) $\varphi=R\left(t_{1}, \ldots, t_{m}\right)$ for $R \in \mathcal{R}$ with $\sigma(R)=m \Longrightarrow$ $\varphi^{\mathrm{A}}\left(a_{1}, \ldots, a_{n}\right)=R^{\mathrm{A}}\left(t_{1}^{\mathrm{A}}\left(a_{1}, \ldots, a_{n}\right), \ldots, t_{m}^{\mathrm{A}}\left(a_{1}, \ldots, a_{n}\right)\right)$,
using extended terms $t_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, t_{m}\left(x_{1}, \ldots, x_{n}\right)$.

Semantics: Validity and Models

Consider a language $\mathcal{L}=(\mathcal{F}, \mathcal{R}, \sigma)$ and an \mathcal{L}-structure \mathbf{A}.
Let $\varphi\left(x_{1}, \ldots, x_{n}\right)$ be an extended atomic formula.
$\varphi\left(x_{1}, \ldots, x_{n}\right)$ is valid in \mathbf{A} at the point $\left(a_{1}, \ldots, a_{n}\right) \in A^{n}$, if $\varphi^{\mathrm{A}}\left(a_{1}, \ldots, a_{n}\right)=\mathrm{T}$.
Notation: $\mathbf{A} \models \varphi\left(a_{1}, \ldots, a_{n}\right)$.

Observation

$\mathbf{A} \models \varphi\left(\mathrm{a}_{1}\right.$
$\left.a_{n}\right)$ for all $\left(a_{1}\right.$,
$\left.a_{n}\right) \in A^{n}$ does not depend on the extension.
φ is valid in \mathbf{A}, if $\varphi^{\mathrm{A}}\left(a_{1}, \ldots, a_{n}\right)=\mathrm{T}$ for all $\left(a_{1}, \ldots, a_{n}\right) \in A^{n}$.
Alternatively, we say \mathbf{A} is a model of φ. Notation: $\mathbf{A} \models \varphi$.
A set Φ of atomic formulas is valid in \mathbf{A}, if $\mathbf{A} \vDash \varphi$ for all $\varphi \in \Phi$.
Alternatively, we say \mathbf{A} is a model of Φ. Notation: $\mathbf{A} \models \Phi$.

Example: Trivial Models

Consider a language $\mathcal{L}=(\mathcal{F}, \mathcal{R}, \sigma)$.
Let $M=\{m\}$ for a set m. We are going to define an \mathcal{L}-structure \mathbf{M} on M :

- For $f \in \mathcal{F}$ with $\sigma(f)=n$ set $f^{\mathrm{M}}(m, \ldots, m):=m$.
- For $R \in \mathcal{R}$ with $\sigma(R)=n$ set $R^{\mathrm{M}}(m, \ldots, m):=\mathrm{T}$.
\mathbf{M} is the trivial \mathcal{L}-structure with universe M.

Lemma

$\mathbf{M} \models \Phi$ for all $\Phi \subseteq \mathcal{A}$. In particular, each set of atomic formulas has a model.

Proof.

Let $\varphi \in \Phi$, and let $\varphi\left(x_{1}, \ldots, x_{n}\right)$ be an extended atomic formula.
Case 1: $\varphi=\left(t_{1}=t_{2}\right)$. Then $t_{1}^{\mathrm{M}}(m, \ldots, m)=m=t_{2}^{\mathrm{M}}(m, \ldots, m)$, thus $\varphi^{\mathrm{M}}(m, \ldots, m)=\left(t_{1}=t_{2}\right)^{\mathrm{M}}(m, \ldots, m)=\mathrm{T}$.
Case 2: $\varphi=R\left(t_{1}, \ldots, t_{k}\right)$. Then $\varphi^{\mathrm{M}}(m, \ldots, m)=R\left(t_{1}, \ldots, t_{k}\right)^{\mathrm{M}}(m, \ldots, m)=$ $R^{\mathrm{M}}\left(t_{1}^{\mathrm{M}}(m, \ldots, m), \ldots, t_{k}^{\mathrm{M}}(m, \ldots, m)\right)=R^{\mathrm{M}}(m, \ldots, m)=\mathrm{T}$.

Syntax: First-Order Formulas

Consider a language \mathcal{L}.
We fix a set $\mathcal{O}=\{$ false, true $, \neg, \wedge, \vee, \longrightarrow, \longleftrightarrow\}$ of logical operators.
We say false, true, not, and, or, if . . . then, if and only if.
We assume $\mathcal{Z} \cap \mathcal{O}=\varnothing$ and define $Z^{\prime}=Z \cup \mathcal{O}$.
We fix a set $\{\forall, \exists\}$ of quantifier symbols.
We say for all, there exists.
We assume $Z^{\prime} \cap\{\forall, \exists\}=\varnothing$ and define $Z^{\prime \prime}=Z^{\prime} \cup\{\forall, \exists\}$.
The set \mathcal{Q}^{1} of first-order \mathcal{L}-formulas is the smallest subset of $Z^{\prime \prime *}$ such that
(i) $\mathcal{A} \subseteq \mathcal{Q}^{1}$ und $\{$ false, true $\} \subseteq \mathcal{Q}^{1}$.
(ii) $\varphi \in \mathcal{Q}^{1} \Longrightarrow \neg(\varphi) \in \mathcal{Q}^{1}$
(iii) $\varphi, \psi \in \mathcal{Q}^{1} \Longrightarrow(\varphi) \wedge(\psi),(\varphi) \vee(\psi),(\varphi) \longrightarrow(\psi), \quad(\varphi) \longleftrightarrow(\psi) \in \mathcal{Q}^{1}$
(iv) $\varphi \in \mathcal{Q}^{1}$ und $x \in \mathcal{V} \Longrightarrow \forall x(\varphi), \exists x(\varphi) \in \mathcal{Q}^{1}$.

Syntax: Special Types of Formulas

Atomic formulas, negated atomic formulas, true, and false are base formulas.

Note

Base formulas correspond to literals in propositional logic.
Let $\varphi, \psi \in \mathcal{Q}^{1}$.
$(\varphi) \wedge(\psi) \in \mathcal{Q}^{1}$ is a conjunction.
$(\varphi) \vee(\psi) \in \mathcal{Q}^{1}$ is a disjunction.
$(\varphi) \longrightarrow(\psi) \in \mathcal{Q}^{1}$ is an implication with antecedens φ und succedens ψ.
$(\varphi) \longleftrightarrow(\psi) \in \mathcal{Q}^{1}$ is a biimplication.
A word $\forall x \in Z^{\prime \prime *}$ with $x \in \mathcal{V}$ is a universal quantifier.
$\forall x(\varphi) \in \mathcal{Q}^{1}$ is a universally quantified formula with matrix φ.
A word $\exists x \in Z^{\prime \prime *}$ with $x \in \mathcal{V}$ is an existential quantifier.
$\exists x(\varphi) \in \mathcal{Q}^{1}$ is an existentially quantified formula with matrix φ.

Precedence Conventions

For reducing the number of parentheses in informal notations we agree:

- = and operators in \mathcal{R} bind stronger than \urcorner.
- \neg binds stronger than all other logical operators and quantifiers.
- \wedge binds stronger than v .
- \vee binds stronger than \longrightarrow.
- \longrightarrow binds stronger than \longleftrightarrow.
- Parentheses around quantified subformulas may be omitted.
- Implication is right associative: $\varphi_{1} \longrightarrow \varphi_{2} \longrightarrow \varphi_{3}=\varphi_{1} \longrightarrow\left(\varphi_{2} \longrightarrow \varphi_{3}\right)$.

Example for $\mathcal{L}=(1, \cdot)$

$$
\begin{aligned}
& (\neg(p=1)) \wedge(\forall a(\forall b(\exists q(\cdot(p, q)=\cdot(a, b)) \longrightarrow \\
& \quad(\exists q(\cdot(p, q)=a) \vee \exists q(\cdot(p, q)=b))))) \in \mathcal{Q}^{1}
\end{aligned}
$$

is written as $\neg p=1 \wedge \forall a \forall b(\exists q(p \cdot q=a \cdot b) \longrightarrow \exists q(p \cdot q=a) \vee \exists q(p \cdot q=b))$.
We always make explicit the scope of quantifiers with parentheses.

Syntax: Free vs. Bound Occurrences of Variables

An occurrence of $x \in \mathcal{V}$ in $\varphi \in \mathcal{Q}^{1}$ is an appearance inside a term. An occurrence of x within a subformula $\exists x(\ldots)$ or $\forall x(\ldots)$ is bound. All other occurrences are free.
$\mathcal{V}_{f}(\varphi)$ is the set of all variables that occur freely in φ.
$\mathcal{V}_{b}(\varphi)$ is the set of all variables that occur boundly in φ.
$\mathcal{V}(\varphi):=\mathcal{V}_{f}(\varphi) \cup \mathcal{V}_{b}(\varphi)$ is the set of all variables occurring in φ.

Example

$$
\mathcal{L}=\left(f^{(1)}, g^{(2)}\right), \quad \varphi=\exists w \forall w(w=f(y)) \wedge \exists x(f(x)=y) \vee \forall z(g(w, y)=w)
$$

- The variable z does not occur in φ.
- $\mathcal{V}_{f}(\varphi)=\{w, y\}, \mathcal{V}_{b}(\varphi)=\{w, x\}$ and $\mathcal{V}(\varphi)=\{w, x, y\}$.
- $\mathcal{V}_{f}(\varphi) \cap \mathcal{V}_{b}(\varphi) \neq \varnothing$.

There are no "free variables" or "bound variables"!

Syntax: Quantifier-Free Formulas and Sentences

(i) $\mathcal{A} \subseteq \mathcal{Q}^{1}$ und $\{$ false, true $\} \subseteq \mathcal{Q}^{1}$.
(ii) $\varphi \in \mathcal{Q}^{1} \Longrightarrow \neg(\varphi) \in \mathcal{Q}^{1}$
(iii) $\varphi, \psi \in \mathcal{Q}^{1} \Longrightarrow(\varphi) \wedge(\psi),(\varphi) \vee(\psi),(\varphi) \longrightarrow(\psi),(\varphi) \longleftrightarrow(\psi) \in \mathcal{Q}^{1}$
(iv) $\varphi \in \mathcal{Q}^{1}$ und $x \in \mathcal{V} \Longrightarrow \forall x(\varphi), \exists x(\varphi) \in \mathcal{Q}^{1}$.

The set $\mathcal{Q}^{0} \subseteq \mathcal{Q}^{1}$ of quantifier-free formulas is formed using only (i)-(iii).
From now on formulas are first-order formulas, and we write $\mathcal{Q}:=\mathcal{Q}^{1}$.
A sentence is a formula $\varphi \in \mathcal{Q}$ with $\mathcal{V}_{f}(\varphi)=\varnothing$.
$\mathcal{Q}_{\varnothing} \subseteq \mathcal{Q}$ is the set of all sentences.

Example for $\mathcal{L}_{R}=(0,1,+,-, \cdot)$

- $(a+b) \cdot c=a \cdot c+b \cdot c \in Q^{0}$
- false $\vee \forall a \forall b \forall c((a+b) \cdot c=a \cdot c+b \cdot c) \vee 1=0 \in \mathcal{Q}_{\varnothing}$

Extended Formulas and Closures

Let $\varphi \in \mathcal{Q}, x_{1}, \ldots, x_{n} \in \mathcal{V}$ pairwise different such that $\mathcal{V}_{f}(\varphi) \subseteq\left\{x_{1}, \ldots, x_{n}\right\}$.
The ordered pair $\left(\varphi,\left(x_{1}, \ldots, x_{n}\right)\right.$) is an extended formula.
Convenient notation as with atomic formulas: $\varphi\left(x_{1}, \ldots, x_{n}\right)$.
Extended sentences (φ, \varnothing) are written as $\varphi()$ and can be identified with φ.
Let $\varphi\left(x_{1}, \ldots, x_{n}\right)$ be an extended atomic formula.
The sentence $\forall \varphi$:= $\forall x_{1} \ldots \forall x_{n} \varphi$ is a universal closure of φ.
The sentence $\exists \varphi:=\exists x_{1} \ldots \exists x_{n} \varphi$ is an existential closure of φ.
Alternative notation for the universal closure: $\bar{\varphi}:=\underline{\forall} \varphi$.
For $\Phi \subseteq \mathcal{Q}$ we define $\bar{\Phi}:=\{\bar{\varphi} \mid \varphi \in \Phi\}$.

Semantics of First-Order Formulas

We agree that $\perp<\mathrm{T}$. Consider an \mathcal{L}-structure \mathbf{A}, and an extended formula $\varphi\left(x_{1}, \ldots, x_{n}\right)$. We define $\varphi^{\boldsymbol{A}}: A^{n} \rightarrow\{\perp, \mathrm{~T}\}$. Let $a_{1}, \ldots, a_{n} \in A$:

- For $\varphi \in \mathcal{A}$ we define $\varphi^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)$ as usual.
- false ${ }^{\boldsymbol{A}}\left(a_{1}, \ldots, a_{n}\right)=\perp$ und true $^{\mathrm{A}}\left(a_{1}, \ldots, a_{n}\right)=\mathrm{T}$.
- $(\neg \psi)^{\mathrm{A}}\left(a_{1}, \ldots, a_{n}\right)=\mathrm{T} \Longleftrightarrow \psi^{\mathrm{A}}\left(a_{1}, \ldots, a_{n}\right)=\perp$.
- $\left(\psi_{1} \wedge \psi_{2}\right)^{\boldsymbol{A}}\left(a_{1}, \ldots, a_{n}\right)=\min \left\{\psi_{1}^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right), \psi_{2}^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)\right\}$.
- $\left(\psi_{1} \vee \psi_{2}\right)^{\boldsymbol{A}}\left(a_{1}, \ldots, a_{n}\right)=\max \left\{\psi_{1}^{\boldsymbol{A}}\left(a_{1}, \ldots, a_{n}\right), \psi_{2}^{\boldsymbol{A}}\left(a_{1}, \ldots, a_{n}\right)\right\}$.
- $\left(\psi_{1} \longrightarrow \psi_{2}\right)^{\boldsymbol{A}}\left(a_{1}, \ldots, a_{n}\right)=\mathrm{T} \Longleftrightarrow \psi_{1}^{\mathrm{A}}\left(a_{1}, \ldots, a_{n}\right) \leqslant \psi_{2}^{\mathrm{A}}\left(a_{1}, \ldots, a_{n}\right)$.
- $\left(\psi_{1} \longleftrightarrow \psi_{2}\right)^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)=\mathrm{T} \Longleftrightarrow \psi_{1}^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)=\psi_{2}^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)$.
- If $\varphi=\forall x(\psi)$, then $\psi\left(x_{1}, \ldots, x_{n}, x\right)$ is an extended formula;

$$
(\forall x(\psi))^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)=\min \left\{\psi^{\mathrm{A}}\left(a_{1}, \ldots, a_{n}, a\right) \in\{\perp, \mathrm{T}\} \mid a \in A\right\}
$$

- If $\varphi=\exists x(\psi)$ then $\psi\left(x_{1}, \ldots, x_{n}, x\right)$ is an extended formulas;

$$
(\exists x(\psi))^{A}\left(a_{1}, \ldots, a_{n}\right)=\max \left\{\psi^{A}\left(a_{1}, \ldots, a_{n}, a\right) \in\{\perp, T\} \mid a \in A\right\}
$$

Validity, Models, Model Classes, and Semantic Equivalence

Consider a language \mathcal{L} and an \mathcal{L}-structure \mathbf{A}.
For $\varphi \in \mathcal{Q}$ with extension $\left(x_{1}, \ldots, x_{n}\right), a_{1}, \ldots, a_{n} \in A$, and $\Phi \subseteq \mathcal{Q}$
define $\mathbf{A} \models \varphi\left(a_{1}, \ldots, a_{n}\right)$, $\mathbf{A} \models \varphi$, and $\mathbf{A} \models \Phi$ in analogy to atomic formulas.
Note
$\mathbf{A} \models \varphi \Longleftrightarrow \mathbf{A} \models \underline{\forall} \varphi$ and $\mathbf{A} \models \Phi \Longleftrightarrow \mathbf{A} \models \bar{\Phi}$

Let \mathfrak{A} be a class of \mathcal{L}-structures.
$\varphi \in \mathcal{A}$ is valid in \mathfrak{A}, if $\mathbf{A} \models \varphi$ for all $\mathbf{A} \in \mathfrak{A}$. Notation: $\mathfrak{A} \models \varphi$.
$\Phi \subseteq \mathcal{A}$ is valid in \mathfrak{A}, if $\mathbf{A} \models \Phi$ for all $\mathbf{A} \in \mathfrak{A}$. Notation: $\mathfrak{A} \models \Phi$.
For fixed \mathcal{L} the model class of $\Phi \subseteq \mathcal{Q}$ is $\operatorname{Mod}(\Phi)=\{\mathbf{A} \mid \mathbf{A} \models \Phi\}$.
$\varphi \in \mathcal{Q}$ is generally valid, if $\mathbf{A} \models \varphi$ for all \mathcal{L}-structures \mathbf{A}. Notation: $\models \varphi$ $\Phi \subseteq \mathcal{Q}$ is generally valid, if $\mathbf{A} \models \Phi$ for all \mathcal{L}-structures \mathbf{A}. Notation: $\models \Phi$
$\varphi, \psi \in \mathcal{Q}$ are semantically equivalent, if $\models \varphi \longleftrightarrow \psi$. Notation: $\varphi \approx \psi$.

Some Axiomatizations

$$
\mathcal{L}_{M}=(1, \circ), \quad \Xi_{M}=\{(x \circ y) \circ z=x \circ(y \circ z), \quad x \circ 1=x, \quad 1 \circ x=x\} .
$$

Example (Monoids)

$\mathfrak{M}=\operatorname{Mod}\left(\Xi_{M}\right)$ is the class of all monoids as \mathcal{L}_{M}-structures.

Example (Groups)

Set $\equiv:=\Xi_{M} \cup\{\forall x \exists y(x \circ y=1)\}$.
Then $\mathfrak{G}_{M}=\operatorname{Mod}(\equiv)$ is the class of all groups as \mathcal{L}_{M}-structures.

Exercise

1. Axiomatize groups in the language $\mathcal{L}_{S}=(\circ) \subseteq \mathcal{L}_{M}$ of semigroups.
2. Axiomatize rings in the language $\mathcal{L}_{R}=(0,1,+,-, \cdot)$.
3. Axiomatize integral domains in the language \mathcal{L}_{R}.

Important Semantic Equivalences for Boolean Operators (1)

Consider a language \mathcal{L}, and let $\chi, \psi, \varphi \in \mathcal{Q}$:

- $\chi \wedge \psi \approx \psi \wedge \chi$

$$
\chi \vee \psi \approx \psi \vee \chi
$$

- $\chi \wedge(\psi \wedge \varphi) \approx(\chi \wedge \psi) \wedge \varphi$ $\chi \vee(\psi \vee \varphi) \approx(\chi \vee \psi) \vee \varphi$
- $\chi \wedge \chi \approx \chi, \quad \chi \vee \chi \approx \chi$
- $\chi \wedge(\chi \vee \psi) \approx \chi$ $\chi \vee(\chi \wedge \psi) \approx \chi$
- $\chi \wedge(\psi \vee \varphi) \approx(\chi \wedge \psi) \vee(\chi \wedge \varphi)$
$\chi \vee(\psi \wedge \varphi) \approx(\chi \vee \psi) \wedge(\chi \vee \varphi)$
- $\neg(\chi \wedge \psi) \approx \neg \chi \vee \neg \psi$
$\neg(\chi \vee \psi) \approx \neg \chi \wedge \neg \psi$
- $\neg \neg \chi \approx \chi$
(commutativity)
(associativity)
(idempotence)
(absorption)
(distributivity)
(de Morgan)
(involution)

Important Semantic Equivalences for Boolean Operators (2)

- $\chi \wedge$ true $\approx \chi$
$\chi \vee$ false $\approx \chi$
- \neg false \approx true
\neg true \approx false
$\chi \wedge$ false \approx false
$\chi \vee$ true \approx true
- $\chi \wedge \neg \chi \approx$ false
$\chi \vee \neg \chi \approx$ true
- $\chi \longleftrightarrow \psi \approx(\chi \longrightarrow \psi) \wedge(\psi \longrightarrow \chi)$
$\chi \longrightarrow \psi \approx \neg \chi \vee \psi$
- $\chi \longrightarrow \psi \approx \neg \psi \longrightarrow \neg \chi$
- $\chi \longleftrightarrow \psi \approx \neg \psi \longleftrightarrow \neg \chi$
- $\neg(\chi \longrightarrow \psi) \approx \chi \wedge \neg \psi$
- $\neg(\chi \longleftrightarrow \psi) \approx \chi \wedge \neg \psi \vee \psi \wedge \neg \chi$
(definiteness)
(neutrality)
(tertium non datur)
(reduction to \wedge, \vee, \neg)
(contrapositive)
(contrapositive)
(negation of implication)
(negation of biimplication)

Important Semantic Equivalences with Quantifiers

- $\exists x(\varphi \vee \psi) \approx \exists x(\varphi) \vee \exists x(\psi)$
- $\exists x(\varphi \wedge \psi) \approx \exists x(\varphi) \wedge \psi$, if $x \notin \mathcal{V}_{f}(\psi)$
- $\forall x(\varphi \wedge \psi) \approx \forall x(\varphi) \wedge \forall x(\psi)$
- $\forall x(\varphi \vee \psi) \approx \forall x(\varphi) \vee \psi$, if $x \notin \mathcal{V}_{f}(\psi)$
- $\neg \exists x(\varphi) \approx \forall x(\neg \varphi)$
- $\neg \forall x(\varphi) \approx \exists x(\neg \varphi)$

Exercise

Show the following:

- $\exists x(\varphi \wedge \psi) \not \approx \exists x(\varphi) \wedge \exists x(\psi)$
- $\forall x(\varphi \vee \psi) \not \approx \forall x(\varphi) \vee \forall x(\psi)$
- $\forall x \exists y(\varphi) \not \approx \exists x \forall y(\varphi)$

Syntax: Substitution

Consider a language \mathcal{L}.
Let x_{1}, \ldots, x_{n} pairwise different, and let $t_{1}, \ldots, t_{n} \in \mathcal{J}$.
Let $t \in \mathcal{J}$.
$t\left[t_{1} / x_{1}, \ldots, t_{n} / x_{n}\right] \in \mathcal{J}$ is obtained by replacing in t all occurrences of x_{i} by t_{i}.

Example for $\mathcal{L}=\left(f^{(3)}, g^{(1)}\right)$

$f(x, g(y), g(g(z)))[f(y, x, z) / x, z / y, x / z] \equiv f(f(y, x, z), g(z), g(g(x)))$

Let $\varphi \in \mathcal{Q}$.
$\varphi\left[t_{1} / x_{1}, \ldots, t_{n} / x_{n}\right] \in \mathcal{Q}$ is obtained by replacing in φ all free occurrences of x_{i} by t_{i}.

Example for $\mathcal{L}=\left(f^{(3)}, g^{(1)}\right)$

$x=g(y) \wedge \exists x(y=g(x))[f(x, y, z) / x, x / y] \equiv f(x, y, z)=g(x) \wedge \exists x(x=g(x))$

Semantics of Substitution

Lemma

Consider a language \mathcal{L}.
Let $t_{1}\left(y_{1}, \ldots, y_{m}\right), \ldots, t_{n}\left(y_{1}, \ldots, y_{m}\right)$ be extended terms.
Let \mathbf{A} be an \mathcal{L}-structure, and let $b_{1}, \ldots, b_{m} \in A$.
(i) Let $t\left(x_{1}, \ldots, x_{n}\right)$ be an extended Term.

Set $t^{\prime}:=t\left[t_{1} / x_{1}, \ldots, t_{n} / x_{n}\right]$. Then for $t^{\prime}\left(y_{1}, \ldots, y_{m}\right)$ we have

$$
t^{\prime \mathbf{A}}\left(b_{1}, \ldots, b_{m}\right)=t^{\mathbf{A}}\left(t_{1}^{\mathbf{A}}\left(b_{1}, \ldots, b_{m}\right), \ldots, t_{n}^{\mathbf{A}}\left(b_{1}, \ldots, b_{m}\right)\right)
$$

(ii) Let $\varphi\left(x_{1}, \ldots, x_{n}\right)$ be an extended formula with $\mathcal{V}_{b}(\varphi) \cap\left\{y_{1}, \ldots, y_{m}\right\}=\varnothing$. Set $\varphi^{\prime}:=\varphi\left[t_{1} / x_{1}, \ldots, t_{n} / x_{n}\right]$. Then for $\varphi^{\prime}\left(y_{1}, \ldots, y_{m}\right)$ we have

$$
\varphi^{\prime \mathbf{A}}\left(b_{1}, \ldots, b_{m}\right)=\varphi^{\mathbf{A}}\left(t_{1}^{\mathbf{A}}\left(b_{1}, \ldots, b_{m}\right), \ldots, t_{n}^{\mathbf{A}}\left(b_{1}, \ldots, b_{m}\right)\right)
$$

- The identical extensions $\left(y_{1}, \ldots, y_{m}\right)$ for t_{1}, \ldots, t_{n} are not really a restriction.
- $\mathcal{V}\left(t_{i}\right) \subseteq\left\{y_{1}, \ldots, y_{m}\right\}$, thus $\mathcal{V}_{b}(\varphi) \cap\left\{y_{1}, \ldots, y_{m}\right\}=\varnothing \Longrightarrow \mathcal{V}_{b}(\varphi) \cap \bigcup_{i=1}^{n} \mathcal{V}\left(t_{i}\right)=\varnothing$.

Exercises

1. Prove Part (i) of the Lemma.
2. Rephrase Part (ii) in terms of validity, i.e., using " $=$."
3. Derive from Part (ii) a result for general validity, i.e. " \vDash " without reference to extended formulas or particular points.

Informal Notations Made Precise

In Mathematics, quantifier symbols are often used informally.

Example

Consider the language $\mathcal{L}=(0,1,+,-, \cdot ;>)$.

- "' $\exists \delta>0$: φ "' stands for $\exists \delta(\delta>0 \wedge \varphi)$.
- "' $\forall \varepsilon>0: \varphi^{\prime \prime}$ ' stands for $\forall \varepsilon(\varepsilon>0 \longrightarrow \varphi)$.
- "' \exists ! $x: \varphi$ "' stands for $\exists x(\varphi \wedge \forall y(\varphi[y / x] \longrightarrow y=x))$.
- "' $\exists^{>1} x: \varphi^{\text {"' }}$ stands for $\exists x \exists y(x \neq y \wedge \varphi \wedge \varphi[y / x])$.

Notice that for " $\forall \varepsilon>0: \varphi$ " and " $\exists \delta>0: \varphi$ " in fact

$$
\neg \forall \varepsilon(\varepsilon>0 \longrightarrow \varphi) \approx \exists \varepsilon(\varepsilon>0 \wedge \neg \varphi), \quad \neg \exists \delta(\delta>0 \wedge \varphi) \approx \forall \delta(\delta>0 \longrightarrow \neg \varphi) .
$$

Normal Forms for Terms in a Fixed \mathcal{L}-Structure

Consider a language \mathcal{L} and a set $\mathcal{J}\left(x_{1}, \ldots, x_{n}\right)$ of extended terms.
Then every \mathcal{L}-structure \mathbf{A} induces an equivalence relation \sim_{A} on $\mathcal{J}\left(x_{1}, \ldots, x_{n}\right)$:

$$
t\left(x_{1}, \ldots, x_{n}\right) \sim_{\mathbf{A}} t^{\prime}\left(x_{1}, \ldots, x_{n}\right): \Longleftrightarrow t^{\mathbf{A}}=t^{\prime \mathbf{A}} .
$$

$\mathcal{N} \subseteq \mathcal{J}\left(x_{1}, \ldots, x_{n}\right)$ is a set of normal forms for $\mathcal{J}\left(x_{1}, \ldots, x_{n}\right)$ in \mathbf{A}, if for each $t\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{J}\left(x_{1}, \ldots, x_{n}\right)$ there is $t^{\prime}\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{N}$ such that $t^{\prime}\left(x_{1}, \ldots, x_{n}\right) \sim_{\mathbf{A}} t\left(x_{1}, \ldots, x_{n}\right)$.
\mathcal{N} if a set of unique (or canonical) normal forms in \mathbf{A}, if there is exactly one such $t^{\prime}\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{N}$.

Example for $L_{R}=(0,1,+,-, \cdot), \mathcal{J}(x)$, and $\mathbf{R}=(\mathbb{R} ; 0,1,+,-, \cdot)$
$\mathbb{Z}[x]$ is a set of unique normal forms for $\mathcal{J}(x)$ in \mathbf{R}.

- The coefficients are formally Terms $0,1+\cdots+1$ oder $-(1+\cdots+1)$.
- The coefficient 0 occurs only for the zero polynomial.

Normal Forms for Formulas

Consider a language \mathcal{L} and $\mathcal{Q}^{\prime} \subseteq \mathcal{Q}$.
Then $\mathcal{N} \subseteq \mathcal{Q}^{\prime}$ is a set of normal forms for \mathcal{Q}^{\prime}, if for each $\varphi \in \mathcal{Q}^{\prime}$ there is $v \in \mathcal{N}$ such that $v \approx \varphi$.

Lemma (Negation Normal Forms)

The set $\mathcal{N}_{\mathrm{NNF}} \subseteq \mathcal{Q}^{0}$ of $\wedge-\mathrm{V}$-combinations of base formulas is a set of normal forms for quantifier-free formulas.

Proof.

Rewrite " \longleftrightarrow " and " \longrightarrow " in terms of " \neg," " \wedge," " \vee."
Apply de Morgan to move inside all " \neg " to the atomic formulas.
Eliminate " $\neg\urcorner$ " by involution.
We say that formulas in $\mathcal{N}_{\text {NNF }}$ are in negation normal form (NNF).

Conjunctive and Disjunctive Normal Forms

We generalize our notions of conjunctions and disjunctions:
For $n \in \mathbb{N}$ and $\varphi_{1}, \ldots, \varphi_{n} \in \mathcal{Q}$ conjunctions and disjunctions are

$$
\bigwedge_{i=1}^{n} \varphi_{i}=\left\{\begin{array}{ll}
\text { true, } & n=0 \\
\varphi_{1}, & n=1 \\
\varphi_{1} \wedge \ldots \wedge \varphi_{n}, & n>1
\end{array} \quad \text { and } \bigvee_{i=1}^{n} \varphi_{i}= \begin{cases}\text { false }, & n=0 \\
\varphi_{1}, & n=1 \\
\varphi_{1} \vee \ldots \vee \varphi_{n}, & n>1\end{cases}\right.
$$

Lemma (Disjunctive and Conjuncive Normal Forms)

The set $\mathcal{N}_{\mathrm{DNF}} \subseteq \mathcal{Q}^{0}$ of disjunctions of conjunctions of base formulas and the set $\mathcal{N}_{\mathrm{CNF}} \subseteq \mathcal{Q}^{0}$ of conjunctions of disjunctions of base formulas are sets of normal forms for quantifier-free formulas.

Proof.

Compute an equivalent NNF and then apply the laws of distributivity.
DNFs and CNFs are exponential in the size of the original formula in general!

Prenex Normal Forms

A prenex formula is $Q_{1} x_{1} \ldots Q_{n} x_{n}(\psi) \in \mathcal{Q}$ with $Q_{i} \in\{\exists, \forall\}, x_{i} \in \mathcal{V}$, and $\psi \in \mathcal{Q}^{0}$.

Lemma (Prenex Normal Form)

The set $\mathcal{N}_{\text {PNF }} \subseteq \mathcal{Q}$ of prenex formulas is a set of normal forms for formulas.

Proof.

Let $\varphi \in \mathcal{Q}$. We show by induction on $|\varphi| \in \mathbb{N}$ that there is $\varphi \approx \varphi^{\prime} \in \mathcal{N}_{\text {PNF }}$. Rewrite " \longleftrightarrow " and " \longrightarrow " in terms of " \neg," " \wedge," " \vee."
Case 1: For $\varphi \in \mathcal{A}$ we observe $\mathcal{A} \subseteq \mathcal{N}_{\text {PNF }}$, so we can set $\varphi^{\prime}:=\varphi$.
Case 2: For $\varphi=Q x(\psi)$ we find $\psi \approx \psi^{\prime} \in \mathcal{N}_{\text {PNF }}$, and we set $\varphi^{\prime}:=Q x\left(\psi^{\prime}\right)$.
Case 3: For $\varphi=\neg \psi$, we find $\psi \approx \psi^{\prime} \in \mathcal{N}_{\mathrm{PNF}}$, and we know how to equivalently move the negation inside the prenex quantifier block of ψ^{\prime}.
Case 4: For $\varphi=\psi_{1} \varrho \psi_{2}$ with $\varrho \in\{\Lambda, \mathrm{v}\}$ we find $\psi_{1} \approx Q_{1} x_{1} \ldots Q_{n} x_{n}\left(\psi_{1}^{\prime}\right)$ and $\psi_{2} \approx \bar{Q}_{1} \bar{x}_{1} \ldots \bar{Q}_{m} \bar{x}_{m}\left(\psi_{2}^{\prime}\right)$ with $\psi_{1}^{\prime}, \psi_{2}^{\prime} \in \mathcal{Q}^{0}$. We may assume w.l.o.g. $\left\{x_{1}, \ldots, x_{n}\right\} \cap \mathcal{V}\left(\psi_{2}^{\prime}\right)=\varnothing$ and $\left\{\bar{x}_{1}, \ldots, \bar{x}_{m}\right\} \cap \mathcal{V}\left(\psi_{1}^{\prime}\right)=\varnothing$ (else rename bound variables). Set $\varphi^{\prime}:=Q_{1} x_{1} \ldots Q_{n} x_{n} \bar{Q}_{1} \bar{x}_{1} \ldots \overline{Q_{m}} \overline{x_{m}}\left(\psi_{1}^{\prime} \varrho \psi_{2}^{\prime}\right)$.

Normal Forms for Formulas in a Fixed \mathcal{L}-Structure

Consider a language \mathcal{L}, and $\mathcal{Q}^{\prime} \subseteq \mathcal{Q}$.
Every \mathcal{L}-structure \mathbf{A} induces an equivalence relation \approx_{A} on \mathcal{Q}^{\prime} :

$$
\varphi \approx_{\mathbf{A}} \varphi^{\prime} \quad \Longleftrightarrow \mathbf{A} \models \varphi \longleftrightarrow \varphi^{\prime} .
$$

$\mathcal{N} \subseteq \mathcal{Q}^{\prime}$ is a set of (unique/canonical) normal forms for \mathcal{Q}^{\prime} in \mathbf{A}, if for each $\varphi \in \mathcal{Q}^{\prime}$ there is (exactly one) $\varphi^{\prime} \in \mathcal{N}$ such that $\varphi^{\prime} \sim_{A} \varphi$.

A positive formula is an $\wedge-\vee$-combination of atomic formulas.

Example (Positive Normal Forms over the Reals)

$\mathcal{L}_{\text {OR }}^{\prime}=(0,1,+,-, \cdot ; \leqslant, \geqslant,<,>, \neq), \mathbf{R}=(\mathbb{R} ; 0,1,+,-, \cdot ; \leqslant, \geqslant,<,>, \neq):$.

1. The set $\mathcal{N}_{\text {POS }} \subseteq \mathcal{Q}^{0}$ of positive formulas is a set of normal forms for \mathscr{Q}^{0} in \mathbf{R}.
2. Consider $\mathcal{A}_{\left\{x_{1}, \ldots, x_{n}\right\}}=\left\{\varphi \in \mathcal{A} \mid \mathcal{V}(\varphi) \subseteq\left\{x_{1}, \ldots, x_{n}\right\}\right\}$. Then

$$
\left\{f \varrho 0 \in \mathcal{A}_{\left\{x_{1}, \ldots, x_{n}\right\}} \mid \varrho \in\{\leqslant, \geqslant,<,>,=, \neq\}, f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]\right\}
$$

is a set of normal forms for $\mathcal{A}_{x_{1}, \ldots, x_{n}}$ in \mathbf{R}. Much better but still not unique: primitive polynomials f with positive head coefficients.

Quantifier Elimination

Consider a language \mathcal{L}, a class \mathfrak{A} of \mathcal{L}-structures, and $\Phi \subseteq \mathcal{Q}$.
\mathfrak{A} admits quantifier elimination (QE) for Φ, if
for each $\varphi \in \Phi$ there is $\varphi^{\prime} \in \mathcal{Q}^{0}$ such that $\mathfrak{A} \vDash \varphi^{\prime} \longleftrightarrow \varphi$.
A quantifier elimination procedure (QEP) for Φ and \mathfrak{A} is an algorithm that given $\varphi \in \Phi$ computes $\varphi^{\prime} \in \mathcal{Q}^{0}$ such that $\mathfrak{A} \vDash \varphi^{\prime} \longleftrightarrow \varphi$.

If $\mathfrak{A}=\{\mathbf{A}\}$, then we simply say \mathbf{A} admits QE for $\Phi /$ QEP for \mathbf{A} and Φ.
If $\Phi=\mathcal{Q}$, then we need not explicitly refer to Φ.

Quantifier Elimination Without Introducing New Variables

Lemma

Consider a language $\mathcal{L}=(\mathcal{F}, \mathcal{R}, \sigma)$ and a class \mathfrak{A} of \mathcal{L}-structures.
Let $\varphi \in \mathcal{Q}, \varphi^{\prime} \in \mathcal{Q}^{0}$ such that $\mathfrak{A} \vDash \varphi^{\prime} \longleftrightarrow \varphi$.
Assume that at least one of the following conditions holds:
(i) $\mathcal{V}_{f}(\varphi) \neq \varnothing$
(ii) There is $c \in \mathcal{F}$ with $\sigma(c)=0$.

Then one can compute $\varphi^{\prime \prime} \in \mathcal{Q}^{0}$ such that $\mathfrak{A} \models \varphi^{\prime \prime} \longleftrightarrow \varphi$ and $\mathcal{V}\left(\varphi^{\prime \prime}\right) \subseteq \mathcal{V}_{f}(\varphi)$.

Proof.

The construction of $\varphi^{\prime \prime}$ depends on the condition that holds in the Lemma:
(i) Let $y \in \mathcal{V}_{f}(\varphi), \mathcal{V}\left(\varphi^{\prime}\right) \backslash \mathcal{V}_{f}(\varphi)=\left\{z_{1}, \ldots, z_{n}\right\}$. Set $\varphi^{\prime \prime}:=\varphi^{\prime}\left[y / z_{1}, \ldots, y / z_{n}\right]$.
(ii) Let $\mathcal{V}\left(\varphi^{\prime}\right) \backslash \mathcal{V}_{f}(\varphi)=\left\{z_{1}, \ldots, z_{n}\right\}$. Set $\varphi^{\prime \prime}:=\varphi^{\prime}\left[c / z_{1}, \ldots, c / z_{n}\right]$.

Quantifier Elimination and Addition of Constants

Lemma

Consider languages $\mathcal{L}=(\mathcal{F}, \mathcal{R}, \sigma), \mathcal{L}^{\prime}=\left(\mathcal{F}^{\prime}, \mathcal{R}, \sigma^{\prime}\right) \supseteq \mathcal{L}$ such that $\sigma^{\prime}(f)=0$ for all $f \in \mathcal{F}^{\prime} \backslash \mathcal{F}$. Let \mathfrak{A} be a class of \mathcal{L}-structures that admits $Q E$. Let \mathfrak{A} be a class of \mathcal{L}^{\prime}-structures such that $\mathbf{A}^{\prime} \mid \mathcal{L} \in \mathfrak{A}$ for each $\mathbf{A}^{\prime} \in \mathfrak{A}^{\prime}$. Then \mathfrak{A}^{\prime} admits $Q E$, and every QEP for \mathfrak{A} induces a QEP for \mathfrak{A}^{\prime}.

Proof.

Let φ be an \mathcal{L}^{\prime}-formula. Then there exist $c_{1}, \ldots, c_{n} \in \mathcal{F}^{\prime}$ with $\sigma\left(c_{i}\right)=0, y_{1}$, $\ldots, y_{n} \in \mathcal{V} \backslash \mathcal{V}(\varphi)$, and an \mathcal{L}-formula ψ such that $\varphi=\psi\left[c_{1} / y_{1}, \ldots, c_{n} / y_{n}\right]$.
Compute $\psi^{\prime} \in \mathfrak{A}$ such that $\mathfrak{A} \vDash \psi^{\prime} \longleftrightarrow \psi$. It follows that $\mathfrak{A}^{\prime} \vDash \psi^{\prime} \longleftrightarrow \psi$ and furthermore $\mathfrak{A}^{\prime} \models \psi^{\prime}\left[c_{1} / y_{1}, \ldots, c_{n} / y_{n}\right] \longleftrightarrow \psi\left[c_{1} / y_{1}, \ldots, c_{n} / y_{n}\right]$.

Quantifier Elimination and Subclasses

Consider a language $\mathcal{L}, \Phi \subseteq \mathcal{Q}$.

Obviously...

Consider a class \mathfrak{A} of \mathcal{L}-structures that admits $Q E$ for Φ. Let $\mathfrak{A}^{\prime} \subseteq \mathfrak{A}$.
Then \mathfrak{A}^{\prime} admits QE, and every QEP for \mathfrak{A} and Φ is also a QEP for \mathfrak{A}^{\prime} and Φ.
This holds in particular for $\mathfrak{A}^{\prime}=\{\mathbf{A}\}$ for some \mathcal{L}-structure \mathbf{A}.
Less obviously, the converse does not hold:

Example

Consider $\mathcal{L}=(), \mathbf{A}=(\{1\}), \mathbf{B}=(\{1,2\})$. We are soon going to show that both \mathbf{A} and \mathbf{B} have a QEP. Here we show that $\mathfrak{A}=\{\mathbf{A}, \mathbf{B}\}$ does not admit QE:
Consider $\varphi=\exists x(\neg x=y)$. Assume for a contradiction that there is $\varphi^{\prime} \in \mathcal{Q}^{0}$ with $\mathfrak{A} \vDash \varphi^{\prime} \longleftrightarrow \varphi$. We may assume w.l.o.g that $\mathcal{V}\left(\varphi^{\prime}\right) \subseteq \mathcal{V}_{f}(\varphi)=\{y\} \neq \varnothing$.
The only atomic formula possibly occurring in φ^{\prime} is $y=y$, which is semantically equivalent to true. It follows that $\varphi^{\prime} \approx \operatorname{true}$ or $\varphi^{\prime} \approx$ false, in particular $\mathfrak{A} \models \varphi^{\prime} \longleftrightarrow$ true or $\mathfrak{A} \vDash \varphi^{\prime} \longleftrightarrow$ false. But $\mathbf{A} \models \varphi \longleftrightarrow$ false and $\mathbf{B} \vDash \varphi \longleftrightarrow$ true. Hence $\mathfrak{A} \not \models \varphi^{\prime} \longleftrightarrow \varphi$, a contradiction.

It Is Sufficient to Consider 1-Primitive Formulas

Denote by $B \subseteq Q^{0}$ the set of all base formulas.
A 1-primitive \mathcal{L}-formula is of the form $\exists x \bigwedge_{i=1}^{n} \varphi_{i}$ for $x \in \mathcal{V}, n \in \mathbb{N}$, and $\varphi_{i} \in \mathcal{B}$. Denote by $\mathcal{P} \subseteq \mathcal{Q}$ the set of all 1-primitive \mathcal{L}-formulas.

Theorem

If a class \mathfrak{A} of \mathcal{L}-structures admits $Q E$ for \mathcal{P}, then \mathfrak{A} admits $Q E$ (for \mathcal{Q}), and every QEP for \mathcal{P} in \mathfrak{A} induces a QEP for \mathfrak{A} (and Q).

Proof.

Let $\varphi \in \mathcal{Q}$. Induction on the number k of quantifiers: If $k=0$, then we are done. For $k>0$ transform φ into PNF yielding $\bar{\varphi}:=Q_{1} x_{1} \ldots Q_{k} x_{k} \psi$. We are going to eliminate $Q_{k} x_{k}$ from $Q_{k} x_{k} \psi$. By means of $\forall x_{k} \psi \approx \neg \exists x_{k} \neg \psi$ we may w.l.o.g. assume that $Q_{k}=\exists$. Transform ψ into DNF yielding $\exists x_{k} \bigvee_{i} \Lambda_{j} \psi_{i j}$. Now

$$
\mathfrak{A} \vDash \exists x_{k} \bigvee_{i} \wedge_{j} \psi_{i j} \longleftrightarrow \bigvee_{i} \exists x_{k} \wedge_{j} \psi_{i j} \longleftrightarrow \bigvee_{i} \psi_{i}^{\prime} \text { with } \psi_{i}^{\prime} \in \mathcal{Q}^{0},
$$

and the remaining quantifiers can be eliminated by induction hypothesis.

Some Remarks on QE for 1-Primitive Formulas

Minimize Quantifier Scope in 1-Primitive Formulas

Recall that $\exists x(\varphi \wedge \psi) \approx \exists x(\varphi) \wedge \psi$, if $x \notin \mathcal{V}_{f}(\psi)$.
It thus suffices to consider 1-primitive formulas $\exists x \bigwedge_{i=1}^{n} \varphi_{i}$, where each φ_{i} actually contains x.

Denote by $\mathcal{P}^{+} \subseteq \mathcal{P}$ the set of all positive 1 -primitive \mathcal{L}-formulas.

Restriction to Positive 1-Primitive Formulas

Consider \mathcal{L} and \mathfrak{A} such that every negative base formula is equivalent to a positive quantifier-free formula.
(i) If \mathfrak{A} admits $Q E$ for \mathcal{P}^{+}, then \mathfrak{A} admits $Q E$ (for \mathcal{Q}).
(ii) If there is a QEP for \mathfrak{A} and \mathcal{P}^{+}and an algorithm computing positive quantifier-free equivalents for negative base formulas, then this induces a QEP for \mathfrak{A} (and \mathfrak{Q}).

A Remark on Complexity

Thinking about 1-primitive formulas is a good first approach when looking for quantifier elimination procedures.

Due to the iterated DNF computations in combination with logical negation for universal quantifiers, our procedure based on quantifier elimination for \mathcal{P} is not elementary recursive in general.

In the end, one hopefully finds something better.

Quantifier Elimination for Infinite Sets

Consider $\mathcal{L}=()$, and denote by \mathfrak{A} the class of all infinite sets as \mathcal{L}-structures.
Consider a 1 -primitive Formula

$$
\varphi:=\exists x\left(\bigwedge_{i=1}^{m} x=y_{i} \wedge \bigwedge_{j=1}^{n} \neg x=z_{j}\right) \quad \text { with } \quad y_{i}, z_{j} \in \mathcal{V} .
$$

Since $x=x \approx$ true and $\neg x=x \approx$ false, we assume w.l.o.g. that $x \notin\left\{y_{1}, \ldots, y_{m}, z_{1}, \ldots, z_{n}\right\}$.
Case 1: If $m>0$, then $\mathfrak{A} \vDash \varphi \longleftrightarrow \exists x\left(x=y_{1}\right) \wedge \bigwedge_{i=2}^{m} y_{1}=y_{i} \wedge \bigwedge_{j=1}^{n} \neg y_{1}=z_{j}$, which is in turn equivalent to

$$
\bigwedge_{i=2}^{m} y_{1}=y_{i} \wedge \bigwedge_{j=1}^{n} \neg y_{1}=z_{j} \in \mathcal{Q}^{0} .
$$

Case 2: If $m=0$, then $\mathfrak{A} \vDash \varphi \longleftrightarrow$ true $\in \mathcal{Q}^{0}$.

Quantifier Elimination for Two Particular Finite Sets

Theorem

Consider $\mathcal{L}=()$.
(i) The L-structure $\mathbf{A}=(\{1\})$ admits quantifier elimination.
(ii) The \mathcal{L}-structure $\mathbf{B}=(\{1,2\})$ admits quantifier elimination.

Proof.

We proceed as for infinite sets:

$$
\exists x\left(\bigwedge_{i=1}^{m} x=y_{i} \wedge \bigwedge_{j=1}^{n} \neg\left(x=z_{j}\right)\right) \text { with } y_{i}, z_{j} \in \mathcal{V} .
$$

Only Case $2, m=0$, is different:
For $n=0$ we trivially have true in both cases. Let $n \geqslant 1$. Then
(i) $\mathbf{A} \models \exists x \bigwedge_{j=1}^{n} \neg x=z_{j} \longleftrightarrow$ false,
(ii) $\mathbf{B} \models \exists x \bigwedge_{j=1}^{n} \neg x=z_{j} \longleftrightarrow \bigwedge_{j=2}^{n} z_{1}=z_{j}$.

Definable Sets

An extended \mathcal{L}-formula $\varphi\left(x_{1}, \ldots, x_{n}\right)$ defines a set in \mathbf{A} as follows:

$$
[\varphi]^{\mathbf{A}}:=\left\{\left(a_{1}, \ldots, a_{n}\right) \in \mathbf{A}^{n} \mid \mathbf{A} \models \varphi\left(a_{1}, \ldots, a_{n}\right)\right\}
$$

$B \subseteq A^{n}$ is a definable set in \mathbf{A} if there is $\varphi\left(x_{1}, \ldots, x_{n}\right)$ with $B=[\varphi]^{A}$.
B is a quantifier-free definable set in \mathbf{A} if there is a suitable quantifier-free φ.

Theorem

A admits QE iff in A every definable set is quantifier-free definable.

Proof.

For extended formulas $\varphi\left(x_{1}, \ldots, x_{n}\right), \varphi^{\prime}\left(x_{1}, \ldots, x_{n}\right)$, we have

$$
\mathbf{A} \models \varphi \longleftrightarrow \varphi^{\prime} \text { iff }[\varphi]^{\mathbf{A}}=\left[\varphi^{\prime}\right]^{\mathbf{A}} .
$$

"Iए।

Definable Functions and Projections

For $f: A^{n} \rightarrow A^{m}$ define
$\operatorname{graph}(f)=\left\{\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m}\right) \in A^{n+m} \mid\left(b_{1}, \ldots, b_{m}\right)=f\left(a_{1}, \ldots, a_{n}\right)\right\}$.
$f: A^{n} \rightarrow A^{m}$ is a (quantifier-free) definable function in \mathbf{A}, if
the set $\operatorname{graph}(f)$ is (quantifier-free) definable.
For $B \subseteq A^{n+1}$ we define the projection
$\pi_{n+1}(B):=\left\{\left(a_{1}, \ldots, a_{n}\right) \in A^{n} \mid\right.$ exists $a_{n+1} \in A$ such that $\left.\left(a_{1}, \ldots, a_{n+1}\right) \in B\right\}$.

Example

Consider extended \mathcal{L}-terms $t_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, t_{m}\left(x_{1}, \ldots, x_{n}\right)$.
Define $f: A^{n} \rightarrow A^{m}$ by $f\left(a_{1}, \ldots, a_{n}\right)=\left(t_{1}^{A}\left(a_{1}, \ldots, a_{n}\right), \ldots, t_{m}^{\mathrm{A}}\left(a_{1}, \ldots, a_{n}\right)\right)$.
Then we have

$$
\operatorname{graph}(f)=\left\{\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m}\right) \in A^{n+m} \mid \mathbf{A} \models \varphi\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m}\right)\right\},
$$

where $\varphi\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)$ for $\varphi=\bigwedge_{j=1}^{m} y_{j}=t_{j}$.
Hence f is quantifier-free definable.

Characterization of QE

Theorem

Consider an \mathcal{L}-structure A. FAE:
(i) \mathbf{A} admits $Q E$.
(ii) For every quantifier-free definable set $B \subseteq A^{n+1}$
its projection $\pi_{n+1}(B) \subseteq A^{n}$ is quantifier-free definable, too.
(iii) For every definable function $f: A^{n} \rightarrow A^{m}$ and every quantifier-free definable set $B \subseteq A^{n}$, the range $f(B)$ is quantifier-free definable.

Proof

(i) \Rightarrow (iii) Consider $\psi\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)$ with $[\psi]^{\mathbf{A}}=\operatorname{graph}(f)$ and $\varphi\left(x_{1}, \ldots, x_{n}\right)$ with $[\varphi]^{A}=B$. Then $f(B)=\left[\chi^{\prime}\right]^{A}$ for $\chi^{\prime}\left(y_{1}, \ldots, y_{n}\right)$, where $\chi^{\prime} \in \mathcal{Q}^{0}$ with $\mathbf{A} \models \chi^{\prime} \longleftrightarrow \exists x_{1} \ldots \exists x_{n}(\varphi \wedge \psi)$.
(iii) \Rightarrow (ii) By the previous example π_{n+1} is a (quantifier-free) definable function.

Characterization of QE

Theorem

Consider an L-structure A. FAE:
(i) \mathbf{A} admits QE.
(ii) For every quantifier-free definable set $B \subseteq A^{n+1}$ its projection $\pi_{n+1}(B) \subseteq A^{n}$ is quantifier-free definable, too.
(iii) For every definable function $f: A^{n} \rightarrow A^{m}$ and every quantifier-free definable set $B \subseteq A^{n}$, the range $f(B)$ is quantifier-free definable.

Proof.

(ii) \Rightarrow (i) Consider a 1-primitive formula $\exists x \psi$. Let $\psi\left(x_{1}, \ldots, x_{n}, x\right)$ be an extended formula. Set $B:=[\psi]^{A}$. By (ii) we have $\psi^{\prime} \in \mathcal{Q}^{0}$ with $\left[\psi^{\prime}\right]^{\mathrm{A}}=\pi_{n+1}(B)$. By definition $\pi_{n+1}(B)=[\exists x \psi]^{\mathrm{A}}$. It follows that $\left[\psi^{\prime}\right]^{\mathbf{A}}=[\exists x \psi]^{\mathbf{A}}$ and hence $\mathbf{A} \models \psi^{\prime} \longleftrightarrow \exists x \psi$.

An Example from Real Algebraic Geometry

A semialgebraic set is a set described by a finite sequence of polynomial equations $f_{i}\left(x_{1}, \ldots, x_{n}\right)=0$ and polynomial inequalities $g_{j}\left(x_{1}, \ldots, x_{n}\right)>0$, or a union of such sets.

Theorem

The projection of semialgebraic set along a coordinate axis is again a semialgebraic set.

According to our previous result, this theorem is equivalent to the following fact: For $\mathcal{L}=(0,1,+, \cdot ;>)$ the real numbers $\mathbf{R}=(\mathbb{R} ; 0,1,+, \cdot ;>)$ admit $Q E$.

Completeness and Decision Procedures

Consider a class $\mathfrak{A} \neq \varnothing$ of \mathcal{L}-structures and a set $\Phi \subseteq \mathcal{Q}$ of \mathcal{L}-sentences. A decision procedure (DP) for \mathfrak{A} and Φ is an algorithm that given $\varphi \in \Phi$ decides whether $\mathfrak{A} \models \varphi$ or not $\mathfrak{A} \vDash \varphi$.
\mathfrak{A} is decidable for Φ is there exists a DP for \mathfrak{A} and Φ.
\mathfrak{A} is complete for Φ if for every $\varphi \in \Phi$ either $\mathfrak{A} \vDash \varphi$ or $\mathfrak{A} \vDash \neg \varphi$.
Example for $\mathcal{L}_{R}=(0,1,+,-, \cdot)$ and $\mathfrak{A}=\{\mathbf{Z} / 2, \mathbf{Z} / 3\}$

- \mathfrak{A} is not complete for $\mathcal{Q}^{0} \cap \mathcal{Q}_{\varnothing}$: neither $\mathfrak{A} \vDash 1+1=0$ nor $\mathfrak{A} \vDash \neg 1+1=0$.
- \mathfrak{A} is decidable for $\mathcal{Q}^{0} \cap \mathcal{Q}_{\varnothing}$: all Boolean combinations of (variable-free) equations can be evaluated to either true or false in both $\mathbf{Z} / 2$ and $\mathbf{Z} / 3$.

If $\mathfrak{A}=\{\mathbf{A}\}$, then we may simply say that \mathbf{A} is decidable for Φ.
Obviously, $\{\mathbf{A}\}$ is always complete for any Φ.
If $\Phi=\mathcal{Q}$, then we need not explicitly refer to Φ.

QE and Completeness

Theorem

Consider a class \mathfrak{A} of \mathcal{L}-structures, and assume that \mathfrak{A} admits $Q E$.
(i) If \mathfrak{A} is complete for $\mathcal{A}_{\{x\}}=\{\varphi \in \mathcal{A} \mid \mathcal{V}(\varphi) \subseteq\{x\}\}$, then \mathfrak{A} is complete.
(ii) If there is $c \in \mathcal{F}$ with $\sigma(c)=0$ and \mathfrak{A} is complete for $\mathcal{A}_{\varnothing}=\mathcal{A} \cap \mathcal{Q}_{\varnothing}$, then \mathfrak{A} is complete.

Proof.

(i) Consider $\varphi \in \mathcal{Q}_{\varnothing}$. By QE there is $\varphi^{\prime} \in \mathcal{Q}^{0}$ such that $\mathfrak{A} \vDash \varphi^{\prime} \longleftrightarrow \varphi$. Denote $\left\{y_{1}, \ldots, y_{n}\right\}:=\mathcal{V}\left(\varphi^{\prime}\right)$. Then for $\varphi^{\prime \prime}=\varphi^{\prime}\left[x / y_{1}, \ldots, x / y_{n}\right] \in \mathcal{Q}_{\{x\}}^{0}$ we have $\mathfrak{A} \vDash \varphi^{\prime \prime} \longleftrightarrow \varphi^{\prime} \longleftrightarrow \varphi$. Now for every atomic formula α in $\varphi^{\prime \prime}$ we have either $\mathfrak{A} \vDash \alpha$ or $\mathfrak{A} \models \neg \alpha$. It follows that either $\mathfrak{A} \models \varphi^{\prime \prime}$ or $\mathfrak{A} \vDash \neg \varphi^{\prime \prime}$.
(ii) Consider $\varphi \in \mathcal{Q}_{\varnothing}$. By QE and a previous result there is $\varphi^{\prime \prime} \in \mathcal{Q}_{\varnothing}^{0}$ such that $\mathfrak{A} \vDash \varphi^{\prime \prime} \longleftrightarrow \varphi$. Now argue as in (i).

QE and Decidability

Theorem

Consider a class \mathfrak{A} of \mathcal{L}-structures, and assume that \mathfrak{A} admits $Q E$.
(i) If \mathfrak{A} is decidable for $\mathcal{Q}_{\{x\}}^{0}=\left\{\varphi \in \mathcal{Q}^{0} \mid \mathcal{V}(\varphi) \subseteq\{x\}\right\}$, then \mathfrak{A} is decidable.
(ii) If there is $c \in \mathcal{F}$ with $\sigma(c)=0$ and \mathfrak{A} is decidable for $\mathcal{Q}_{\varnothing}$, then \mathfrak{A} is decidable.
(iii) If \mathfrak{A} is complete and decidable for $\mathcal{A}_{\{x\}}$, then \mathfrak{A} is complete and decidable.
(iv) If there is $c \in \mathcal{F}$ with $\sigma(c)=0$ and \mathfrak{A} is complete and decidable for $\mathcal{A}_{\varnothing}$, then \mathfrak{A} is complete and decidable.

Proof.

Exercise!

Some Applications of the Previous Theorem

Example

For $\mathcal{L}=()$ the class \mathfrak{A} of infinite sets is complete and decidable:
\mathfrak{A} is complete and decidable for $\mathcal{A}_{\{x\}}=\{x=x\}$ because $x=x \approx$ true.
Now apply part (iii) of the previous theorem.

Theorem

Let \mathcal{L} be finite, and let \mathbf{A} be a finite \mathcal{L}-structure. Then \mathbf{A} is decidable.

Proof.

Let $A=\left\{a_{1}, \ldots, a_{n}\right\}$. We switch to $\mathcal{L}(A) \supseteq \mathcal{L}$ obtained by adding a_{1}, \ldots, a_{n} as new constant symbols. The $\mathcal{L}(B)$-expansion \mathbf{A}^{\prime} of \mathbf{A} admits QE: For a 1-primitive formula $\varphi=\exists x \psi$ we have $\mathbf{A}^{\prime} \vDash \varphi \longleftrightarrow \bigvee_{i=1}^{n} \psi\left[a_{i} / x_{j}\right]$. \mathbf{A}^{\prime} is trivially complete. Atomic sentences in \mathbf{A}^{\prime} are decidable as all relations and functions in \mathbf{A}^{\prime} are finite sets. Now apply part (iv) of the previous theorem.

More Decidability Results

Theorem

Let $\mathfrak{A}=\left\{\mathbf{A}_{1}, \ldots, \mathbf{A}_{n}\right\}$ be a finite class of \mathcal{L}-structures. If every single one of the $\mathbf{A}_{1}, \ldots, \mathbf{A}_{n}$ is decidable for $\Phi \subseteq \mathcal{Q}_{\varnothing}$, then \mathfrak{A} is decidable for Φ.

Proof.

Let $\varphi \in \Phi$. Then $\mathfrak{A} \models \varphi \Longleftrightarrow \mathbf{A}_{1} \models \varphi$ and \ldots and $\mathbf{A}_{n} \models \varphi$, which can be checked independently in finite time.

Theorem

Let \mathfrak{A} be complete and decidable for $\Phi \subseteq \mathcal{Q}_{\varnothing}$. Then so is every $\mathbf{A} \in \mathfrak{A}$.

Proof.

By completeness we have for $\varphi \in \Phi$ and for every single $\mathbf{A} \in \mathfrak{A}$ that $\mathfrak{A} \vDash \varphi \Longleftrightarrow \mathbf{A} \vDash \varphi$. Thus every DP for \mathfrak{A} and Φ is also a DP for \mathbf{A} and Φ.

The Previous Theorem Gets Wrong Without Completeness

Theorem

Let \mathfrak{A} be complete and decidable for $\Phi \subseteq \mathcal{Q}_{\varnothing}$. Then so is every $\mathbf{A} \in \mathfrak{A}$.

Example

Consider $\mathcal{L}=\left(0^{(0)}, s^{(1)} ; R^{(1)}\right)$.
Let $M \subseteq \mathbb{N}$ be not recursive.
Set $\mathbf{A}:=(\mathbb{N} ; 0, s ; M), \mathbf{B}:=(\mathbb{N} ; 0, s ; \mathbb{N} \backslash M)$ and $\mathfrak{A}:=\{\mathbf{A}, \mathbf{B}\}$.
Consider $\Phi=\left\{R\left(s^{n}(0)\right) \in \mathcal{A}_{\varnothing} \mid n \in \mathbb{N}\right\}$.
Then for every $R\left(s^{n}(0)\right) \in \Phi$ we have

$$
\mathbf{A} \models R\left(s^{n}(0)\right) \Longleftrightarrow n \in M \quad \text { and } \quad \mathbf{B} \vDash R\left(s^{n}(0)\right) \Longleftrightarrow n \notin M .
$$

It follows that not $\mathfrak{A} \vDash R\left(s^{n}(0)\right)$, i.e., \mathfrak{A} is decidable for Φ.
But a DP for either \mathbf{A} or \mathbf{B} would render M recursive.

An Important Though Impractical Model Theoretical Result

Theorem

Consider a countable language \mathcal{L} and $\mathfrak{A}=\operatorname{Mod}(\equiv)$, where \equiv is recursively enumerable. Let $\Phi \subseteq \mathcal{Q}_{\varnothing}$ be recursive. If \mathfrak{A} is complete for Φ, then \mathfrak{A} is decidable for Φ.

Proof.

Using Gödel's completeness theorem the set $\Phi^{\prime}=\{\varphi \in \Phi \mid \mathfrak{A} \vDash \varphi\}$ is recursively enumerable, say, $\Phi^{\prime}=\left\{\varphi_{n} \mid n \in \mathbb{N}\right\}$. Let $\varphi \in \Phi$. Due to the completeness of \mathfrak{A} we have either $\varphi \in \Phi^{\prime}$ or $\neg \varphi \in \Phi^{\prime}$. So there is $n \in \mathbb{N}$ such that either $\varphi=\varphi_{n}$ or $\neg \varphi=\varphi_{n}$, and φ_{n} will show up after n steps of enumerating Φ^{\prime}.

Homomorphisms and Isomorphy

Consider \mathcal{L}-structures \mathbf{A} and \mathbf{B} and a map $h: A \rightarrow B$.
For $a \in A$ we shortly write ha instead of $h(a)$. h is a homomorphism from \mathbf{A} to \mathbf{B} (notation $h: \mathbf{A} \rightarrow \mathbf{B}$), if
(i) $h f^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)=f^{\mathbf{B}}\left(h a_{1}, \ldots, h a_{n}\right)$ for all $n \in \mathbb{N}, f \in \mathcal{F}$ with $\sigma(f)=n$.
(ii) $R^{\mathrm{A}}\left(a_{1}, \ldots, a_{n}\right) \leqslant R^{\mathrm{B}}\left(h a_{1}, \ldots, h a_{n}\right)$ for all $n \in \mathbb{N}, R \in \mathcal{R}$ with $\sigma(R)=n$. h is an isomorphism from \mathbf{A} to \mathbf{B}, if
(i) h is a bijective homomorphism from \mathbf{A} to \mathbf{B}.
(ii) $R^{\mathrm{A}}\left(a_{1}, \ldots, a_{n}\right)=R^{\mathbf{B}}\left(h a_{1}, \ldots, h a_{n}\right)$ for all $n \in \mathbb{N}, R \in \mathcal{R}$ with $\sigma(R)=n$.
A and B are isomorphic (notation $A \cong B$), if there exists an isomorphism from \mathbf{A} to \mathbf{B}.
\cong is reflexive, transitive, and symmetric.

An Example for Homomorphisms and the "Isomorphielemma"

Example for $\mathcal{L}=(0,+; \leqslant)$

- $\mathrm{id}_{\mathbb{N}}:(\mathbb{N} ; 0,+;<) \rightarrow(\mathbb{N} ; 0,+; \leqslant)$ is a homomorphism but not an isomorphism.
- id $_{\mathbb{N}}$ is not a homomorphism from $(\mathbb{N} ; 0,+; \leqslant)$ to $(\mathbb{N} ; 0,+;<)$.

Theorem
 Consider \mathcal{L}-structures A, B such that there exists an isomorphism $h: \mathbf{A} \rightarrow \mathbf{B}$. Let $\varphi\left(x_{1}, \ldots, x_{n}\right)$ be an extended formula, and let $a_{1}, \ldots, a_{n} \in A$. Then $\mathbf{A} \vDash \varphi\left(a_{1}, \ldots, a_{n}\right) \Longleftrightarrow \mathbf{B} \vDash \varphi\left(h a_{1}, \ldots, h a_{n}\right)$.

Proof.

Exercise.

Substructures

Consider \mathcal{L}-structures \mathbf{A} and \mathbf{B}.
\mathbf{B} is a substructure of \mathbf{A} (notation $\mathbf{B} \subseteq \mathbf{A}$), if
(i) $B \subseteq A$
(ii) $f^{\mathbf{B}}=\left.f^{\mathrm{A}}\right|_{\mathbb{B}^{n}}$ for $f \in \mathcal{F}$ with $\sigma(f)=n$.
(iii) $R^{\mathrm{B}}=\left.R^{\mathrm{A}}\right|_{B^{n}}$ for $R \in \mathcal{R}$ with $\sigma(R)=n$.

Vice versa, \mathbf{A} is an extension structure of \mathbf{B}.
Do not confuse this with restriction and expansion!
\subseteq is reflexive, transitive, and antisymmetric.

Exercise

(i) Consider $\mathcal{L}_{R}=(0,1,+,-, \cdot)$. Is $\mathbf{Z} \subseteq \mathbf{Q}$? Is $\mathbf{Z} / 4 \subseteq \mathbf{Z}$?
(ii) Consider an \mathcal{L}-structure \mathbf{A} and $B \subseteq A$. There is $\mathbf{B} \subseteq \mathbf{A}$ with universe B, if and only if B is closed under the functions f^{A} for $f \in \mathcal{F}$. In the positive case \mathbf{B} is uniquely determined by \mathbf{A} and B.

Elementary Equivalence and Elementary Substructures

Consider \mathcal{L}-structures \mathbf{A} and \mathbf{B}.
\mathbf{A} and \mathbf{B} are elementary equivalent (notation $\mathbf{A} \equiv \mathbf{B}$), if
$\mathbf{A} \vDash \varphi \Longleftrightarrow \mathbf{B} \vDash \varphi$ for all $\varphi \in \mathcal{Q}$.
\mathbf{A} and \mathbf{B} are elementary equivalent over $C \subseteq A \cap B$ (notation $\mathbf{A} \equiv_{C} \mathbf{B}$), if for all extended formulas $\varphi\left(x_{1}, \ldots, x_{n}\right)$ and all $c_{1}, \ldots, c_{n} \in C$ it holds that $\mathbf{A} \vDash \varphi\left(c_{1}, \ldots, c_{n}\right) \Longleftrightarrow \mathbf{B} \vDash \varphi\left(c_{1}, \ldots, c_{n}\right)$.
\mathbf{A} is an elementary substructure of \mathbf{B} (notation $\mathbf{A} \subseteq \mathbf{B}$), if $\mathbf{A} \subseteq \mathbf{B}$ and $\mathbf{A} \equiv \mathbf{B}$. Vice versa, \mathbf{B} is called an elementary extension of \mathbf{A}.

Exercise

(i) If $\mathbf{A} \equiv{ }_{C} \mathbf{B}$ and $D \subseteq C$, then $\mathbf{A} \equiv_{D} \mathbf{B}$.
(ii) $\mathbf{A} \equiv \mathbf{B} \Longleftrightarrow \mathbf{A} \equiv{ }_{\varnothing} \mathbf{B}$
(iii) $\mathbf{A} \cong \mathbf{B} \Longrightarrow \mathbf{A} \equiv \mathbf{B}$, but not vice versa.
(iv) Find an example for $\mathbf{A} \subseteq \mathbf{B}$ but not $\mathbf{A} \equiv_{A} \mathbf{B}$.

Model Completeness and Substructure Completeness

Consider a class \mathfrak{A} of \mathcal{L}-structures.
\mathfrak{A} is model complete, if for all $\mathbf{A}, \mathbf{B} \in \mathfrak{A}$
it holds that $\mathbf{A} \subseteq \mathbf{B} \Longrightarrow \mathbf{A} \preceq \mathbf{B}$.
\mathfrak{A} is substructure complete, if for all $\mathbf{A}, \mathbf{B} \in \mathfrak{A}$ and all \mathcal{L}-structures \mathbf{C} it holds that $\mathbf{C} \subseteq \mathbf{A}$ and $\mathbf{C} \subseteq \mathbf{B} \Longrightarrow \mathbf{A} \equiv{ }_{C} \mathbf{B}$.

Exercise

(i) \mathfrak{A} is substructure complete $\Longrightarrow \mathfrak{A}$ is model complete
(ii) \mathfrak{A} is complete $\Longleftrightarrow \mathbf{A} \equiv \mathbf{B}$ for all $\mathbf{A}, \mathbf{B} \in \mathfrak{A}$

Substructure Completeness and Completeness

Theorem

Consider a substructure complete class \mathfrak{A} of \mathcal{L}-structures. Assume that there is an \mathcal{L}-structure \mathbf{C} such that for all $\mathbf{A} \in \mathfrak{A}$ there is \mathbf{C}^{\prime} such that $\mathbf{C} \cong \mathbf{C}^{\prime} \subseteq \mathbf{A}$. Then \mathfrak{A} is complete.

Proof.

Let $\mathbf{A}, \mathbf{B} \in \mathfrak{A}$, and let $\mathbf{C} \cong \mathbf{C}_{A} \subseteq \mathbf{A}$ and $\mathbf{C} \cong \mathbf{C}_{B} \subseteq \mathbf{B}$.
Let $h_{A}: \mathbf{C}_{\mathbf{A}} \rightarrow \mathbf{C}$ and $h_{\boldsymbol{B}}: \mathbf{C}_{\mathbf{B}} \rightarrow \mathbf{C}$ be corresponding isomorphisms.
Obtain \mathbf{A}^{\prime} from \mathbf{A} by renaming all elements $c \in C_{A} \subseteq A$ to $h_{A} c \in C$.
Obtain \mathbf{B}^{\prime} from \mathbf{B} analogously.
Then $\mathbf{A}^{\prime} \cong \mathbf{A}, \mathbf{B}^{\prime} \cong \mathbf{B}, \mathbf{C} \subseteq \mathbf{A}^{\prime}$, and $\mathbf{C} \subseteq \mathbf{B}^{\prime}$.
It follows that $\mathbf{A} \cong \mathbf{A}^{\prime} \equiv{ }_{C} \mathbf{B}^{\prime} \cong \mathbf{B}$, hence $\mathbf{A} \equiv \mathbf{B}$.

Quantifier Eliminability Corresponds to Substructure Completeness

Theorem

If a class \mathfrak{A} of \mathcal{L}-structures admits $Q E$, then \mathfrak{A} is substructure complete.

Proof.

Let $\mathbf{A}, \mathbf{B} \in \mathfrak{A}$, and let $\mathbf{C} \subseteq \mathbf{A}$ and $\mathbf{C} \subseteq \mathbf{B}$. Let $\varphi\left(x_{1}, \ldots, x_{n}\right)$ be an extended \mathcal{L}-formula. As \mathfrak{A} admits QE, there is an extended quantifier-free \mathcal{L}-formula $\varphi^{\prime}\left(x_{1}, \ldots, x_{n}\right)$ such that $\mathfrak{A} \vDash \varphi^{\prime} \longleftrightarrow \varphi$. Let $c_{1}, \ldots, c_{n} \in C$. Then $\mathbf{A} \models \varphi\left(c_{1}, \ldots, c_{n}\right) \Longleftrightarrow \mathbf{A} \vDash \varphi^{\prime}\left(c_{1}, \ldots, c_{n}\right) \Longleftrightarrow \mathbf{C} \models \varphi^{\prime}\left(c_{1}, \ldots, c_{n}\right) \Longleftrightarrow$ $\mathbf{B} \vDash \varphi^{\prime}\left(c_{1}, \ldots, c_{n}\right) \Longleftrightarrow \mathbf{B} \vDash \varphi\left(c_{1}, \ldots, c_{n}\right)$. That is $\mathbf{A} \equiv_{C} \mathbf{B}$.

Example

The class of all infinite sets as ()-structures is substructure complete and thus also model complete.

Quantifier Eliminability Corresponds to Substructure Completeness

Consider a class \mathfrak{A} of \mathcal{L}-structures.
\mathfrak{A} is elementary, if there is $\equiv \subseteq \mathcal{Q}_{\varnothing}$ such that $\mathfrak{A}=\operatorname{Mod}(\equiv)$.

Theorem

If an elementary class \mathfrak{A} of \mathcal{L}-structures is substructure complete, then \mathfrak{A} admits $Q E$.

The proof requires

- the compactness theorem for first-order logic, and
- Robinson's diagram method.

A Concluding Remark on Model Completeness

An existential formula is of the form $\exists x_{1} \ldots \exists x_{n} \varphi$ for $\varphi \in \mathcal{Q}^{0}$.
A universal formula is of the form $\forall x_{1} \ldots \forall x_{n} \varphi$ for $\varphi \in \mathcal{Q}^{0}$.

Theorem

Let \mathfrak{A} be an elementary class of \mathcal{L}-structures. FAE:
(i) \mathfrak{A} is model complete.
(ii) For every $\varphi \in \mathcal{Q}$ there is an existential formula φ^{\prime} such that $\mathfrak{A} \models \varphi^{\prime} \longleftrightarrow \varphi$.
(iii) For every $\varphi \in \mathcal{Q}$ there is a universal formula φ^{\prime} such that $\mathfrak{A} \models \varphi^{\prime} \longleftrightarrow \varphi$.

Exercise

Show "(ii) \Rightarrow (iii)."

A Suitable Language for the Class of All Sets

We know already

For the empty language ():

- The class $\{\{1\},\{1,2\}\}$ does not admit QE.

It follows that the class \mathfrak{S} of all nonempty sets does not admit QE.

- The class of all infinite sets admits QE.

We consider now $\mathcal{L}=(\varnothing, \mathcal{R}, \sigma)$ with $\mathcal{R}=\left\{C_{n}^{(0)} \mid 2 \leqslant n \in \mathbb{N}\right\}$.
Define

$$
\varphi_{n}:=C_{n} \longleftrightarrow \exists x_{1} \ldots \exists x_{n} \bigwedge_{1 \leqslant i<j \leqslant n} \neg x_{i}=x_{j} .
$$

Then $\mathfrak{S}:=\operatorname{Mod}\left(\left\{\varphi_{n} \mid 2 \leqslant n \in \mathbb{N}\right\}\right)$ is the class of all nonempty sets, where for $\mathbf{S} \in \mathfrak{S}$ we have $\mathbf{S} \models C_{n}$ if and only if $|\mathbf{S}| \geqslant n$.

A Quantifier Elimination Procedure for \mathfrak{S}

Theorem

There is a QEP for \mathfrak{S}.

Proof.

Following our proof for the class of all infinite sets as ()-structures, the only case that remains to be considered is

$$
\varphi:=\exists x \bigwedge_{j=1}^{n} \neg x=z_{j}, \quad \text { where } \quad x \notin\left\{z_{1}, \ldots, z_{n}\right\} \subseteq \mathcal{V} .
$$

For $k \in\{1, \ldots, n\}$ the following quantifier-free formula states that exactly k of the z_{1}, \ldots, z_{k} are pairwise different:

$$
\psi_{k}:=\bigvee_{j_{1}=1}^{n} \cdots \bigvee_{j_{k}=1}^{n}\left[\bigwedge_{j=1}^{n} \bigvee_{i=1}^{k} z_{j}=z_{j_{i}} \wedge \bigwedge_{i=1}^{k} \bigwedge_{n=1}^{i-1} \neg z_{j_{i}}=z_{j_{n}}\right] \in \mathcal{Q}^{0}
$$

Now $\mathfrak{S} \vDash \varphi \longleftrightarrow \bigvee_{k=1}^{n}\left(C_{k+1} \wedge \psi_{k}\right)$.

We Need a Lemma

Lemma

(i) Consider a disjunction $\psi=\Lambda_{j} \psi_{j}$ of base formulas in at most one variable $x \in \mathcal{V}$. Then one can compute an interval $M_{\psi} \subseteq \mathbb{N} \backslash\{0\}$ such that
(a) For finite $\mathbf{S} \in \mathfrak{S}$ we have $\mathbf{S} \models \psi \Longleftrightarrow|\mathbf{S}| \in M_{\psi}$.
(b) For infinite $\mathbf{S} \in \mathfrak{S}$ we have $\mathbf{S} \models \psi$ iff M_{ψ} is unbounded from above.
(ii) For each $\varphi \in \mathcal{Q}_{\{x\}}^{0}$ one can compute a fininte disjunction of intervals $M_{\varphi} \subseteq \mathbb{N} \backslash\{0\}$ with corresponding properties (a) and (b) as in (i).

Proof.

(i) The atomic formulas of ψ are $x=x \approx$ true or C_{n} for $2 \leqslant n \in \mathbb{N}$. Since $\mathfrak{S} \vDash C_{m} \longrightarrow C_{n}$ for $n \leqslant m$, each ψ is equivalent to one of true, false, C_{m}, $\neg C_{m}$, or $C_{m} \wedge \neg C_{n}$ for $2 \leqslant m<n \in \mathbb{N}$. This yields $M_{\psi}=\mathbb{N} \backslash\{0\}, M_{\psi}=\varnothing$, $M_{\psi}=[m, \infty), M_{\psi}=[1, m-1]$, or $M_{\psi}=[m, n-1]$, respectively.
(ii) Compute a DNF $\varphi^{\prime}=\bigvee_{i} \varphi_{i}$, where $\varphi_{i}=\Lambda_{j} \psi_{i j}$, such that $\mathfrak{S} \vDash \varphi \longleftrightarrow \varphi^{\prime}$. Apply (i) to all the φ_{i} and then obtain $M_{\varphi}=M_{\varphi^{\prime}}=\bigcup_{i} M_{\varphi_{i}}$.

Consequences of Our QEP

Corollary

(i) \mathfrak{S} is substructure complete and model complete.
(ii) \mathfrak{S} is not complete.
(iii) \mathfrak{S} is decidable.
(iv) For each $n \in \mathbb{N}$ the subclass $\mathfrak{S}_{n}:=\{\mathbf{S} \mid \mathbf{S} \in \mathfrak{S}$ and $|\mathbf{S}|=n\} \subseteq \mathfrak{S}$ is complete and decidable.

Proof.

(i) Follows from QE.
(ii) Consider $\mathbf{S}, \mathbf{T} \in \mathfrak{S}$ with $|\mathbf{S}|=1$ and $|\mathbf{T}|=2$. Then $\mathbf{S} \models \neg C_{2}$ and $\mathbf{T} \models C_{2}$. Hence neither $\mathfrak{S} \models C_{2}$ nor $\mathfrak{S} \models \neg C_{2}$.
(iii) It suffices to show that \mathfrak{S} is decidable for $\mathcal{Q}_{\{x\}}^{0}$. Compute M_{φ} according to our Lemma. It follows that $\mathfrak{S} \models \varphi \Longleftrightarrow M_{\varphi}=\mathbb{N} \backslash\{0\}$.
(iv) Exercise.

Consider $\mathcal{L}=\left(\left\langle^{(2)}\right)\right.$ and $\mathbf{R}=(\mathbb{R} ;<)$.

Theorem

There is a QEP for \mathbf{R}.

Proof

We have positive normal forms because $\mathbf{R} \vDash \neg x=y \longleftrightarrow x<y \vee y<x$ and $\mathbf{R} \models \neg x<y \longleftrightarrow y<x \vee y=x$. It thus suffices to consider a 1-primitive positive formula

$$
\exists x\left[\bigwedge_{i=1}^{m} x=y_{i} \wedge \bigwedge_{j=1}^{n} z_{j}<x \wedge \bigwedge_{k=1}^{p} x<u_{k}\right], \quad \text { where } \quad y_{i}, \quad z_{j}, \quad u_{k} \in \mathcal{V} .
$$

Since $x=x \approx$ true and $\mathbf{R} \vDash x<x \longleftrightarrow$ false, we may assume that x is not among the y_{i}, z_{j}, u_{k}.

$$
\varphi=\exists x\left[\bigwedge_{i=1}^{m} x=y_{i} \wedge \bigwedge_{j=1}^{n} z_{j}<x \wedge \bigwedge_{k=1}^{p} x<u_{k}\right]
$$

Proof.

If $m>0$, then

$$
\mathbf{R} \models \varphi \longleftrightarrow \bigwedge_{i=2}^{m} y_{1}=y_{i} \wedge \bigwedge_{j=1}^{n} z_{j}<y_{1} \wedge \bigwedge_{k=1}^{p} y_{1}<u_{k}
$$

If $m=0$, then we distinguish 3 subcases:
If $n=0$, then $\mathbf{R} \models \varphi \longleftrightarrow$ true, because \mathbb{R} has no minimum.
If $p=0$, then $\mathbf{R} \models \varphi \longleftrightarrow$ true, because \mathbb{R} has no maximum.
If $n>0$ and $p>0$, then

$$
\mathbf{R} \models \varphi \longleftrightarrow \bigwedge_{j=1}^{n} \bigwedge_{k=1}^{p} z_{j}<u_{k}
$$

$" \rightarrow:$ " is transitive / "ז:" there exists $x \in \mathbb{R}$ with $\max _{j} z_{j}<x<\min _{k} u_{k}$.

Decidability of the Reals with Ordering

Theorem

\mathbf{R} is complete and decidable.

Proof.

It suffices to show that \mathbf{R} is complete and decidable for $\mathcal{A}_{\{x\}}$. The only atomic formulas to be considered are $x=x$ and $x<x$, where $x=x \approx$ true and $\mathbf{R} \vDash x<x \longleftrightarrow$ false.

Exercise

In \mathbf{R} decide the sentence $\forall x \exists y \forall z(x<y \wedge(x<z \longrightarrow(z=y \vee y<z)))$.

Dense Orderings

What have we actually used in our proofs?

- < is a strict ordering.
- \mathbb{R} has no minimum or maximum.
- For $a<b \in \mathbb{R}$ there is $x \in \mathbb{R}$ such that $a<x<b$.

$$
\begin{aligned}
\Xi_{D E O}:= & \{\neg x<x, \quad x<y \vee x=y \vee y<x, \quad x<y \wedge y<z \longrightarrow x<z \\
& \forall x \exists y(x<y), \quad \forall x \exists y(y<x), \quad \forall x \forall y \exists z(x<y \longrightarrow x<z \wedge z<y)\}
\end{aligned}
$$

$\mathfrak{V}_{D E}=\operatorname{Mod}\left(\Xi_{D E O}\right)$ is the class of dense orderings without endpoints.
$\mathbf{R} \in \mathfrak{O}_{D E}$, and also $(\mathbb{Q},<),(\mathbb{R} \backslash \mathbb{Q},<),\left(\mathbb{N} \times \mathbb{R},<_{\text {lex }}\right) \in \mathfrak{O}_{D E}$.

Theorem

There is a QEP for $\mathfrak{O}_{D E}$. Thus $\mathfrak{D}_{D E}$ is substructure complete and model complete. Furthermore $\mathfrak{O}_{D E}$ is complete and decidable.

Let Us Now Consider Natural Numbers

Consider again $\mathcal{L}=(<)$ and now ($\mathbb{N} ;<$).

Theorem

$\mathbf{N}=(\mathbb{N},<)$ does not admit $Q E$.

Proof.

For $\varphi=\forall x(x=y \vee y<x)$ consider the extended formula $\varphi(y)$. Then $[\varphi]^{\mathrm{N}}=\{0\}$. On the other hand, $\mathcal{A}_{\{y\}}=\{y=y, y<y\}$, where considering the extension (y) it holds that $[y=y]^{\mathrm{N}}=\mathbb{N}$ and $[y<y]^{\mathrm{N}}=\varnothing$. Since $D=\{\varnothing, \mathbb{N}\}$ is closed under complement and union, the sets in D are also the ones definable by $\varphi^{\prime} \in \mathcal{Q}_{\{y\}}^{0}$. Hence for $\varphi^{\prime} \in \mathcal{Q}_{\{y\}}^{0}$ and considering $\varphi^{\prime}(y)$ we have $\left[\varphi^{\prime}\right]^{\mathrm{N}} \neq[\varphi]^{\mathrm{N}}$ and thus $\mathbf{N} \not \models \varphi^{\prime} \longleftrightarrow \varphi$.

When adding the constant symbol 0 to \mathcal{L}, we have $x=0$ as a possible quantifier-free equivalent for φ in the proof.

Next Attempt

Consider $\mathcal{L}=(0 ;<)$ and $(\mathbb{N} ; 0 ;<)$.

Theorem

$\mathbf{N}=(\mathbb{N} ; 0 ;<)$ does not admit $Q E$.

Proof.

For $\varphi=0<y \wedge \forall x(0<x \longrightarrow x=y \vee y<x)$ consider the extended formula $\varphi(y)$. Then $[\varphi]^{\mathrm{N}}=\{1\}$. On the other hand,

$$
\mathcal{A}_{\{y\}}=\{0=0,0<0,0=y, y=0,0<y, y<0, y=y, y<y\},
$$

where considering the extension (y) it holds that

$$
\begin{array}{ll}
{[0=0]^{\mathbf{N}}=[y=y]=\mathbb{N},} & {[0<0]^{\mathbf{N}}=[y<0]^{\mathbf{N}}=[y<y]^{\mathbf{N}}=\varnothing,} \\
{[0=y]^{\mathbf{N}}=[y=0]^{\mathbf{N}}=\{0\},} & {[0<y]^{\mathbf{N}}=\mathbb{N} \backslash\{0\} .}
\end{array}
$$

Since $D=\{\varnothing,\{0\}, \mathbb{N} \backslash\{0\}, \mathbb{N}\}$ is closed under complement and union, the sets in D are also the ones definable by $\varphi^{\prime} \in \mathcal{Q}_{\{y\}}^{0}$.

Here Is How It Works

Consider $\mathcal{L}=\left(0, s^{(1)} ;<\right)$ and $\mathbf{N}=(\mathbb{N} ; 0, s ;<)$, where $s(n)=n+1$.

Theorem

There is a QEP for $\mathbf{N}=(\mathbb{N} ; 0, s ;<)$.

Proof.

In analogy to dense orderings we have positive normal forms. All terms are of one of the forms $s^{k}(0), s^{k}(x)$ for $x \in \mathcal{V}$ and $k \in \mathbb{N}$, where in particular $s^{0}(0)=0$ and $s^{0}(x)=x$. Consider a positive 1 -primitive formula

$$
\exists x\left[\bigwedge_{i=1}^{m} s^{k_{i}}(x) \varrho_{i} a_{i} \wedge \bigwedge_{j=1}^{n} s^{\prime}(x) \varrho_{j}^{\prime} s^{m_{j}}(x)\right], \quad \varrho_{i} \in\{<,=,>\}, \quad \varrho_{j}^{\prime} \in\{<,=\},
$$

where $a_{i} \in \mathcal{J}$ with $x \notin \mathcal{V}\left(a_{i}\right)$. Since $\mathbf{N} \models s^{\prime}(x) \varrho_{j}^{\prime} s^{m_{j}}(x) \longleftrightarrow$ true if $I_{j} \varrho_{j}^{\prime} m_{j}$ and $\mathbf{N} \vDash \boldsymbol{s}^{j}(x) \varrho_{j}^{\prime} s^{m_{j}}(x) \longleftrightarrow$ false else, it suffices to consider

$$
\exists x \bigwedge_{i=1}^{m} s^{k_{i}}(x) \varrho_{i} a_{i}
$$

$$
\varphi=\exists x \bigwedge_{i=1}^{m} s^{k_{i}}(x) \varrho_{i} a_{i}, \quad \varrho_{i} \in\{<,=,>\}, \quad a_{i} \in \mathcal{J}, \quad x \notin \mathcal{V}\left(a_{i}\right)
$$

Proof.

$$
\mathbf{N} \vDash \varphi \longleftrightarrow \underbrace{\exists x \bigwedge_{i=1}^{m} s^{k}(x) \varrho_{i} a_{i}^{\prime}}_{\varphi^{\prime}}, \quad \text { where } \quad k=\max _{i} k_{i}, \quad a_{i}^{\prime}:=s^{k-k_{i}}\left(a_{i}\right) .
$$

If there is at least one equation, say w.l.o.g. ϱ_{1} is $=$, then

$$
\begin{aligned}
\mathbf{N} \vDash \varphi^{\prime} & \longleftrightarrow \exists x\left(s^{k}(x)=a_{1}^{\prime}\right) \wedge \bigwedge_{i=1}^{m} a_{1}^{\prime} \varrho_{i} a_{i}^{\prime} \\
& \longleftrightarrow\left(s^{k}(0)<a_{1}^{\prime} \vee s^{k}(0)=a_{1}^{\prime}\right) \wedge \bigwedge_{i=1}^{m} a_{1}^{\prime} \varrho_{i} a_{i}^{\prime}
\end{aligned}
$$

Assume now that there is no equation, i.e., $\varrho_{i} \in\{<,>\}$.

$$
\varphi^{\prime}=\exists x \bigwedge_{i=1}^{m} s^{k}(x) \varrho_{i} a_{i}^{\prime}, \quad \varrho_{i} \in\{<,>\}, \quad a_{i}^{\prime} \in \mathcal{J}, \quad x \notin \mathcal{V}\left(a_{i}^{\prime}\right)
$$

Proof.

- Case 1: ϱ_{i}^{\prime} is $<$ for all $i \in\{1, \ldots, m\}$. Then $\mathbf{N} \vDash \varphi^{\prime} \longleftrightarrow \bigwedge_{i=1}^{m} s^{k}(0)<a_{i}^{\prime}$.
- Case 2: ϱ_{i}^{\prime} is > for all $i \in\{1, \ldots, m\}$. Then $\mathbf{N} \models \varphi^{\prime} \longleftrightarrow$ true.
- Case 3: w.l.o.g. there is $p \in\{1, \ldots, m\}$ such that

$$
\varphi^{\prime}=\exists x\left[\bigwedge_{i=1}^{p} s^{k}(x)>a_{i}^{\prime} \wedge \bigwedge_{j=p+1}^{m} s^{k}(x)<a_{j}^{\prime}\right]
$$

Then $\mathbf{N} \vDash \varphi^{\prime} \longleftrightarrow \bigwedge_{i=1}^{p} \bigwedge_{j=p+1}^{m} s\left(a_{i}^{\prime}\right)<a_{j}^{\prime} \wedge \bigwedge_{j=p+1}^{m} s^{k}(0)<a_{j}^{\prime}$.

Discrete Orderings with Minimum

What have we actually used in our proofs?

- < is a strict ordering.
- \mathbb{N} has a minimum.
- s is the successor function.

Consider $\mathcal{L}=(0, s ;<)$.

$$
\begin{aligned}
\Xi_{D I O}:= & \{\neg x<x, \quad x<y \vee x=y \vee y<x, \quad x<y \wedge y<z \longrightarrow x<z \\
& 0<x \vee 0=x, \quad x<s(x) \\
& x<y \longrightarrow s(x)<y \vee s(x)=y, \quad 0<y \longrightarrow \exists x(s(x)=y)\}
\end{aligned}
$$

$\mathfrak{O}_{D I}=\operatorname{Mod}\left(\Xi_{D I O}\right)$ is the class of discrete orderings with minimum.
It follows that $\mathfrak{O}_{D I} \models x<y \longleftrightarrow s(x)<s(y)$, in particular s is injective.
$(\mathbb{N} ; 0, s ;<) \in \mathfrak{O}_{D E}$, and also $\left(\mathbb{R}^{\geqslant} \times \mathbb{N} ;(0,0), s ;<_{\text {lex }}\right) \in \mathfrak{O}_{D E}$ with $s(x, n)=(x, n+1)$.

Results on Discrete Orderings with Minimum

Theorem

(i) There is a QEP for $\mathfrak{O}_{D I}$.
(ii) $\mathfrak{O}_{D E}$ is substructure complete and model complete.
(iii) $\mathfrak{O}_{D I}$ is complete and decidable.

Proof.

(i) Our proof for $(\mathbb{N} ; 0, s ;<)$ works with the axioms $\bar{\Xi}_{D I O}$.
(ii) Follows from (i).
(iii) Since \mathcal{L} contains a constant, it suffices to show that $\mathfrak{V}_{D I}$ is complete and decidable for $\mathcal{A}_{\varnothing}=\left\{s^{k}(0) \varrho s^{\prime}(0) \mid k, l \in \mathbb{N}, \varrho \in\{<,=\}\right\}$. Each $s^{k}(0) \varrho s^{\prime}(0) \in \mathcal{A}_{\varnothing}$ can be evaluated in $\mathfrak{O}_{D I}$ to either true or false by computing $k \varrho I$.

The Additive Group of the Reals

Consider $\mathcal{L}=(0,+,-)$ and $\mathbf{R}=(\mathbb{R} ; 0,+,-)$.
There is a set of normal forms for $\mathcal{J}\left(x_{1}, \ldots, x_{n}\right)$ that can be described by linear combinations

$$
\sum_{i=1}^{n} k_{i} x_{i}, \quad k_{i} \in \mathbb{Z}, \quad \text { where } \quad k_{i} x_{i}=\left\{\begin{array}{lll}
0 & \text { if } & k=0 \\
x_{i}+\cdots+x_{i} & \text { if } & k_{i}>0 \\
\left(-x_{i}\right)+\cdots+\left(-x_{i}\right) & \text { if } & k_{i}<0 .
\end{array}\right.
$$

Since - ${ }^{(1)}$ yields additive inverses in \mathbb{R} there are normal forms for $\mathcal{A}\left(x_{1}, \ldots, x_{n}\right)$ of the form

$$
\sum_{i=1}^{n} k_{i} x_{i}=0, \quad k_{i} \in \mathbb{Z}
$$

Alternatively, there are normal forms for $\mathcal{A}\left(x_{1}, \ldots, x_{n}, x\right)$ of the form

$$
k x=\sum_{i=1}^{n} k_{i} x_{i}, \quad k \in \mathbb{N}, \quad k_{i} \in \mathbb{Z} .
$$

Quantifier Elimination for the Additive Group of the Reals

Theorem

There is a QEP for \mathbf{R}.

Proof.

We informally write $s \neq t$ for $\neg s=t$. Consider a 1-primitive formula

$$
\varphi=\exists x\left[\bigwedge_{i=1}^{m} k_{i} x=a_{i} \wedge \bigwedge_{j=1}^{n} l_{j} x \neq b_{j}\right],
$$

where $k_{i}, I_{j} \in \mathbb{N} \backslash\{0\}, a_{i}, b_{j} \in \mathcal{T}, x \notin \mathcal{V}\left(a_{i}\right), x \notin \mathcal{V}\left(b_{j}\right)$.
Set $k=\operatorname{lcm}\left(k_{1}, \ldots, k_{m}, l_{1}, \ldots, I_{n}\right) \in \mathbb{N}$. Then there are $k_{i}^{\prime}, l_{j}^{\prime} \in \mathbb{N}$ such that $k_{i}^{\prime} k_{i}=k$ and $l_{j}^{\prime} l_{j}=k$. Set $a_{i}^{\prime}=k_{i}^{\prime} a_{i}$ and $b_{j}^{\prime}=l_{j}^{\prime} b_{j}$. Then

$$
\mathbf{R} \vDash \varphi \longleftrightarrow \exists x\left[\bigwedge_{i=1}^{m} k x=a_{i}^{\prime} \wedge \bigwedge_{j=1}^{n} k x \neq b_{j}^{\prime}\right] \longleftrightarrow \exists y\left[\bigwedge_{i=1}^{m} y=a_{i}^{\prime} \wedge \bigwedge_{j=1}^{n} y \neq b_{j}^{\prime}\right],
$$

because for each $y \in \mathbb{R}$ there is $x=y / k \in \mathbb{R}$ with $k x=y$.
Now proceed as for infinite sets.

Nontrivial Divisible Torsion-Free Abelian Groups

What have we actually used for our proof?

- \mathbf{R} is an additive Abelian group:

$$
\{(x+y)+z=x+(y+z), \quad x+0=x, \quad x+(-x)=0, \quad x+y=y+x\} .
$$

- \mathbf{R} is divisible: $\{\forall x \exists y(n y=x)\}_{n \in \mathbb{N} \backslash\{0\}}$.
- \mathbf{R} is torsion-free: $\{\forall x(n x=0 \longrightarrow x=0)\}_{n \in \mathbb{N} \backslash\{0\}}$.
- \mathbf{R} is nontrivial: $\exists x(\neg x=0)$.

Denote by $\Xi_{\mathrm{DAG}_{0}}$ the (infinite) set of these axioms.

$$
\operatorname{DAG}_{0}=\operatorname{Mod}\left(\bar{\Xi}_{\mathrm{DAG}_{0}}\right)
$$

is the class of nontrivial divisible torsion-free abelian groups.
$\mathbf{R} \in \mathrm{DAG}_{0}$, but also $\left(\mathbb{Q}^{n}, 0,1,-\right),\left(\mathbb{R}^{n}, 0,+,-\right) \in \mathrm{DAG}_{0}$ for $n \in \mathbb{N} \backslash\{0\}$. More generally ($\left.\mathbb{R}^{S}, 0,+,-\right) \in \mathrm{DAG}_{0}$ for $S \neq \varnothing$, in particular $\left(\mathbb{R}^{\mathbb{R}}, 0,+,-\right)$ and the subgroups $\left(C^{n}(\mathbb{R}, \mathbb{R}), 0,+,-\right) \subseteq\left(\mathbb{R}^{\mathbb{R}}, 0,+,-\right)$ of $n \in \mathbb{N}$ times continuously differentiable functions.

Results on Nontrivial Divisible Torsion-Free Abelian Groups

Exercise

Every $\mathbf{G} \in \mathrm{DAG}_{0}$ is infinite.

Theorem

(i) There is a QEP for DAG_{0}.
(ii) DAG_{0} is substructure complete and model complete.
(iii) DAG_{0} is complete and decidable. In particular, $(\mathbb{R}, 0,+,-)$ is decidable.

Proof.

(i) Our proof for ($\mathbb{R}, 0,+,-)$ works with the axioms $\Xi_{\mathrm{DAG}_{0}}$.
(ii) Follows from (i).
(iii) It suffices to observe that DAG_{0} is complete and decidable for $\mathcal{A}_{\varnothing}$, where we can restrict to $0=0$, which is the only variable-fee atomic formula in normal form.

The Additive Group of the Reals with Ordering

Consider $\mathcal{L}=(0,+,-;<)$ and $\mathbf{R}=(\mathbb{R} ; 0,+,-;<)$.
We obviously have the same normal forms for terms as without ordering.
Furthermore, we have positive normal forms as discussed for dense orderings.

Your advertisement could be placed here

Quantifier Elimination for the Additive Group of the Reals with Ordering

Theorem

There is a QEP for \mathbf{R}.

Proof.

Consider a positive 1-primitive formula

$$
\varphi=\exists x\left[\bigwedge_{i=1}^{m} k_{i} x=a_{i} \wedge \bigwedge_{i=1}^{n} I_{i} x<b_{i} \wedge \bigwedge_{i=1}^{p} m_{i} x>c_{i}\right],
$$

where $k_{i}, l_{i}, m_{i} \in \mathbb{N} \backslash\{0\}, a_{i}, b_{i}, c_{i} \in \mathcal{T}, x \notin \mathcal{V}\left(a_{i}\right), x \notin \mathcal{V}\left(b_{i}\right), x \notin \mathcal{V}\left(c_{i}\right)$.
In analogy to our proof without ordering we can transform

$$
\begin{aligned}
\mathbf{R} \models \varphi & \longleftrightarrow \exists x\left[\bigwedge_{i=1}^{m} k x=a_{i}^{\prime} \wedge \bigwedge_{i=1}^{n} k x<b_{i}^{\prime} \wedge \bigwedge_{i=1}^{p} k x>c_{i}^{\prime}\right] \\
& \longleftrightarrow \exists y\left[\bigwedge_{i=1}^{m} y=a_{i}^{\prime} \wedge \bigwedge_{i=1}^{n} y<b_{i}^{\prime} \wedge \bigwedge_{i=1}^{p} y>c_{i}^{\prime}\right],
\end{aligned}
$$

and obtain a quantifier elimination problem for dense orderings.

Definable Sets in the Ordered Group of the Reals

Corollary

The definable sets $M \subseteq \mathbb{R}$ in \mathbf{R} are

$$
D=\{\mathbb{R}, \quad \varnothing, \quad\{0\}, \quad(-\infty, 0), \quad(0, \infty), \quad \mathbb{R} \backslash\{0\}, \quad[0, \infty), \quad(-\infty, 0]\}
$$

Proof.

Since \mathbf{R} admits QE, the definable sets are exactly the quantifier-free definable sets. Atomic formulas in $\mathcal{A}_{\{x\}}$ in normal form are $0=0,0<0, x=0, x<0$, $0<x$, which yield to the first five sets in D, respectively. Logical negation corresponding to set complement yields the remaining three sets. Then D is closed under complement and union.

Application: Linear Programming

Our QEP for ($\mathbb{R} ; 0,+,-;<$) is essentially Fourier-Motzkin Elimination.
It has been found by Fourier in 1831 and rediscovered by Motzkin in 1936.

Example

Maximize the objective function $3 x+4 y$ subject to the constraints $3 x+2 y \leqslant 500,0 \leqslant x \leqslant 100,0 \leqslant y \leqslant 200$.

We introduce a parameter e which will be interpreted as 1 at the end, and we introduce a parameter z to denote a lower bound on the objective function:
$\exists x \exists y(3 x+2 y \leqslant 500 e \wedge 0 \leqslant x \wedge x \leqslant 100 e \wedge 0 \leqslant y \wedge y \leqslant 200 e \wedge z \leqslant 3 x+4 y)$

Exercise

Compute an optimal point and the optimal value by quantifier elimination.

Nontrivial Divisible Ordered Abelean Groups

What have we actually used for our proof?

- Axioms of nontrivial divisible Abelean groups.
- Axioms of strict orderings.
- Monotony: $x<y \rightarrow x+z<y+z$

Denote by $\equiv_{\text {DOAG }}$ the set of these axioms.

$$
\mathrm{DOAG}=\operatorname{Mod}\left(\Xi_{\mathrm{DOAG}}\right)
$$

is the class of nontrivial divisible ordered abelean groups.
All $\mathbf{G} \in$ DOAG are torsion-free, and $<^{G}$ is dense without minimum or maximum.
$\mathbf{R} \in \operatorname{DOAG}$ and $\left(\mathbb{Q}^{n}, 0,+,-;<_{\text {lex }}\right),\left(\mathbb{R}^{n} ; 0,+,-;<\operatorname{lex}\right) \in \operatorname{DOAG}$ for $1 \leqslant n \in \mathbb{N}$.

Results on Nontrivial Divisible Ordered Abelian Groups

Theorem

(i) There is a QEP for DOAG.
(ii) DOAG is substructure complete and model complete.
(iii) DOAG is complete and decidable.

In particular, $(\mathbb{R}, 0,+,-;<)$ is decidable.

Proof.

(i) Our proof for $(\mathbb{R}, 0,+,-;<)$ works with the axioms $\equiv_{\text {DOAG }}$.
(ii) Follows from (i).
(iii) It suffices to observe that DOAG is complete and decidable for $\mathcal{A}_{\varnothing}$, where we can restrict to $0=0$ and $0<0$, which are the only variable-fee atomic formulas in normal form.

The Additive Group of the Integers with Ordering

Recall that already for the set \mathbb{N} with ordering we needed $s^{(1)}$ in \mathcal{L}.
Since we have addition now, we can more naturally take $1^{(0)}$ instead.
Consider $\mathcal{L}=(0,1,+,-;<)$ and $\mathbf{Z}=(\mathbb{Z} ; 0,1,+,-;<)$.

Theorem

$\mathbf{Z}=(\mathbb{Z} ; 0,1,+,-;<)$ does not admit $Q E$.

Proof.

For $\varphi=\exists x(x+x=y)$ and the extended formula $\varphi(y)$, we have $[\varphi]^{z}=2 \mathbb{Z}$.
Note that $2 \mathbb{Z} \cap \mathbb{N}$ is neither finite nor co-finite in \mathbb{N}. On the other hand, all atomic formulas in $\mathcal{A}_{\{y\}}$ are equivalent in \mathbf{Z} to one of the normal forms $z \cdot 1=0$, $z \cdot 1<0, n y=z, n y<z, z<n y$ for $n \in \mathbb{N}, z \in \mathbb{Z}$. These define the sets $D=\left\{\varnothing, \mathbb{Z},\left\{z^{\prime}\right\},\left(-\infty, z^{\prime}\right],\left[z^{\prime}, \infty\right) \mid z^{\prime} \in \mathbb{Z}\right\}$. For all $I \in D$ we have $I \cap \mathbb{N}$ finite or co-finite in \mathbb{N}. It follows for $I, I^{\prime} \in D$ that $\left(I \cup I^{\prime}\right) \cap \mathbb{N}=(I \cap \mathbb{N}) \cup\left(I^{\prime} \cap \mathbb{N}\right)$ and $(\mathbb{Z} \backslash I) \cap \mathbb{N}=(\mathbb{Z} \cap \mathbb{N}) \backslash(I \cap \mathbb{N})=\mathbb{N} \backslash(I \cap \mathbb{N})$ are finite or co-finite in \mathbb{N}, too.

Presburger Arithmetic

For $n \in \mathbb{N}$ and $z, z^{\prime} \in \mathbb{Z}$ define $z \equiv_{m} z^{\prime} \Longleftrightarrow m \mid z-z^{\prime}$ (" m divides $z-z^{\prime \prime}$).
Consider $\mathcal{L}^{\prime}=\left(0,1,+,-;<,\left\{\equiv_{m}^{(2)}\right\}_{m \in \mathbb{N} \backslash\{0\}}\right), \mathbf{Z}^{\prime}=\left(\mathbb{Z} ; 0,1,+,-;<,\left\{\equiv_{m}\right\}_{m \in \mathbb{N} \backslash\{0\}}\right)$.

Relevant Properties of the Congruences

(C1) $\mathbf{Z}^{\prime} \vDash x+z \equiv_{m} y+z \longleftrightarrow x \equiv_{m} y \longleftrightarrow x-y \equiv_{m} 0$
(C2) $\mathbf{Z}^{\prime} \vDash x \equiv_{m} y \longleftrightarrow n x \equiv_{n m} n y$ for $n \in \mathbb{N} \backslash\{0\}$
(C3) $\mathbf{Z}^{\prime} \vDash V_{i=0}^{m-1} x \equiv_{m} y+i$
(C4) $\mathbf{Z}^{\prime} \vDash x \equiv_{n m} y \longrightarrow x \equiv_{m} y$ for $n \in \mathbb{N} \backslash\{0\}$

Positive Normal Forms

Using (C3), we obtain $\mathbf{Z}^{\prime} \vDash \neg x \equiv_{m} y \longleftrightarrow V_{i=1}^{m-1} x \equiv_{m} y+i$. Furthermore, $\mathbf{Z} \vDash \neg x=y \longleftrightarrow x<y \vee y<x$. Finally, using $t \leqslant t^{\prime}$ as an abbreviation for $t<t^{\prime}+1$ it holds that $\mathbf{Z}^{\prime} \models \neg x<y \longleftrightarrow y \leqslant x$.

Presburger Arithmetic Admits QE and is Decidable

Theorem (Presburger, 1929)

(i) There is a QEP for $\mathbf{Z}^{\prime}=\left(\mathbb{Z} ; 0,1,+,-;<,\left\{\equiv_{m}\right\}_{m \in \mathbb{N}}\right)$.
(ii) $\mathbf{Z}^{\prime}=\left(\mathbb{Z} ; 0,1,+,-;<,\left\{\equiv_{m}\right\}_{m \in \mathbb{N}}\right)$ is decidable.
(iii) $\mathbf{Z}=(\mathbb{Z} ; 0,1,+,-;<)$ is decidable.

Proof.

(i) On the next slides ...
(ii) Atomic sentences are equivalent in \mathbf{Z}^{\prime} to of one of the normal forms $z=0$, $z<0, z \equiv_{m} 0$ for $z \in \mathbb{Z}$ and $m \in \mathbb{N}$. These can be evaluated to either true or false.
(iii) Follows immediately from (ii).

Presburger's Proof of (i)

Consider a positive 1 -primitive formula

$$
\varphi=\exists x\left[\bigwedge_{i=1}^{m} k_{i} x=a_{i} \wedge \bigwedge_{i=1}^{n} l_{i} x<b_{i} \wedge \bigwedge_{i=1}^{p} m_{i} x>c_{i} \wedge \bigwedge_{i=1}^{q} r_{i} x \equiv_{s_{i}} d_{i}\right],
$$

where $k_{i}, l_{i}, m_{i}, r_{i}, s_{i} \in \mathbb{N} \backslash\{0\}, a_{i}, b_{i}, c_{i}, d_{i} \in \mathcal{J}, x \notin \mathcal{V}\left(a_{i}\right), x \notin \mathcal{V}\left(b_{i}\right), x \notin \mathcal{V}\left(c_{i}\right)$, $x \notin \mathcal{V}\left(d_{i}\right)$. For the normal form of the congruences, we have used (C1). In analogy to DOAG compute

$$
k:=\operatorname{Icm}\left(k_{1}, \ldots k_{m}, l_{1}, \ldots, I_{n}, m_{1}, \ldots, m_{p}, r_{1}, \ldots, r_{q}\right) \in \mathbb{N} \backslash\{0\}
$$

and cofactors $k_{i}^{\prime}=k / k_{i}, l_{i}^{\prime}=k / l_{i}, m_{i}^{\prime}=k / m_{i}, r_{i}^{\prime}=k / r_{i}$. Set $a_{i}^{\prime}=k_{i}^{\prime} a_{i}, b_{i}^{\prime}=l_{i}^{\prime} b_{i}$, $c_{i}^{\prime}=m_{i}^{\prime} c_{i}, d_{i}^{\prime}=r_{i}^{\prime} d_{i}$, and $s_{i}^{\prime}=r_{i}^{\prime} s_{i}$ to obtain $\mathbf{Z}^{\prime} \vDash \varphi \longleftrightarrow \varphi^{\prime}$, where

$$
\varphi^{\prime}=\exists x\left[\bigwedge_{i=1}^{m} k x=a_{i}^{\prime} \wedge \bigwedge_{i=1}^{n} k x<b_{i}^{\prime} \wedge \bigwedge_{i=1}^{p} k x>c_{i}^{\prime} \wedge \bigwedge_{i=1}^{a} k x \equiv_{s_{i}^{\prime}} d_{i}^{\prime}\right]
$$

For the choice of s_{i}^{\prime} we have used (C2).

Presburger's Proof of (i)

$$
\varphi^{\prime}=\exists x\left[\bigwedge_{i=1}^{m} k x=a_{i}^{\prime} \wedge \bigwedge_{i=1}^{n} k x<b_{i}^{\prime} \wedge \bigwedge_{i=1}^{p} k x>c_{i}^{\prime} \wedge \bigwedge_{i=1}^{q} k x \equiv_{s_{i}^{\prime}} d_{i}^{\prime}\right]
$$

For this φ^{\prime} we have in turn $\mathbf{Z}^{\prime} \vDash \varphi^{\prime} \longleftrightarrow \varphi^{\prime \prime}$, where

$$
\varphi^{\prime \prime}=\exists y\left[\bigwedge_{i=1}^{m} y=a_{i}^{\prime} \wedge \bigwedge_{i=1}^{n} y<b_{i}^{\prime} \wedge \bigwedge_{i=1}^{p} y>c_{i}^{\prime} \wedge \bigwedge_{i=1}^{q} y \equiv_{s_{i}^{\prime}} d_{i}^{\prime} \wedge y \equiv_{k} 0\right] .
$$

If $m>0$, then we obtain

$$
\mathbf{Z}^{\prime} \models \varphi^{\prime \prime} \longleftrightarrow \bigwedge_{i=2}^{m} a_{1}^{\prime}=a_{i}^{\prime} \wedge \bigwedge_{i=1}^{n} a_{1}^{\prime}<b_{i}^{\prime} \wedge \bigwedge_{i=1}^{p} a_{1}^{\prime}>c_{i}^{\prime} \wedge \bigwedge_{i=1}^{q} a_{1}^{\prime} \equiv_{s_{i}^{\prime}} d_{i}^{\prime} \wedge a_{1}^{\prime} \equiv_{k} 0 .
$$

Consider now the case $m=0$. Set $s=\operatorname{lcm}\left(s_{1}^{\prime}, \ldots, s_{q}^{\prime}, k\right) \in \mathbb{N} \backslash\{0\}$. Then using (C4) we obtain $\mathbf{Z}^{\prime} \vDash \varphi^{\prime \prime} \longleftrightarrow \varphi^{\prime \prime \prime}$, where

$$
\varphi^{\prime \prime \prime}=\bigvee_{j=0}^{s-1}\left[\exists y\left[\bigwedge_{i=1}^{n} y<b_{i}^{\prime} \wedge \bigwedge_{i=1}^{p} y>c_{i}^{\prime} \wedge y \equiv_{s} j\right] \wedge \bigwedge_{i=1}^{q} j \equiv_{s_{i}^{\prime}} d_{i}^{\prime} \wedge j \equiv_{k} 0\right] .
$$

Presburger's Proof of (i)

$$
\varphi^{\prime \prime \prime}=\exists y\left[\bigwedge_{i=0}^{n} y<b_{i}^{\prime} \wedge \bigwedge_{i=0}^{p} y>c_{i}^{\prime} \wedge y \equiv_{s} j\right]
$$

If $n=0$ or $p=0$, then one can choose $y=j \pm s \cdot t$ for sufficiently large $t \in \mathbb{N}$, hence

$$
\mathbf{Z}^{\prime} \models \varphi^{\prime \prime \prime} \longleftrightarrow \text { true }
$$

If, in contrast, $n>0$ and $p>0$, then

$$
\mathbf{Z}^{\prime} \models \varphi^{\prime \prime \prime} \longleftrightarrow \bigvee_{\max =1}^{p}\left[\bigwedge_{i=1}^{p} c_{i}^{\prime} \leqslant c_{\max }^{\prime} \wedge \bigvee_{j^{\prime}=1}^{s} \bigwedge_{i=1}^{n}\left(c_{\max }^{\prime}+j^{\prime}<b_{i}^{\prime} \wedge c_{\max }^{\prime}+j^{\prime} \equiv_{s} j\right)\right]
$$

That is, we trial substitute the smallest point that is larger than the largest lower bound $c_{\max }$ and satisfies the congruence.

Divisibility Instead of Congruences

Using (C1) we have for $x, y \in \mathbb{Z}$ and $m \in \mathbb{N} \backslash\{0\}$ that $x \equiv_{m} y$ iff $m \mid x-y$. Instead of \mathcal{L}^{\prime} and \mathbf{Z}^{\prime} we could obviously use $\mathcal{L}^{\prime \prime}=\left(0,1,+,-;<,\left\{D_{m}^{(1)}\right\}_{m \in \mathbb{N} \backslash\{0\}}\right)$ and $\mathbf{Z}^{\prime \prime}=\left(\mathbb{Z} ; 0,1,+,-;<,\left\{D_{m}\right\}_{m \in \mathbb{N} \backslash\{0\}}\right)$, where $\mathbf{Z}^{\prime \prime} \vDash D_{m}(z) \Longleftrightarrow m \mid z$.

Exercise

Consider $\mathcal{L}^{\prime \prime \prime}=\left(0,1,+,-;<,\left\{E_{m}^{(1)}\right\}_{m \in \mathbb{N} \backslash\{0\}}\right)$ and

$$
\mathbf{Z}^{\prime \prime \prime}=\left(\mathbb{Z} ; 0,1,+,-,<,\left\{E_{m}\right\}_{m \in \mathbb{N} \backslash\{0\}}\right), \text { where } \mathbf{Z}^{\prime \prime \prime} \vDash E_{m}(z) \Longleftrightarrow z \mid m .
$$

Then $\mathbf{Z}^{\prime \prime \prime}$ is decidable but does not admit QE.
Consider more generally $\mathcal{L}^{*}=\left(0,1,+,-, \cdot ;<,\left.\right|^{(2)}\right), \quad \mathbf{Z}^{*}=(\mathbb{Z} ; 0,1,+,-;<, \mid)$.

Theorem

$\mathbf{Z}^{*}=(\mathbb{Z} ; 0,1,+,-;<, \mid)$ is undecidable.
Since \mathbf{Z}^{*} is complete and decidable for $\mathcal{A}_{\varnothing}$ it follows that \mathbf{Z}^{*} does not admit QE.

Proof.

By Gödel's incompleteness theorem $\mathbf{N}=(\mathbb{N} \backslash\{0\},+, \cdot)$ is undecidable. Setting $v:=0<x$ and considering $v(x)$ we have $[v]^{Z^{*}}=\mathbb{N} \backslash\{0\}$. It now suffices to show that ${ }^{\mathbf{N}}$ is definable in \mathbf{Z}^{*}. Consider $\mu_{1}(x, y, z)$ for

$$
\begin{aligned}
\mu_{1}= & 0<x \wedge 0<y \wedge 0<z \wedge x|z \wedge y| z \\
& \wedge \forall w(0<w \wedge x|w \wedge y| w \longrightarrow z \mid w)
\end{aligned}
$$

Then $\mathbf{Z}^{*} \models \mu_{1}(a, b, c)$ iff $a, b, c \in \mathbb{N} \backslash\{0\}$ and $c=\operatorname{lcm}(a, b)$.
Next, consider $\mu_{2}(x, z)$ for

$$
\mu_{2}=\mu_{1}[x+1 / y]
$$

Then $\mathbf{Z}^{*} \models \mu_{2}(a, c)$ iff $a, c \in \mathbb{N} \backslash\{0\}$ and

$$
c=\operatorname{lcm}(a, a+1)=a \cdot(a+1)=a^{2}+a
$$

Next, consider $\mu_{3}(x, z)$ for

$$
\mu_{3}=\mu_{2}[x+z / z]
$$

Then $\mathbf{Z}^{*} \models \mu_{3}(a, c)$ iff $a, c \in \mathbb{N} \backslash\{0\}$ and $c=a^{2}$.

Proof.

$$
\mu_{3}(x, z), \quad \mathbf{Z}^{*} \models \mu_{3}(a, c) \text { iff } a, c \in \mathbb{N} \backslash\{0\} \text { and } c=a^{2} .
$$

Finally, consider $\mu_{4}(x, y, z)$ for

$$
\mu_{4}=\exists u \exists v \exists w\left(\mu_{3}[u / z] \wedge \mu_{3}[y / x, v / z] \wedge \mu_{3}[x+y / x, w / z] \wedge w=u+2 z+v\right) .
$$

Then $\mathbf{Z}^{*} \vDash \mu_{4}(a, b, c)$ iff $a, b, c \in \mathbb{N} \backslash\{0\}$ and there are $n_{u}, n_{v}, n_{w} \in \mathbb{N} \backslash\{0\}$ such that

$$
n_{u}=a^{2}, \quad n_{v}=b^{2}, \quad n_{w}=(a+b)^{2}, \quad \text { and } \quad n_{w}=n_{u}+2 c+n_{v}
$$

which is equivalent to $c=a b$.

Application: Integer Programming

Exercise

Maximize the objective function $x+y$ subject to the constraints
$2 x \geqslant 1, y \geqslant 0, y \leqslant 10-7 x$
(a) over \mathbb{R},
(b) over \mathbb{Z}.

Start with the elimination of y.

Application: Verification of a Loop

input : $a, b \in \mathbb{Z}$
output: $c \in \mathbb{Z}$
begin
if $a<b$ then $x:=a ; y:=b$; else $y:=a ; x:=b ;$
while $x<y$ do

$$
x:=x+1 ; y:=y-1
$$

end
if $x=y$ then $c:=x$; else $c:=y$;

end

The program terminates with output $c \in \mathbb{Z}$ on input $a, b \in \mathbb{Z}$ iff $\mathbf{Z}^{\prime} \models \varphi(a, b, c)$ for $\varphi(a, b, c)$, where

$$
\begin{aligned}
\varphi= & \exists x \exists y \exists x^{\prime} \exists y^{\prime} \exists z[((a<b \wedge x=a \wedge y=b) \vee(\neg a<b \wedge y=a \wedge x=b)) \\
& \wedge 0 \leqslant z \wedge y^{\prime} \leqslant x^{\prime} \wedge x^{\prime}-1<y^{\prime}+1 \wedge x^{\prime}=x+z \wedge y^{\prime}=y-z \\
& \left.\wedge\left(\left(x^{\prime}=y^{\prime} \wedge c=x^{\prime}\right) \vee\left(\neg x^{\prime}=y^{\prime} \wedge c=y^{\prime}\right)\right)\right] .
\end{aligned}
$$

$$
\begin{aligned}
\varphi= & \exists x \exists y \exists x^{\prime} \exists y^{\prime} \exists z[((a<b \wedge x=a \wedge y=b) \vee(\neg a<b \wedge y=a \wedge x=b)) \\
& \wedge 0 \leqslant z \wedge y^{\prime} \leqslant x^{\prime} \wedge x^{\prime}-1<y^{\prime}+1 \wedge x^{\prime}=x+z \wedge y^{\prime}=y-z \\
& \left.\wedge\left(\left(x^{\prime}=y^{\prime} \wedge c=x^{\prime}\right) \vee\left(\neg x^{\prime}=y^{\prime} \wedge c=y^{\prime}\right)\right)\right]
\end{aligned}
$$

Our QEP yields $\mathbf{Z}^{\prime} \models \varphi^{\prime} \longleftrightarrow \varphi$ for

$$
\varphi^{\prime}=a+b=2 c \vee(2 c \leqslant a+b \wedge a+b<2 c+2 \wedge \neg a+b=2 c)
$$

Exercise

1. That is $c=\ldots$?
2. Perform the QE.

Z-Groups

Consider $\mathcal{L}^{\prime}=\left(0,1,+,-, ;<, \equiv_{m}\right)$.

What Have We Actually Used for Our Proof of Presburger QE?

1. \mathbb{Z} is an ordered abelian Group with minimial a positive element 1.
2. The relations \equiv_{m} for $1<m \in \mathbb{N}$ are defined by $x \equiv_{m} y \longleftrightarrow \exists z(x+m z=y)$.
3. For all $1<m \in \mathbb{N}$ it holds that $\bigvee_{i=0}^{m-1} x \equiv_{m} i \cdot 1$.

Denote by $\bar{\Xi}_{\text {ZGROUPS }} \subseteq \mathcal{Q}$ the set of these axioms.

$$
\text { ZGROUPS }=\operatorname{Mod}\left(\bar{\Xi}_{\text {ZGROUPS }}\right)
$$

is the class of \mathbb{Z}-groups.
$Z^{\prime} \in$ ZGROUPS, and also
$\left(\mathbb{Q} \times \mathbb{Z} ; 0,1,+,-;<_{\text {lex }} \equiv_{m}\right),\left(\mathbb{R} \times \mathbb{Z} ; 0,1,+,-;<_{\text {lex }} \equiv_{m}\right) \in$ ZGROUPS.

Results on Z-Groups

Theorem

(i) There is a QEP for ZGROUPS.
(ii) ZGROUPS is substructure complete and model complete.
(iii) ZGROUPS is complete and decidable.

Proof.

(iii) Variable-free atomic formulas in normal form, i.e. $z=0, z<0,0<z$, $z \equiv_{m} 0$ for $z \in \mathbb{Z}, 1<m \in \mathbb{N}$, are decidable.

Mojzesz Presburger

Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt

Dissertation, Warsaw 1929

Power Sets as Boolean Algebras

Consider a set M. For $S \in P(M)$ define $C S=M \backslash S$.
Consider $\mathcal{L}_{B A}=\left(0^{(0)}, 1^{(0)}, \Pi^{(2)}, \sqcup^{(2)}, \sim^{(1)} ; \leqslant^{(2)}\right), \quad \mathbf{A}_{0}=(P(M) ; \varnothing, M, \cap, \cup, \complement ; \subseteq)$.

Theorem

$\mathbf{A}_{0}=(P(M) ; \varnothing, M, \cap, \cup, \subset ; \subseteq)$ does not admit $Q E$ if $|M| \geqslant 3$.

Proof.

Consider $\varphi(y)$ for $\varphi=\exists x(\neg x=0 \wedge \neg x=y \wedge x \leqslant y)$. Then $[\varphi]^{A_{0}}=\{S \in P(M)| | S \mid \geqslant 2\}$. In particular, $\varnothing \notin[\varphi]^{A_{0}}$, and there are m_{1}, $m_{2} \in M$ such that $\left\{m_{1}\right\} \notin[\varphi]^{\boldsymbol{A}_{0}}$, but $\left\{m_{1}, m_{2}\right\} \in[\varphi]^{\boldsymbol{A}_{0}}$ and $\left\{m_{1}, m_{2}\right\} \neq M$. All atomic formulas in $\mathcal{A}_{\{y\}}$ are equivalent to one of true, false, $y=0, y=1$, which define the sets $D=\{P(M), \varnothing,\{\varnothing\},\{M\}\}$. Closing under complements and unions we see that the following sets are definable by formulas in $\mathcal{Q}_{\{y\}}^{0}$: $D^{\prime}=D \cup\{P(M) \backslash\{\varnothing\}, P(M) \backslash\{M\},\{\varnothing, M\}, P(M) \backslash\{\varnothing, M\}\}$. However, $\varnothing \in P(M),\{\varnothing\}, P(M) \backslash\{M\},\{\varnothing, M\},\left\{m_{1}, m_{2}\right\} \notin \varnothing,\{M\}$, and $\left\{m_{1}\right\} \in P(M) \backslash\{\varnothing\}, P(M) \backslash\{\varnothing, M\}$.

Once Again，We Have to Extend the Language

Consider $M \neq \varnothing$ and $A=P(M)$ ．For $n \in \mathbb{N}$ and $S, T \in A$ define

$$
S \subset_{n} T \Longleftrightarrow S \subseteq T \text { and }|T \backslash S| \geqslant n .
$$

In particular $S c_{0} T \Longleftrightarrow S \subseteq T$ and $\varnothing c_{n} T \Longleftrightarrow n \leqslant|T|$ ．

Consider $\mathcal{L}_{B A}^{\prime}=\left(0^{(0)}, 1^{(0)}, \Pi^{(2)}, U^{(2)}, \sim^{(1)} ;\left\{\mathcal{C}_{n}\right\}_{n \in \mathbb{N}}\right)$
and $\mathbf{A}=\left(P(M) ; \varnothing, M, \cap, \cup, C ;\left\{\subset_{n}\right\}_{n \in \mathbb{N}}\right)$ ．

Some Normal Forms for Atomic Formulas and Terms

Lemma

(i) $\mathbf{A} \models s<_{0} t \longleftrightarrow 0=s \sqcap \sim t$
$\mathbf{A} \models s=t \longleftrightarrow s<_{0} t \wedge t<_{0} s$
$\mathbf{A} \models s<_{n} t \longleftrightarrow s<_{0} t \wedge 0<_{n} t \sqcap \sim s$
(ii) $\mathbf{A} \models 0<_{n} t \wedge 0<_{n^{\prime}} t \longleftrightarrow 0<_{\max \left(n, n^{\prime}\right)} t$
$\mathbf{A} \models \neg 0<_{n} t \wedge \neg 0<_{n^{\prime}} t \longleftrightarrow \neg 0<_{\min \left(n, n^{\prime}\right)} t$
(iii) $\mathbf{A} \models \neg 0=t \longleftrightarrow 0<_{1} t$

So we can restrict our attention to atomic formulas $0=t$ and $0<_{n} t$.
In a conjunction, $0<_{n} t$ need occur for at most one $n \in \mathbb{N}$, and also $\neg 0<_{n} t$ need occur for at most one $n \in \mathbb{N}$.

Logically negated equations can be made positive.

Some Normal Forms for Atomic Formulas and Terms

Consider $t \in \mathcal{J}$ with $\mathcal{V}(t)=\left\{x, y_{1}, \ldots, y_{m}\right\}$.
Transform t into full DNF t^{\prime}. That is, $\mathbf{A} \models t=t^{\prime}$, where

$$
t^{\prime}=\bigcup_{i \in 1}\left(x \sqcap a_{i}\right) \cup \bigsqcup_{i \in J}\left(\sim x \sqcap a_{i}\right), \quad a_{i}=\prod_{j=1}^{m} y_{j}^{(i)}, \quad y_{j}^{(i)} \in\left\{y_{j}, \sim y_{j}\right\} .
$$

All the a_{i} for $i \in I \cup J$ are pairwise different but $I \cap J \neq \varnothing$ in general.
For $i, i^{\prime} \in l \cup J$ we have $\mathbf{A} \models\left(x \sqcap a_{i}\right) \sqcap\left(\sim x \sqcap a_{i^{\prime}}\right)=0$, and if $i \neq i^{\prime}$, then even $\mathbf{A} \models a_{i} \sqcap a_{i^{\prime}}=0$ and thus $\mathbf{A} \models\left(x \sqcap a_{i}\right) \sqcap\left(x \sqcap a_{i^{\prime}}\right)=0$.

It follows that all unions in t^{\prime} are disjoint unions for all choices of x, y_{1},
$\ldots, y_{m} \in P(M)$.

Some Normal Forms for Atomic Formulas and Terms

$$
t^{\prime}=\bigsqcup_{i \in I}\left(x \sqcap a_{i}\right) \sqcup \bigsqcup_{i \in J}\left(\sim x \sqcap a_{i}\right) \in \mathcal{J}
$$

$$
\mathbf{A} \vDash 0=t^{\prime} \longleftrightarrow \bigwedge_{i \in I} 0=x \sqcap a_{i} \wedge \bigwedge_{i \in J} 0=\sim x \sqcap a_{i}
$$

A $\vDash 0<n t^{\prime} \longleftrightarrow \bigvee_{\substack{0 \leqslant n_{1}, n_{2} \leqslant n \\ n_{1}+n_{2}-n}}\left[0 \ll_{n_{1}} \bigcup_{i \in I} x \sqcap a_{i} \wedge 0<{n_{2}}_{i} \bigcup_{i \in J} \sim x \sqcap a_{i}\right]$

Some Normal Forms for Atomic Formulas and Terms

- We need only consider atomic formulas of the forms

$$
0=x \sqcap a_{i}, \quad 0=\sim x \sqcap a_{i}, \quad 0<_{k_{i}} x \sqcap a_{i}, \quad 0<_{l_{i}} \sim x \sqcap a_{i} \quad \text { for } \quad i \in I \cup J .
$$

- $\mathbf{A} \models a_{i} \cap a_{i^{\prime}}=0$ for $i \neq i^{\prime}$.
- Equations occur only as positive base formulas (no " \neg " in front of equations).

Lemma (Elimination of complements)

(i) $\mathbf{A} \models 0=\sim x \sqcap a_{i} \longleftrightarrow a_{i}=x \sqcap a_{i}$
(ii) $\mathbf{A} \models 0<_{l_{i}} \sim x \sqcap a_{i} \longleftrightarrow x \sqcap a_{i}<_{l_{i}} a_{i}$

Theorem

There is a QEP for $\mathbf{A}=\left(P(M) ; \varnothing, M, \cap, \cup, \complement ;\left\{C_{n}\right\}_{n \in \mathbb{N}}\right)$.

Proof.

It suffices to consider 1-primitive formulas of the form $\varphi=\exists x \bigwedge_{i \epsilon 1} \wedge \Phi_{i}$, where

$$
\begin{aligned}
\Phi_{i} \subseteq \quad\{ & 0=x \sqcap a_{i}, a_{i}=x \sqcap a_{i}, \\
& \left.0<_{k_{i}} x \sqcap a_{i}, \neg 0<_{1_{i}} x \sqcap a_{i}, x \sqcap a_{i}<_{m_{i}} a_{i}, \neg x \sqcap a_{i}<_{n_{i}} a_{i}\right\},
\end{aligned}
$$

and $\mathbf{A} \models a_{i} \sqcap a_{i^{\prime}}=0$ for $i, i^{\prime} \in I$ with $i \neq i^{\prime}$.Consider $\varphi^{\prime}=\bigwedge_{i \epsilon 1} \exists x \bigwedge \Phi_{i}$.
Obviously $\mathbf{A} \vDash \varphi \longrightarrow \varphi^{\prime}$. Vice versa, fix values for the y_{1}, \ldots, y_{m} in $P(M)$, and for $i \in I$ let $s_{i} \in P(M)$ be a satisfying value for x in $\Lambda \Phi_{i}$. Set $s=\bigsqcup_{i \in I} s_{i} \cap a_{i}$.
Then for $i \in I$ it holds that $s \sqcap a_{i}=s_{i} \sqcap a_{i}$. Hence s is a satisfying value for x in $\Lambda_{i \epsilon 1} \wedge \Phi_{i}$. We have shown that also $\mathbf{A} \models \varphi^{\prime} \longrightarrow \varphi$, altogether $\mathbf{A} \models \varphi \longleftrightarrow \varphi^{\prime}$. It thus suffices to independently consider 1-primitive formulas

$$
\varphi_{i}^{\prime \prime}=\exists x \bigwedge \Phi_{i} \text { for } i \in I
$$

Proof.

$$
\begin{aligned}
& \varphi^{\prime \prime}=\exists x \bigwedge \Phi, \quad \Phi \subseteq \quad\left\{\begin{array}{l}
0
\end{array}=x \sqcap a, a=x \sqcap a,\right. \\
&\left.0<_{k} x \sqcap a, \neg 0<_{1} x \sqcap a, \quad x \sqcap a<_{m} a, \neg x \sqcap a<_{n} a\right\}
\end{aligned}
$$

- If $0=x \sqcap a \in \Phi$, then $x=0$ is a solution of this equation, and we can equivalently replace $x п a$ with 0 in Φ.
- If $a=x \sqcap a \in \Phi$, then $x=a$ is a solution of this equation, and we can equivalently replace $x \sqcap a$ with a in Φ.
- A $\vDash \exists x\left(0<_{k} x \sqcap a\right) \longleftrightarrow 0<_{k} a$
- A $\models \exists x(\neg 0<, x \sqcap a) \longleftrightarrow\left\{\begin{array}{lll}\text { true } & \text { if } & 1>0 \\ \text { false } & \text { if } & 1=0\end{array}\right.$
- A $\vDash \exists x\left(x \sqcap a<_{m} a\right) \longleftrightarrow 0<_{m} a$
- A $\models \exists x\left(\neg x \sqcap a<_{n} a\right) \longleftrightarrow\left\{\begin{array}{lll}\text { true } & \text { if } & n>0 \\ \text { false } & \text { if } & n=0\end{array}\right.$

Proof.

$$
\varphi^{\prime \prime}=\exists x \bigwedge \Phi
$$

$\Phi \subseteq\left\{0<_{k} x п a, \neg 0<_{l} x п a, x п a<_{m} a, \neg x п a<_{n} a\right\}, \quad|\Phi| \geqslant 2$

- A $\models \exists x\left(0<_{k} x \sqcap a \wedge \neg 0<_{1} x \sqcap a\right) \longleftrightarrow\left\{\begin{array}{lll}0<_{k} a & \text { if } & k<1 \\ \text { false } & \text { if } & 1 \leqslant k\end{array}\right.$
- A $\models \exists x\left(0<_{k} x п a \wedge x п a<_{m} a\right) \longleftrightarrow 0<_{k+m} a$
- A $\models \exists x\left(0<_{k} x п a \wedge \neg x \sqcap a<_{n} a\right) \longleftrightarrow\left\{\begin{array}{lll}0<_{k} a & \text { if } & n>0 \\ \text { false } & \text { if } & n=0\end{array}\right.$
- A $\models \exists x\left(\neg 0<_{1} \times п a \wedge x \sqcap a<_{m} a\right) \longleftrightarrow\left\{\begin{array}{lll}0<_{m} a & \text { if } & l>0 \\ \text { false } & \text { if } & l=0\end{array}\right.$
- A $\vDash \exists x\left(\neg 0<, x \sqcap a \wedge \neg x \sqcap a<_{n} a\right) \longleftrightarrow\left\{\begin{array}{lll}\neg 0<_{l+n-1} a & \text { if } & 1 \cdot n>0 \\ \text { false } & \text { if } & 1 \cdot n=0\end{array}\right.$
- A $\models \exists x\left(x \sqcap a<_{m} a \wedge \neg x \sqcap a<_{n} a\right) \longleftrightarrow\left\{\begin{array}{lll}\text { true } & \text { if } & m<n \\ \text { false } & \text { if } & n \leqslant m\end{array}\right.$

Proof.

$$
\varphi^{\prime \prime}=\exists x \bigwedge \Phi
$$

$\Phi \subseteq\left\{0<_{k} x \sqcap a, \neg 0<_{1} x п a, x \sqcap a<_{m} a, \neg x \sqcap a<_{n} a\right\}, \quad|\Phi| \geqslant 3$

Exercise

- $\exists x\left(0<_{k} x п a \wedge \neg 0<_{1} \times п a \wedge x п a<_{m} a\right) \longleftrightarrow \ldots$
- $\exists x\left(0<_{k} x п a \wedge \neg 0<_{1} x п a \wedge \neg x п a<_{n} a\right) \longleftrightarrow \ldots$
- $\exists x\left(0<_{k} x п a \wedge x п a<_{m} a \wedge \neg x п a<_{n} a\right) \longleftrightarrow \ldots$
- $\exists x\left(\neg 0<, x п a \wedge x п a<_{m} a \wedge \neg x п a<_{n} a\right) \longleftrightarrow \ldots$

Proof.

$$
\varphi^{\prime \prime}=\exists x\left(0<_{k} x \sqcap a \wedge \neg 0<_{1} x \sqcap a \wedge x \sqcap a<_{m} a \wedge \neg x \sqcap a<_{n} a\right)
$$

Decidability

Corollary

(i) $\mathbf{A}=\left(P(M) ; \varnothing, M, \cap, \cup, C ;\left\{\mathcal{C}_{n}\right\}_{n \in \mathbb{N}}\right)$ is decidable in $\mathcal{L}_{B A}^{\prime}$.
(ii) $\mathbf{A}_{0}=(P(M) ; \varnothing, M, \cap, \cup, \complement ; \subseteq)$ is decidable in $\mathcal{L}_{B A}$.

Proof.

(i) We need only decide atomic sentences of the forms $0=0,0=1,0<{ }_{n} 0$, $0<_{n} 1$ for $n \in \mathbb{N}$: We have $\mathbf{A} \models 0=0 \longleftrightarrow$ true,

A $\vDash 0=1 \longleftrightarrow\left\{\begin{array}{llll}\text { true } & \text { iff }|A|=1 & \text { iff } & M=\varnothing \\ \text { false } & \text { iff } & |A|>1 & \text { iff }\end{array} M \neq \varnothing\right.$,
A $\vDash 0<{ }_{n} 0 \longleftrightarrow\left\{\begin{array}{lll}\text { true } & \text { iff } & n=0 \\ \text { false } & \text { iff } & n>0,\end{array}\right.$
A $\vDash 0<_{n} 1 \longleftrightarrow\left\{\begin{array}{llll}\text { true } & \text { iff } & |A| \geqslant 2^{n} & \text { iff } \\ \text { false } & |M| \geqslant n \\ \text { iff } & |A|<2^{n} & \text { iff } & |M|<n,\end{array}\right.$
(ii) For $\varphi \in \mathbf{A}_{0}$ rewrite \subseteq as \subset_{0}, and decide φ in \mathbf{A}.

Atomic Boolean Algebras

Let B be a Boolean Algebra.
$a \in B$ is an atom if $a \neq 0$, and there is no $b \in B$ with $0<b<a$.
B is atomic if for all $\varnothing \neq b \in B$ there is an atom $a \in B$ such that $a \leqslant b$.

What have we actually used in our proofs

1. Axioms of Boolean Algebras in $\mathcal{L}_{B A}^{\prime}$.
2. Definition of $<_{n}$ for $n \in \mathbb{N}$:

$$
\begin{aligned}
& x<_{0} y \longleftrightarrow x \sqcap y=x \\
& x<_{1} y \longleftrightarrow x<_{0} y \wedge \neg x=y \\
& \left\{x<_{n} y \longleftrightarrow \exists x_{1} \ldots \exists x_{n-1}\left(x<_{1} x_{1} \wedge x_{1}<_{1} x_{2} \wedge \ldots \wedge x_{n-1}<_{1} y\right)\right\}_{n>1}
\end{aligned}
$$

3. Atomicity:

$$
\forall x\left(0<_{1} x \longrightarrow \exists y\left(0<_{1} y \wedge \neg 0<_{2} y \wedge y<_{0} x\right)\right)
$$

Denote by $\Xi_{\mathrm{BA}} \subseteq \mathcal{Q}$ the set of these axioms.
$B A=\operatorname{Mod}\left(\Xi_{B A}\right)$ is the class of atomic Boolean Algebras.

Quantifier Eliminability and Decidability of BA

Corollary

BA has a QEP, is substructure complete and model complete but not complete.

Corollary

BA is decidable.

Proof.

Consider $\varphi \in \mathcal{Q}_{\varnothing}$. By QE compute $\varphi^{\prime} \in \mathcal{Q}^{0}$ such that BA $\models \varphi^{\prime} \longleftrightarrow \varphi$. Recall that in φ^{\prime} we need only decide atomic sentences of the forms $0=0,0=1$, $0<_{n} 0,0<_{n} 1$ for $n \in \mathbb{N}$. Using our observations from the decision procedure for \mathbf{A} above, we can compute a finite union M_{φ} of intervals in \mathbb{N} such that for $\mathbf{B} \in B A$ it holds that $\mathbf{B} \models \varphi^{\prime}$ iff there is $n \in M_{\varphi}$ such that $|B|=2^{n}$. Accordingly, $B A \models \varphi$ iff $M_{\varphi}=\mathbb{N}$.

Polynomials

Consider $\mathcal{L}_{R}=(0,1,+,-, \cdot)$.
Let $\bar{\Xi}_{\text {FIELDS }} \subseteq \mathcal{Q}$ be a (finite) set of first-order axioms for fields.
Then FIELDS $=\operatorname{Mod}\left(\Xi_{\text {FIELDS }}\right)$ is the class of all fields.
Recall that $0 \neq z \in \mathbb{Z}$ is a short notation for $\pm(1+\cdots+1)$ in \mathcal{L}_{R}.
The distributive representation of $t^{\prime} \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ is $t^{\prime}=\sum_{m \in M} a_{m} m$, where M is finite, $0 \neq a_{m} \in \mathbb{Z}$, and $m=x_{1}^{e_{1}} \ldots x_{n}^{e_{n}}$ is a power product of variables.
The semidistributive representation wrt. x_{1} of $t^{\prime} \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ is $\sum_{i=1}^{d} p_{i} x_{1}^{i}$, where $p_{i} \in \mathbb{Z}\left[x_{2}, \ldots, x_{n}\right]$ are polynomials in distributive representation.
We call $\operatorname{deg}_{x_{1}}\left(t^{\prime}\right)=d$ the x_{1}-degree, $\mathrm{Ic}_{x_{1}}\left(t^{\prime}\right)=p_{d}$ the leading x_{1}-coefficient, and t^{\prime} an x_{1}-polynomial.

Lemma

For each extended \mathcal{L}_{R}-term $t\left(x_{1}, \ldots, x_{n}\right)$ there is $t^{\prime} \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ in semi-distributive representation wrt. x_{1} such that FIELDS $\vDash t=t^{\prime}$.

Pseudo-Reduction

Consider x-polynomials $0 \neq f=\sum_{i=1}^{m} a_{i} x^{i}$ and $g=\sum_{i=1}^{n} b_{i} x^{i}$ with $m \geqslant n$.
Define $h:=b_{n} f-a_{m} x^{m-n} g=\sum_{i=0}^{m-1}\left(b_{n} a_{i}-a_{m} b_{i-(m-n)}\right) x^{i}$.
Notice that either $h=0$ or $\operatorname{deg}_{x}(h)<m$.
We write $f \underset{g}{\longrightarrow} h$ and say that h is obtained from f via x-reduction modulo g. Iterated x-reduction $f \underset{g}{\longrightarrow} f_{1} \underset{g}{\longrightarrow} \cdots \underset{g}{\longrightarrow} f_{r}$ is written as $f \underset{g}{*} f_{r}$.
If $f=0$ or $\operatorname{deg}_{x}(f)<\operatorname{deg}_{x}(g)$, then there is no x-reduction modulo g possible.
We then call f in x-normal form modulo g.

Pseudo－Division

For x－polynomials f, g there is a unique x－reduction chain $f \underset{g}{\longrightarrow} f_{1} \underset{g}{\longrightarrow} \underset{g}{\longrightarrow} f_{r}$ such that f_{r} is in normal form modulo g ．

There is then an x－polynomial q with $\operatorname{deg}_{x}(q)=\operatorname{deg}_{x}(f)-\operatorname{deg}_{x}(g)$ such that

$$
f_{r}=\mathrm{Ic}_{x}(g)^{r} f-q g .
$$

Equivalently， $\mathrm{lc}_{x}(g)^{r} f=q g+f_{r}$.
We call quot $(f, g):=q$ the quotient of the x－division of f by g ．
We call rem $_{x}(f, g):=f_{r}$ the remainder of the x－division of f by g ．

Zeros of Remainders

Lemma

Let $f\left(x, y_{1}, \ldots, y_{s}\right), g\left(x, y_{1}, \ldots, y_{s}\right)$ be nonzero x-polynomials. Let $\mathbf{F} \in$ FIELDS, and let $a, b_{1}, \ldots, b_{s} \in F$ such that $\mathbf{F} \vDash \mathrm{Ic}_{x}(g)\left(b_{1}, \ldots, b_{s}\right) \neq 0$ and $\mathbf{F} \models g\left(a, b_{1}, \ldots, b_{s}\right)=0$.
If $f \underset{g}{\stackrel{*}{*}} f_{r}$, then $\mathbf{F} \models f\left(a, b_{1}, \ldots, b_{s}\right)=0 \longleftrightarrow f_{r}\left(a, b_{1}, \ldots, b_{s}\right)=0$. In particular, $\mathbf{F} \models f\left(a, b_{1}, \ldots, b_{s}\right)=0 \longleftrightarrow \operatorname{rem}_{x}(f, g)=0$.

Proof.

We have $f \underset{g}{*} f_{r}=\mathrm{lc}_{x}(g) f-q g$ for an x-polynomial q. Thus

$$
\mathbf{F} \vDash f_{r}(\mathbf{a}, \mathbf{b})=\mathrm{Ic}_{x}(g)(\mathbf{b}) f(\mathbf{a}, \mathbf{b})-q(\mathbf{a}, \mathbf{b}) g(\mathbf{a}, \mathbf{b}) .
$$

Reducta

Consider an x-polynomial $f=\sum_{i=0}^{n} a_{i} x^{i}$ with $a_{n} \neq 0$.
We call $\operatorname{red}_{x} f=\sum_{i=0}^{n-1} a_{i} x^{i}$ the x-reductum of f.

Lemma

For $\mathbf{F} \in$ FIELDS and $a, b_{1}, \ldots, b_{s} \in F$ with $\mathbf{F} \vDash \mathrm{Ic}_{x}(f)(\boldsymbol{b})=0$ we have

$$
\mathbf{F} \models f(\boldsymbol{a}, \boldsymbol{b})=0 \longleftrightarrow \operatorname{red}_{x}(f)(a, \boldsymbol{b})=0 . \quad \square
$$

Theorem (Tarski, 1935)

There is a QEP for $\mathbf{C}=(\mathbb{C} ; 0,1,+,-, \cdot) \in$ FIELDS.

Proof.

Consider a 1 -primitive formula

$$
\varphi=\exists x\left[\bigwedge_{i=1}^{m} f_{i}=0 \wedge \bigwedge_{i=1}^{m^{\prime}} g_{i} \neq 0\right],
$$

where $\mathcal{V}(\varphi) \subseteq\left\{x, y_{1}, \ldots, y_{s}\right\}$.
Set $g=\prod_{i=1}^{m^{\prime}} g_{i}$, and recall that $g=1$ for $m^{\prime}=0$.
Then $\mathbf{C} \models \varphi \longleftrightarrow \varphi^{\prime}$, where $\varphi^{\prime}=\exists x\left[\bigwedge_{i=1}^{m} f_{i}=0 \wedge g \neq 0\right]$.
We are ging to distinguish three cases: $m=0, m=1, m>1$.

Case 1: $m=0$

$$
\varphi^{\prime}=\exists x(g \neq 0)
$$

Let $g=\sum_{j=0}^{n} b_{j} x^{j}$, and consider $\varphi^{\prime \prime}=\bigvee_{j=0}^{n} b_{j} \neq 0$.
We are going to show that $\mathbf{C} \models \varphi^{\prime} \longleftrightarrow \varphi^{\prime \prime}$:
Consider $(g \neq 0)\left(x, y_{1}, \ldots, y_{s}\right), \varphi^{\prime \prime}\left(y_{1}, \ldots, y_{s}\right)$, and let $c_{1}, \ldots, c_{s} \in \mathbb{C}$.
There is $d \in \mathbb{C}$ such that $g^{\mathrm{C}}\left(d, c_{1}, \ldots, c_{s}\right) \neq 0^{\mathrm{C}}$ iff the univariate polynomial

$$
g\left(x, c_{1}, \ldots, c_{s}\right):=\sum_{j=0}^{n} b_{j}^{\mathbf{c}}\left(c_{1}, \ldots, c_{s}\right) x^{j}
$$

is not the zero polynomial iff $\varphi^{\prime \prime \mathrm{C}}\left(c_{1}, \ldots, c_{s}\right)=\mathrm{T}$.

$$
\varphi^{\prime}=\exists x\left(f_{1}=0 \wedge g \neq 0\right)
$$

Let $f_{1}=\sum_{j=0}^{n} a_{j} x^{j}$. Induction wrt. $\operatorname{deg}_{x}\left(f_{1}\right)=n$.
If $n=0$, then $\mathbf{C} \models \varphi^{\prime} \longleftrightarrow a_{0}=0 \wedge \exists x(g \neq 0)$, and we are in Case 1 . If $n>0$, then $\mathbf{C} \models \varphi^{\prime} \longleftrightarrow \varphi^{\prime \prime} \vee \tilde{\varphi}^{\prime \prime}$, where

$$
\varphi^{\prime \prime}=a_{n} \neq 0 \wedge \varphi^{\prime}, \quad \tilde{\varphi}^{\prime \prime}=a_{n}=0 \wedge \exists x\left(\operatorname{red}_{x}\left(f_{1}\right)=0 \wedge g \neq 0\right) .
$$

The quantifier in $\tilde{\varphi}^{\prime \prime}$ can be eliminated by the induction hypothesis.
Let $h=\operatorname{rem}_{x}\left(g^{n}, f_{1}\right)$, say, $h=\sum_{j=0}^{k} c_{j} x^{j}=a_{n}^{r} g^{n}-q f_{1}$.
Recall that $h=0$ or $\operatorname{deg}_{x}(h)<\operatorname{deg}_{x}\left(f_{1}\right)$.
We are going to show that $\mathbf{C} \models \varphi^{\prime \prime} \longleftrightarrow \varphi^{\prime \prime \prime}$, where $\varphi^{\prime \prime \prime}=a_{n} \neq 0 \wedge \bigvee_{j=0}^{k} c_{j} \neq 0$: Let $b_{1}, \ldots, b_{s} \in \mathbb{C}$ such that $a_{n}^{\mathrm{c}}(\mathbf{b}) \neq 0^{\mathrm{C}}$.
Let $a \in \mathbb{C}$ such that $f_{1}^{\mathbf{C}}(a, \mathbf{b})=0^{\mathbf{C}}$ and $g^{\mathbf{C}}(a, \mathbf{b}) \neq 0^{\mathbf{C}}$. It follows that $h^{\mathrm{C}}(\mathrm{a}, \mathbf{b})=a_{n}^{r^{\mathbf{C}}}(\mathbf{b}) g^{n \mathbf{C}}(\mathrm{a}, \mathbf{b}) \neq 0^{\mathrm{C}}$. Thus the univariate polynomial $\sum_{j=0}^{k} c_{j}^{\mathbf{c}}(\mathbf{b}) x^{k}$ is not the zero polynomial, and hence $\varphi^{\prime \prime \prime \mathbf{C}}(\mathbf{b})=\mathrm{T}$.

Case 2: $m=1$

$\varphi^{\prime \prime}=a_{n} \neq 0 \wedge \exists x\left(f_{1}=0 \wedge g \neq 0\right), \quad f_{1}=\sum_{j=0}^{n} a_{j} x^{j}$,
$h=\sum_{j=0}^{k} c_{j} x^{j}=\operatorname{rem}_{x}\left(g^{n}, f_{1}\right)=a_{n}^{r} g^{n}-q f_{1} ; \quad h=0$ or $\operatorname{deg}_{x} h<\operatorname{deg}_{x} f_{1}$.
To show: $\mathbf{C} \models \varphi^{\prime \prime} \longleftrightarrow \varphi^{\prime \prime \prime}$, where $\varphi^{\prime \prime \prime}=a_{n} \neq 0 \wedge \bigvee_{j=0}^{k} c_{j} \neq 0$.
Let $b_{1}, \ldots, b_{s} \in \mathbb{C}$ such that $\mathrm{a}_{n}^{\mathrm{c}}(\mathbf{b}) \neq 0^{\mathrm{C}}$.
Assume, vice versa, that $\varphi^{\prime \prime \prime \mathbf{c}}(\mathbf{b})=\mathrm{T}$. Let $g=\sum_{j=0}^{\prime} b_{j} x^{j}$. From f_{1} and g obtain univariate polynomials $f_{1}(x, \mathbf{b})$ and $g(x, \mathbf{b})$ by plugging in \mathbf{b}, and factorize:

$$
f_{1}(x, \mathbf{b})=a_{n}^{\mathbf{C}}(\mathbf{b}) \prod_{j=1}^{N}\left(x-\alpha_{j}\right)^{\mu_{j}}, \quad g(x, \mathbf{b})=b_{l}^{\mathbf{C}}(\mathbf{b}) \prod_{j=1}^{L}\left(x-\beta_{j}\right)^{v_{j}},
$$

where α_{j} pairwise different, β_{j} pairwise different, $\sum_{j=1}^{N} \mu_{j}=n$, and $\sum_{j=1}^{L} v_{j}=l$. Assume for a contradiction that $\left\{\alpha_{1}, \ldots, \alpha_{N}\right\} \subseteq\left\{\beta_{1}, \ldots, \beta_{L}\right\}$. It follows that $g^{n}(x, \mathbf{b})=b_{1}^{n \mathbf{c}}(\mathbf{b}) \Pi_{j=1}^{L}\left(x-\beta_{j}\right)^{v_{j} n}$ with $v_{j} n \geqslant v_{j}$, and for a suitable $q^{\prime}(x) \in \mathbb{C}[x]$ we obtain $f_{1}(x, \mathbf{b}) q^{\prime}(x)=a_{n}^{r^{\mathbf{C}}}(\mathbf{b}) g^{n}(x, \mathbf{b})=h(x, \mathbf{b})+q(x, \mathbf{b}) f_{1}(x, \mathbf{b})$. Thus $h(x, \mathbf{b})=\left(q^{\prime}(x)-q(x, \mathbf{b})\right) f_{1}(x, \mathbf{b})$. Now $\varphi^{\prime \prime \prime \mathbf{C}}(\mathbf{b})$ states that $h(x, \mathbf{b}) \neq 0$ and thus $h \neq 0$. However, $\operatorname{deg}_{x}\left(f_{1}\right)=\operatorname{deg}_{x}\left(f_{1}(x, \mathbf{b})\right) \leqslant \operatorname{deg}_{x}(h(x, \mathbf{b})) \leqslant \operatorname{deg}_{x}(h)$, a contradiction. So $\varphi^{\prime \prime \mathbf{C}}(\mathbf{b})=\mathrm{T}$ with x from $\left\{\alpha_{1}, \ldots, \alpha_{N}\right\} \backslash\left\{\beta_{1}, \ldots, \beta_{L}\right\} \neq \varnothing$.

Case 3: $m>1$

$$
\varphi^{\prime}=\exists x\left[\bigwedge_{i=1}^{m} f_{i}=0 \wedge g \neq 0\right]
$$

Induction on $D=\sum_{i=1}^{m} \operatorname{deg}_{x}\left(f_{i}\right)$. If $D=0$, then $\operatorname{deg}_{x}\left(f_{i}\right)=0$ for all i, thus $\mathbf{C} \models \varphi^{\prime} \longleftrightarrow \bigwedge_{i=1}^{m} f_{i}=0 \wedge \exists x(g \neq 0)$, and we are in the Case 1. Consider now $D>0$. If there is only one i with deg $f_{i}>0$, then we are in Case 2. Assume w.l.o.g. that $\operatorname{deg}_{x}\left(f_{1}\right) \geqslant \operatorname{deg}_{x}\left(f_{2}\right)>0$. Using our Lemma above, we obtain $\mathbf{C} \models \varphi^{\prime} \longleftrightarrow \varphi^{\prime \prime} \vee \varphi^{\prime \prime \prime}$, where

$$
\begin{aligned}
\varphi^{\prime \prime} & =\exists x\left[\mathrm{lc}_{x}\left(f_{2}\right) \neq 0 \wedge \operatorname{rem}_{x}\left(f_{1}, f_{2}\right)=0 \wedge f_{2}=0 \wedge \bigwedge_{i=3}^{m} f_{i}=0 \wedge g \neq 0\right] \\
\varphi^{\prime \prime \prime} & =\exists x\left[\operatorname{lc}_{x}\left(f_{2}\right)=0 \wedge f_{1}=0 \wedge \operatorname{red}_{x}\left(f_{2}\right)=0 \wedge \bigwedge_{i=3}^{m} f_{i}=0 \wedge g \neq 0\right] .
\end{aligned}
$$

On both $\varphi^{\prime \prime}$ and $\varphi^{\prime \prime \prime}$ we can perform QE by induction hypothesis.

Decidability of the Field of Complex Numbers

Theorem

C is decidable.

Proof.

It suffices to decide atomic sentences of the form $z=0$ for $z \in \mathbb{Z}$. We have

$$
\mathbf{C} \models z=0 \longleftrightarrow\left\{\begin{array}{lll}
\text { true } & \text { if } & z=0 \\
\text { false } & \text { if } & z \neq 0 .
\end{array}\right.
$$

Algebraically Closed Fields

What have we actually used in our proofs?

1. Axioms of fields in \mathcal{L}_{R}.
2. Every nonconstant univariate polynomial has a zero:

$$
\left\{\forall a_{0} \ldots \forall a_{n} \exists x\left[a_{n} \neq 0 \longrightarrow \sum_{i=0}^{n} a_{i} x^{i}=0\right]\right\}_{n>0}
$$

Exercise

It follows that every nonconstant univariate polynomial factors into linear factors. Furthermore, universes of algebraically closed fields are infinite, because $x^{n}-1$ has got n different linear factors/zeros.

Denote by $\Xi_{A C F}$ the set of these axioms.

$$
A C F=\operatorname{Mod}\left(\Xi_{A C F}\right) \subset F I E L D S
$$

is the class of algebraically closed fields.

The Characteristic of a Field

Consider $\mathbf{F} \in$ FIELDS. There a two possible cases:
(a) There is $p \in \mathbb{N} \backslash\{0\}$ such that $\mathbf{F} \vDash p=0$ and $\mathbf{F} \vDash \neg n=0$ for all $n<p$.
(b) $\mathbf{F} \models \neg z=0$ for all $z \in \mathbb{Z}$.

In Case (a) we say \mathbf{F} has characteristic p, and we write $\operatorname{char}(\mathbf{F})=p$.
In Case (b) we say \mathbf{F} has characteristic 0 , and we write $\operatorname{char}(\mathbf{F})=0$.
Denote by PRIMES $\subset \mathbb{N}$ the set of prime numbers.

Examples

- $\operatorname{char}(\mathbb{C})=\operatorname{char}(\mathbb{R})=\operatorname{char}(\mathbb{Q})=0$
- for $p \in$ PRIMES we have $\mathbf{Z} / p \in \operatorname{FIELDS}$ and $\operatorname{char}(\mathbf{Z} / p)=p$.

Exercise

For $\mathbf{F} \in$ FIELDS we have $\operatorname{char}(\mathbf{F}) \in \operatorname{PRIMES} \cup\{0\}$.

QE and Completeness Results for ACF

Some facts from algebra

- The characteristic is invariant under field extensions.
- Every field has got an algebraically closed extension field.

It follows that ACF contains fields of arbitrary (prime or zero) characteristic.

Theorem

There is a QEP for ACF. It follows that ACF is substructure complete and model complete. ACF is, however, not complete.

Proof.

We have constructed ACF in such a way that our QEP for \mathbf{C} works there. Consider $\mathbf{Z} / 2, \mathbf{C} \in A C F$, where $\mathbf{Z} / 2$ is an algebraically closed extension field of $\mathbf{Z} / 2$. Then $\mathbf{Z} / 2 \vDash 1+1=0$ but $\mathbf{C} \vDash \neg 1+1=0$.

The Key to Decidability and Limited Completeness

Theorem

Consider \mathcal{L}_{R} and $\varphi \in \mathcal{Q}_{\varnothing}$. One can compute a set $P_{\varphi} \subseteq$ PRIMES with the following properties:
(i) P_{φ} is either finite or co-finite.
(ii) For all $\mathbf{F} \in \mathrm{ACF}$ with $\operatorname{char}(\mathbf{F}) \neq 0$ we have $\mathbf{F} \vDash \varphi$ iff $\operatorname{char}(\mathbf{F}) \in P_{\varphi}$.
(iii) $\mathbf{F} \models \varphi$ for all \mathbf{F} with $\operatorname{char}(\mathbf{F})=0$ iff P_{φ} is co-finite.

Proof.

Compute a quantifier-free equivalent φ^{\prime} of φ. It suffices to construct $P_{\varphi^{\prime}}$. Induction on $\left|\varphi^{\prime}\right|$: If φ^{\prime} is atomic, then φ^{\prime} is equivalent to $z=0$ for $z \in \mathbb{N}$. In case $z=0$ we choose $P_{\varphi^{\prime}}$ to be the set of all primes. In case $z \neq 0$ we choose $P_{\varphi^{\prime}}$ to be the set of all prime factors of z. If $\varphi^{\prime}=\neg \psi$, set $P_{\varphi^{\prime}}=$ PRIMES $\backslash P_{\psi}$. If $\varphi^{\prime}=\psi_{1} \vee \psi_{2}$, set $P_{\varphi^{\prime}}=P_{\psi_{1}} \cup P_{\psi_{2}}$.

Decidability of ACF and Complete Subclasses

$$
\text { For } p \in \operatorname{PRIMES} \cup\{0\} \text { set } \mathrm{ACF}_{p}=\{\mathbf{F} \mid \mathbf{F} \in \operatorname{ACF} \text { and } \operatorname{char}(\mathbf{F})=p\}
$$

Theorem

ACF_{p} is complete and decidable.

Proof.

If $p \in \mathrm{PRIMES}$, then $\mathrm{ACF}_{p} \models \varphi$ iff $p \in P_{\varphi}$. If $p=0$ then $\mathrm{ACF}_{p} \models \varphi$ iff P_{φ} is co-finite.

Theorem

ACF is decidable.

Proof.

ACF $\vDash \varphi$ iff $P_{\varphi}=$ PRIMES.

The Lefschetz Principle

Corollary

Let $\varphi \in \mathcal{Q}_{\varnothing}$. Assume that $\mathbf{C} \models \varphi$. Then $\mathrm{ACF}_{0} \models \varphi$, and one can compute $p_{\varphi} \in$ PRIMES such that ACF $_{p} \models \varphi$ for all $p \geqslant p_{\varphi}$.

Proof.

$\mathrm{ACF}_{0} \models \varphi$ follows from the completeness of ACF_{0}.
Compute a quantifier-free equivalent φ^{\prime} of φ. The set of atomic formulas in φ^{\prime} is essentially $\{z=0 \mid z \in N\}$ for some finite $N \subset \mathbb{N}$. For $p \in P=\{p \in \operatorname{PRIMES} \mid p>\max N\}$ it holds that $\mathrm{ACF}_{p} \models \varphi^{\prime}$ iff $\mathbf{C} \models \varphi^{\prime}$. Hence we can choose $p_{\varphi}=\min P$.

The p_{φ} constructed in the proof is not necessarily the minimal possible choice.

Signs of Univariate Real Polynomials

Consider $0 \neq f \in \mathbb{R}[x]$ with $\operatorname{deg}(f)=d$. Denote by $V_{\mathbb{R}}(f)=\{c \in \mathbb{R} \mid f(c)=0\}$ Assume that $V_{\mathbb{R}}(f)=\left\{c_{1}, \ldots, c_{r}\right\}$ with $c_{1}<\cdots<c_{r}$. Obviously $r \leqslant d$.

Then f is sign invariant over each of the $2 r+1$ intervals

$$
\left(-\infty, c_{1}\right), \quad c_{1}, \quad\left(c_{1}, c_{2}\right), \quad \ldots, \quad c_{r}, \quad\left(c_{r}, \infty\right)
$$

Define $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{2 r+1}\right) \in\{0,1,-1\}^{2 r+1}$:

$$
\begin{array}{ll}
\varepsilon_{1}=\operatorname{sgn} f\left(c_{1}-1\right), & \varepsilon_{2 r+1}=\operatorname{sgn} f\left(c_{r}+1\right), \\
\varepsilon_{2 j}=\operatorname{sgn} f\left(c_{j}\right)=0, & \varepsilon_{2 j+1}=\operatorname{sgn} f\left(\frac{c_{2 j}+c_{2 j+1}}{2}\right)
\end{array} \quad(1 \leqslant j<r) .
$$

Example

$$
\begin{aligned}
& f=x^{4}-4 x^{2} \\
& r=3, \quad c_{1}=-2, \quad c_{2}=0, \quad c_{3}=2 \\
& \varepsilon=(1,0,-1,0,-1,0,1)
\end{aligned}
$$

Combined Signs of Univariate Polynomials

Consider $0 \neq f_{1}, \ldots, f_{n} \in \mathbb{R}[x]$. Then $\bigcup_{i=1}^{n} V_{\mathbb{R}}\left(f_{i}\right)=V_{\mathbb{R}}\left(\prod_{i=1}^{n} f_{i}\right)$.
Let $V_{\mathbb{R}}\left(f_{1} \cdots \cdots f_{n}\right)=\left\{c_{1}, \ldots, c_{r}\right\}$ with $c_{1}<\cdots<c_{r}$, where $r \leqslant \sum_{i=1}^{n} \operatorname{deg} f_{i}$. Define $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{2 r+1}\right) \in\{0,1,-1\}^{n \times(2 r+1)}$:

$$
\begin{array}{ll}
\varepsilon_{i, 1}=\operatorname{sgn} f_{i}\left(c_{1}-1\right), & \varepsilon_{i, 2 r+1}=\operatorname{sgn} f_{i}\left(c_{r}+1\right), \\
\varepsilon_{i, 2 j}=\operatorname{sgn} f_{i}\left(c_{j}\right), & \varepsilon_{i, 2 j+1}=\operatorname{sgn} f_{i}\left(\frac{\left(\frac{c_{2 j}+c_{2 j+1}}{2}\right)}{2} \quad(1 \leqslant j<r) .\right.
\end{array}
$$

The combined sign matrix $\operatorname{CSM}\left(f_{1}, \ldots, f_{n}\right):=\varepsilon$ of $\left(f_{1}, \ldots, f_{n}\right)$ is uniquely determined by $\left(f_{1}, \ldots, f_{n}\right)$.

Example

$$
\begin{aligned}
& f_{1}=x^{2}-1, f_{2}=-x, r=3, c_{1}=-1, c_{2}=0, c_{3}=1 \\
& \operatorname{CSM}\left(f_{1}, f_{2}\right)=\left[\begin{array}{rrrrrrr}
1 & 0 & -1 & -1 & -1 & 0 & 1 \\
1 & 1 & 1 & 0 & -1 & -1 & -1
\end{array}\right]
\end{aligned}
$$

Even columns contain at least one 0 , odd columns never contain 0 .

Combined Signs: Zero Polynomials and Condensing

To obtain a non-empty matirx at least one of the f_{i} must be non-constant.
We admit also zero polynomials in $\operatorname{CSM}\left(f_{1}, \ldots, f_{n}\right)$, which create a zero line.
Given $\operatorname{CSM}\left(f_{1}, \ldots, f_{n}\right)$, we can compute $\operatorname{CSM}\left(f_{1}, \ldots, f_{i-1}, f_{i+1}, \ldots, f_{n}\right)$ as follows:

1. Obtain $C \in\{0,1,-1\}^{n-1 \times 2 r+1}$ by deleting the i-th line of $\operatorname{CSM}\left(f_{1}, \ldots, f_{n}\right)$.
2. In C substitute subsequent identical columns by one such column.

Exercise

1. Compute $\operatorname{CSM}\left(x, 2 x+1,0, x^{2}-1\right)$.
2. From $\operatorname{CSM}\left(x, 2 x+1,0, x^{2}-1\right)$ derive $\operatorname{CSM}(x, 2 x+1)$.

Our examples and exercises were based on guessing zeros of the f_{j}.
We now want to algorithmically obtain $\operatorname{CSM}\left(f_{1}, \ldots, f_{n}\right)$.

Computation of Combined Sign Matrices

Consider $n>0, f_{1}, \ldots, f_{n} \in \mathbb{R}[x]$ with $\prod_{j=1}^{n} f_{j} \neq 0$.
We proceed by recursion on (d, k) wrt. $\leqslant_{\text {lex }}$, where $d=\max \left\{\operatorname{deg} f_{1}, \ldots, \operatorname{deg} f_{n}\right\}$ and $k=\left|\left\{j \in\{1, \ldots, n\} \mid \operatorname{deg} f_{j}=k\right\}\right|$. If $d=0$, then $f_{1}, \ldots, f_{n} \in \mathbb{R}$, and $\operatorname{CSM}\left(f_{1}, \ldots, f_{n}\right)=\left[\operatorname{sgn} f_{1}, \ldots, \operatorname{sgn} f_{n}\right]^{t}$.

Theorem

Let $0 \neq f, g_{1}, \ldots, g_{n} \in \mathbb{R}[x]$ with $\operatorname{deg} f \geqslant \operatorname{deg} g_{j} \geqslant 1$ for $j \in\{1, \ldots, n\}$.
Let f^{\prime} denote the formal derivative of f. Set $f_{0}:=\operatorname{rem}\left(f, f^{\prime}\right)$ and $f_{j}:=\operatorname{rem}\left(f, g_{j}\right)$ for $j \in\{1, \ldots, n\}$. Assume that we know $\operatorname{CSM}\left(g_{1}, \ldots, g_{n}, f^{\prime}, f_{0}, \ldots, f_{n}\right)$. Then we can compute $\operatorname{CSM}\left(f, g_{1}, \ldots, g_{n}, f^{\prime}, f_{0}, \ldots, f_{n}\right)$ and hence $\operatorname{CSM}\left(f, g_{1}, \ldots, g_{n}\right)$.

Lines for constant polynomials f_{j} can be tenporarily removed for recursion. Let (d^{\prime}, k^{\prime}) be the recursion parameter for $\operatorname{CSM}\left(g_{1}, \ldots, g_{n}, f^{\prime}, f_{0}, \ldots, f_{n}\right)$. If $\operatorname{deg} f=\operatorname{deg} g_{j}$ for some j, then $d^{\prime}=d$ but $k^{\prime}<k$, else $d^{\prime}=d-1<d$.

Proof

We are given $C^{\prime}=\operatorname{CSM}\left(g_{1}, \ldots, g_{n}, f^{\prime}, f_{0}, \ldots, f_{n}\right)$.
From this we compute $C^{*}=\operatorname{CSM}\left(g_{1}, \ldots, g_{n}, f^{\prime}\right) \in\{0,1,-1\}^{(n+1) \times(2 r+1)}$.
For obtaining $C=\operatorname{CSM}\left(f, g_{1}, \ldots, g_{n}, f^{\prime}\right) \in\{0,1,-1\}^{(n+2) \times(2 s+1)}$ for $s \geqslant r$ we are going to proceed in two steps:

1. Compute the sign of f for the even columns of C^{*} :

Let $j \in\{1, \ldots, r-1\}$. Column $2 j$ of C^{*} corresponds to a root c_{j} of one of the polynomials g_{1}, \ldots, g_{n}, f^{\prime}. If $f^{\prime}\left(c_{j}\right)=0$, then

$$
f\left(c_{j}\right)=\operatorname{quot}\left(f, f^{\prime}\right)\left(c_{j}\right) \cdot f^{\prime}\left(c_{j}\right)+\operatorname{rem}\left(f, f^{\prime}\right)\left(c_{j}\right)=\operatorname{rem}\left(f, f^{\prime}\right)\left(c_{j}\right)=f_{0}\left(c_{j}\right) .
$$

Thus $\operatorname{sgn} f\left(c_{j}\right)=\operatorname{sgn} f_{0}\left(c_{j}\right)$. Similarly, if $g_{i}\left(c_{j}\right)=0$, then $\operatorname{sgn} f\left(c_{j}\right)=\operatorname{sgn} f_{i}\left(c_{j}\right)$.
2. Compute entries for f for the odd columns of C^{*}, which possibly requires replacing such columns by several ones ...

Proof

Let $j \in\{1, \ldots, r-1\}$ and consider $\operatorname{sgn} f$ at column $2 j+1$ of C^{*} :

$\operatorname{sgn} f$ at $2 j$	0	1	-1	-1	-1	0	1	1	1	-1
$\operatorname{sgn} f^{\prime}$ at $2 j+1$	1	1	1	1	1	-1	-1	-1	-1	-1
$\operatorname{sgn} f$ at $2 j+2$		0	1	-1		0	1	-1		
$\operatorname{sgn} f$ at $2 j+1$	1	1	-1	$[-1,0,1]$	-1	-1	1	1	$[1,0,-1]$	-1

Exercise

Complete the proof by considering sgn f at the columns 1 and $2 r+1$ of C^{*}.

The Field of the Reals

Theorem

Consider $\mathcal{L}_{R}=(0,1,+,-, \cdot)$ and $\mathbf{R}=(\mathbb{R} ; 0,1,+,-, \cdot)$.
Then \mathbf{R} does not admit $Q E$.

Proof.

Consider $\varphi(y)$ for $\varphi=\exists x(y=x \cdot x)$. We have $[\varphi]^{\mathbf{R}}=\mathbb{R}^{\geqslant} \subset \mathbb{R}$, which is neither finite nor cofinite in \mathbb{R}. Essentially $\mathcal{A}_{\{y\}}=\{f=0 \mid f \in \mathbb{Z}[y]\}$. These define for $f=0$ the cofinite set \mathbb{R} and for left hand side polynomials $f \neq 0$ the finite sets $V_{\mathbb{R}}(f)$. It follows that quantifier-free formulas in y define only finite and cofinite sets.

We are now going to consider $\mathcal{L}_{O R}=(0,1,+,-, ; \leqslant)$.
Our aim is to show that $\mathbf{R}=(\mathbb{R} ; 0,1,+,-, \cdot ; \leqslant)$ admits $Q E$.

A Parametric Generalization of Combined Sign Matrices

Theorem

For $n>0$ consider x-polynomials $f_{1}, \ldots, f_{n} \in \mathbb{R}\left[x, y_{1}, \ldots, y_{m}\right]$. Let $d=\max \left\{\operatorname{deg}_{x} f_{1}, \ldots, \operatorname{deg}_{x} f_{n}\right\}$. Let $E \in\{0,1,-1\}^{n \times(2 r+1)}$ for $r \leqslant n d$.
Then one can compute an extended quantifier-free $\mathcal{L}_{O R}$-formula $\psi_{E, n, d, f_{1}, \ldots, f_{n}}\left(y_{1}, \ldots, y_{m}\right)$ such that for $b_{1}, \ldots, b_{m} \in \mathbb{R}$ it holds that $\mathbf{R} \vDash \psi_{E, n, d, f_{1}, \ldots, f_{n}}(\boldsymbol{b}) \Longleftrightarrow \operatorname{CSM}\left(f_{1}(x, \boldsymbol{b}), \ldots, f_{n}(x, \boldsymbol{b})\right)=E$.

Proof.

We define $\square_{0}:="=", \square_{1}:=">", \square_{-1}:="<"$. For $d=0$ and
$E=\left[\varepsilon_{1}, \ldots, \varepsilon_{n}\right]^{t} \in\{0,1,-1\}^{n \times 1}$ we have $f_{1}, \ldots, f_{n} \in \mathbb{R}\left[y_{1}, \ldots, y_{m}\right]$, and we can set $\psi=\bigwedge_{i=1}^{n} f_{i} \square_{\varepsilon_{i}} 0$.

Proof.

For $d>0$ we proceed recursively as for the computation of CSM with the following modifications:

- We use x-pseudodivision. When multiplying with a suitable power of the leading coefficient of the divisor, we must use even powers to preserve signs.
- We have to introduce case distinctions on the vanishing of the leading coefficient, and in the case, where it vanishes, use the reductum (with further case distinctions).
- Instead of computing signs of f, we conjunctuively collect the corresponding conditions $f \square_{\sigma} 0$ taking σ from E.

The Ordered Field of the Reals

Theorem (Tarksi 1948 with a different proof)

There is a QEP for $\mathbf{R}=(\mathbb{R} ; 0,1,+,-, \cdot ; \leqslant)$ in $\mathcal{L}_{O R}$.

Proof.

It suffices to consider a positive 1-primitive formula $\varphi=\exists x \bigwedge_{i=1}^{n} f_{i} \varrho_{i} 0$ with $\varrho \in\{=,<\}$. Let $d=\max \left\{\operatorname{deg}_{x} f_{1}, \ldots, \operatorname{deg}_{x} f_{n}\right\}$. The set $M=\bigcup_{r \leqslant n d}\{0,1,-1\}^{n \times(2 r+1)}$ is finite. Let M_{φ} be the finite set of all $E \in M$ that contain a column $\left[\varepsilon_{1}, \ldots, \varepsilon_{n}\right]^{t}$ such that $\varepsilon_{i}=\square_{e_{i}}$. Then
$\mathbf{R} \vDash \varphi \longleftrightarrow \bigvee_{E \in M_{\varphi}} \psi_{E, n, d, f 1}, \ldots, t_{n}$.

Real Closed Fields

What have we used in our proofs?

1. Axioms of ordered fields:
(a) Axioms of fields.
(b) Monotonicity: $x \leqslant y \longrightarrow x+z \leqslant y+z$ and $x \leqslant y \wedge 0 \leqslant z \longrightarrow x z \leqslant y z$. This implies characteristic 0 .
2. Every nonnegative number has square root: $0 \leqslant x \longrightarrow \exists y\left(y^{2}=x\right)$.
3. Every nonconstant univariate polynomial of odd degree has a zero:

$$
\left\{\forall a_{0} \ldots \forall a_{2 n+1} \exists x\left[a_{2 n+1} \neq 0 \longrightarrow \sum_{i=0}^{2 n+1} a_{i} x^{i}=0\right]\right\}_{n \geqslant 0 .}
$$

Denote by $\Xi_{\text {RCF }}$ the set of these axioms.
RCF $=\operatorname{Mod}\left(\bar{\Xi}_{\text {RCF }}\right) \subset$ FIELDS is the class of real closed fields.
We have $\mathbf{R} \in \operatorname{RCF}$ but $\mathbf{Q}=(\mathbb{Q} ; 0,1,+,-, \cdot ; \leqslant) \notin \operatorname{RCF}$.

QE, Completeness, and Decidability for RCF

Theorem

RCF admits QE. It follows that RCF is substructure complete and thus model complete. Furthermore, RCF is complete and decidable.

Proof.

It suffices to show that RCF is complete and decidable for atomic sentences, which are equivalent to either $z=0$ or $z \leqslant 0$ for $z \in \mathbb{Z}$. Monotonicity implies that $0, \pm(1+\cdots+1)$ are ordered as in \mathbb{Z}.

Completeness and Decidability for RCF Without Ordering

Corollary

The class $\mathrm{RCF}^{\prime}=\left\{\mathbf{F}_{L_{R}} \mid \mathbf{F} \in \mathrm{RCF}\right\}$ of real closed fields in a the language of rings without ordering does not admit QE. Hence RCF' is not substructure complete. RCF' is, however, model complete, complete, and decidable.

Proof.

For model completeness we have to show that every \mathcal{L}_{R}-formula φ is equivalent to an existential \mathcal{L}_{R}-formula. Consider an \mathcal{L}_{R}-formula φ. Then φ is also an $\mathcal{L}_{O R}$-formula. By QE compute a positive quantifier-free $\mathcal{L}_{O R}$-formula φ^{\prime} such that RCF $\models \varphi \longleftrightarrow \varphi^{\prime}$. From φ^{\prime} we obtain $\varphi^{\prime \prime}$ by equivalently replacing all atomic formulas $0 \leqslant f$ with $\exists r_{f}\left(r_{f}^{2}=f\right)$ and making prenex. Then we have RCF $\models \varphi \longleftrightarrow \varphi^{\prime} \longleftrightarrow \varphi^{\prime \prime}$, and since $\varphi^{\prime \prime}$ is an $\mathcal{L}_{R^{\prime}}$-formula it follows that $\mathrm{RCF}^{\prime} \vDash \varphi \longleftrightarrow \varphi^{\prime \prime}$.

Towards Efficient Real QE

Recall that quantifier elimination procedures based on considering 1-primitive formulas are not elementary recursive in general.

Theorem (Collins, 1975)

The time complexity procedure of real quantifier elimination is bounded from above by $2^{2^{0\left(n^{k}\right)}}$, where $k \in \mathbb{N} \backslash\{0\}$ is fixed and n is the word length of the input formula.

Theorem (Davenport-Heintz and independently Weispenning, 1988)

The time complexity of real quantifier elimination bounded from below by $2^{2^{2(n)}}$, where n is the word length of the input formula.

Software

Collins proof was constructive:

- He described cylindrical algebraic decomposition (CAD) as a QE method.
- A first implementation QEPCAD was finished in 1983.
- Considerable heuristic improvemend by Hong lead to partial CAD in 1995.
- QEPCAD B is now maintained by Brown and freely available at http://www.usna.edu/cs/~qepcad/B/QEPCAD.html.

Exercise

Download, compile, and try.

Focus on Formulas with Low Degrees in the Quantified Variables

Let f be in distributive representation $f=\sum_{m \in M} a_{m} x_{1}^{e_{m, 1}} \cdots x_{n}^{e_{m, n}}$.
For $I \subseteq\{1, \ldots, n\}$ the total degree in $V=\left\{x_{i} \mid i \in I\right\}$ of f is $\max _{m \in M} \sum_{i \in I} e_{m, i}$.

Example

The total degree of $2 a^{7} x^{2} y z+y^{3}-x+1$ in $\{x, y, z\}$ is 4 .
The total degree in V of an atomic $\mathcal{L}_{O R}$-formula $f \varrho 0, \varrho \in\{=, \leqslant\}$ is that of f. The total degree in V of a quantifier-free formula is the maximum of the total degrees of the contained atomic formulas.
The total degree of a prenex formula $\varphi=Q_{1} x_{1} \ldots Q_{n} x_{n} \psi$ is the total degree in $\left\{x_{1}, \ldots, x_{n}\right\}$ of ψ.
In particular, φ is linear if its total degree is 1 , quadratic if its total degree is 2, and cubic if its total degree is 3.

Exercise

Give some examples for linear and quadratic formulas.

Weispfenning Has Shown Much More

- The lower bound $2^{2^{0(n)}}$ holds even when restricting to linear formulas. This is called the linear real quantifier elimination problem.
- Looking at finer complexity parameters, linear QE looks nicer.

Theorem (Weispfenning 1988)

Consider the subset of prenex linear formulas $\Phi_{c, q, a}$ with at most c changes between \exists and \forall in the quantifier block, at most q quantifiers, and at most a different atomic formulas. Then the real quantifier elimination problem for $\Phi_{c, n, a}$ is bounded from above by $2^{2^{O(c)}}, 2^{O(q)}$, and $O\left(a^{k}\right)$ for some $k \in \mathbb{N} \backslash\{0\}$ not depending on $\Phi_{c, q, a}$.

- Note that the number of unquantified variables does not significantly contribute to the complexity.
- Partial CAD, in contrast, is doubly exponential in the number of all variables.

QE by Virtual Substitution for Linear Formulas

Consider a linear formula $\varphi=Q_{1} x_{1} \ldots Q_{n} x_{n} \psi$.
By induction on n it suffices to eliminate the innermost quantifier $Q_{n} x_{n}$.
If $Q_{n}=\forall$, then we transform $\mathbf{R} \vDash \forall x_{n} \psi \longleftrightarrow \neg \exists x_{n} \neg \psi$.
It thus suffices to eliminate $\exists x_{n} \psi$, and we may assume w.l.o.g. that ψ is positive.
Note that we have not computed any Boolean normal form.
ψ is an arbitrary $\wedge-\nu$-combination of atomic formulas $a x_{n}<b, a x_{n} \leqslant b, b<0$, $b \leqslant 0$, where $a \in \mathcal{J} \backslash\{0\}, b \in \mathcal{J}$ with $x_{n} \notin \mathcal{V}(a) \cup \mathcal{V}(b)$.
Fix real values for all variables in $\mathcal{V}(\psi) \backslash\left\{x_{n}\right\}$.
Then atomic formulas describe intervals $\left(-\infty, \frac{b}{a}\right),\left(\frac{b}{a}, \infty\right),\left(-\infty, \frac{b}{a}\right],\left[\frac{b}{a}, \infty\right), \varnothing, \mathbb{R}$. ψ describes \varnothing, \mathbb{R}, or a finite union of intervals

$$
\left(-\infty, \frac{b}{a}\right), \quad\left(\frac{b}{a}, \infty\right), \quad\left(-\infty, \frac{b}{a}\right], \quad\left[\frac{b}{a}, \infty\right), \quad\left(\frac{b}{a}, \frac{b^{\prime}}{a^{\prime}}\right), \quad\left[\frac{b}{a}, \frac{b^{\prime}}{a^{\prime}}\right), \quad\left(\frac{b}{a}, \frac{b^{\prime}}{a^{\prime}}\right], \quad\left[\frac{b}{a}, \frac{b^{\prime}}{a^{\prime}}\right],
$$

which contains one of the points $\frac{b}{a} \pm 1, \frac{b / a+b^{\prime} / a^{\prime}}{2}$.

QE by Virtual Substitution for Linear Formulas

Consider $\varphi=\exists x_{n} \psi$. Let $\left\{a_{i} x_{n} \varrho_{i} b_{i} \mid i \in I\right\}$, where $\varrho_{i} \in\{<, \leqslant\}$, be the finite set of atomic formulas in ψ containing x. Then

$$
E=\left\{(\text { true }, 0),\left(a_{i} \neq 0 \wedge a_{j} \neq 0, \frac{b_{i} / a_{i}+b_{j} / a_{j}}{2}\right), \left.\left(a_{i} \neq 0, \frac{b_{i}}{a_{i}} \pm 1\right) \right\rvert\, i, j \in I\right\}
$$

is an elimination set for φ with the property

$$
\mathbf{R} \models \varphi \longleftrightarrow \bigvee_{(\gamma, t) \in E}\left(\gamma \wedge \psi\left[t / / x_{n}\right]\right)
$$

Notice that the test terms t contain division with even parametric divisors.
The guards γ guarantee that the t are at least semantically meaningful.
For all bounded intervals we substitute the midpoint.
For the unbounded intervals we substitute the endpoints ± 1.
We substitute 0 for the case that all other guards are false.
Recall that for regular substitution we have $\left[t / x_{n}\right]: \mathcal{J} \rightarrow \mathcal{J}$.
We define a virtual substitution $\left[t / / x_{n}\right]: \mathcal{A} \rightarrow \mathcal{Q}^{0}:$

$$
\left(a_{i} x_{n} \varrho_{i} b_{i}\right)\left[\frac{p}{q} / / x_{n}\right]:=a_{i} p q \varrho_{i} b_{i} q^{2}
$$

This substitution result is linear in $\left\{x_{1}, \ldots, x_{n-1}\right\}$, which is important.

Examples for Advanced Virtual Substitution

Instead of the $\left(a_{i} \neq 0, \frac{b_{i}}{a_{i}}+1\right)$ for all $i \in I$ for the unbounded interval $\left(\frac{b_{i}}{a_{i}}, \infty\right)$ we can use (true, ∞), where

$$
\begin{aligned}
& \left(a_{i} x_{n}<b_{i}\right)\left[\infty / / x_{n}\right]:=a_{i}<0 \\
& \left(a_{i} x_{n} \leqslant b_{i}\right)\left[\infty / / x_{n}\right]:=a_{i}<0 \vee\left(a_{i}=0 \wedge 0 \leqslant b_{i}\right) .
\end{aligned}
$$

Consider $\left(a_{i} \neq 0 \wedge a_{j} \neq 0, \frac{b_{i} / a_{i}+b_{j} / a_{j}}{2}\right)$ used for an interval with endpoints $\frac{b_{i}}{a_{i}}, \frac{b_{j}}{a_{j}}$. If both $\frac{b_{i}}{a_{i}}$ and $\frac{b_{j}}{a_{j}}$ origin from strict constraints $a_{i} x_{n}<b_{i}, a_{j} x_{n}<b_{j}$, then it suffices to subsitute $\left(a_{i} \neq 0, \frac{b_{i}}{a_{i}}-\varepsilon\right),\left(a_{j} \neq 0, \frac{b_{j}}{a_{j}}-\varepsilon\right)$, where

$$
\begin{aligned}
& \left(a_{i} x_{n}<b_{i}\right)\left[\frac{p}{q}-\varepsilon / / x_{n}\right]:=\quad a_{i} p q<b_{i} q^{2} \vee\left(a_{i} p q=b_{i} q^{2} \wedge 0<a_{i}\right) \\
& \left(a_{i} x_{n} \leqslant b_{i}\right)\left[\frac{p}{q}-\varepsilon / / x_{n}\right]:=\left(a_{i} x_{n}<b_{i}\right)\left[\frac{p}{q}-\varepsilon / / x_{n}\right] \vee\left(a_{i}=0 \wedge b_{i}=0\right) .
\end{aligned}
$$

If w.l.o.g. $\frac{b_{i}}{a_{i}}$ origins from a weak constraint $a_{i} x_{n} \leqslant b_{i}$, then we use $\left(a_{i} \neq 0, \frac{b_{i}}{a_{i}}\right)$. This reduces $|E|$ from $O\left(\left|\mid \|^{2}\right)\right.$ to $O(||\mid)$.

Understanding the Complexity Results

Consider $\varphi=Q_{n-1} x_{n-1} \exists x_{n} \psi$.
We obtain E and compute $\mathbf{R} \vDash \varphi \longleftrightarrow \varphi^{\prime}$, where

$$
\varphi^{\prime}=Q_{n-1} x_{n-1} \bigvee_{(y, t) \in E}\left(\gamma \wedge \psi\left[t / / x_{n}\right]\right)
$$

In the case that $Q_{n-1}=\exists$, we can transform

$$
\mathbf{R} \models \varphi^{\prime} \longleftrightarrow \bigvee_{(\gamma, t) \in E} \exists x_{n-1}\left(\gamma \wedge \psi\left[t / / x_{n}\right]\right)
$$

This yields for the next step $|E|$ many independent QE problems $\varphi_{1}^{\prime \prime}, \ldots, \varphi_{|E|}^{\prime \prime}$.
Test terms produced for some $\varphi_{i}^{\prime \prime}$ need not be substituted into $\varphi_{j}^{\prime \prime}$ for $j \neq i$.
Therefore, the complexity is only exponential in the quantifiers
but doubly exponential in the quantifier changes.

Quadratic Formulas

Consider a quadratic formula $\varphi=Q_{1} x_{1} \ldots \exists x_{n} \psi$.
ψ is an arbitrary $\wedge-v$-combination of linear atomic formulas and, in addition, $a x_{n}^{2}+b x_{n}+c \varrho 0$ for $a \in \mathcal{J} \backslash\{0\}, b, c \in \mathcal{J}$ with $x \notin \mathcal{V}(a) \cup \mathcal{V}(b) \cup \mathcal{V}(c)$.
Fix real values for all variables in $\mathcal{V}(\psi) \backslash\{x\}$.
Then all atomic formulas describe finite unions of intervals, where $a x_{n}^{2}+b x_{n}+c$ contributes interval boundaries $\pm \infty$ and $\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$.
We have to explain how to perform virtual substitutions $(f \varrho 0)\left[\frac{p_{1} \pm \sqrt{p_{2}}}{q} / / x\right]$.

Exercise

Let $f \in\left[x_{1}, \ldots, x_{n}\right]$. There are P_{1}, P_{2}, Q such that $f\left[\frac{P_{1}+P_{2} \sqrt{P_{3}}}{q} / x_{n}\right]=\frac{P_{1}+P_{2} \sqrt{P_{3}}}{Q}$.
Using this we have, e.g.,

$$
(f=0)\left[\frac{p_{1}+P_{2} \sqrt{p_{3}}}{q} / / x_{n}\right]=\left(x_{n}=0\right)\left[\frac{P_{1}+P_{2} \sqrt{D_{3}}}{Q} / / x_{n}\right]:=P_{1} P_{2} \leqslant 0 \wedge P_{1}^{2}-P_{2}^{2} p_{3}=0 .
$$

The substitution result is not quadratic in $\left\{x_{1}, \ldots, x_{n-1}\right\}$ in general.

Beyond the Quadratic Case

We have just seen that eliminating an innermost quantifier from a quadratic formula, the result is not necessarily quadratic anymore.

It is not clear in advance if the elimination of several quantifiers from a quadratic formula using our quadratic method will succeed.

With linear formulas this problem does not exist.
Weispfenning (1997) has shown that virtual substitution is flexible enough to generalize to arbitrary total degrees.

In particular, the fact that roots of polynomials beyond degree 4 cannot be expressed with root expressions is no obstacle.

The (incomplete) method for the quadratic case is successfully used in practice. In case of degree violations one switches to partial CAD.

Implementations of virtual substitution for the cubic case appear promising.

Software

The virtual substitution methods, partial CAD, and many other QE procedures are implemented in the package Redlog of the open-source computer algebra system Reduce.

Reduce/Redlog is freely available at Sourceforge
http://sourceforge.net/apps/mediawiki/reduce-algebra/
index.php?title=Installation.

Exercise

SVN checkout, compile, and try.
Comprehensive information on Redlog can be found at
http://www.redlog.eu.
The online database Remis there, contains many application examples for QE.

