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Abstract

We propose a tone-mapping operator that can minimize eisith-
trast distortions for a range of output devices, rangingifespaper
to HDR displays. The operator weights contrast distortaord-
ing to their visibility predicted by the model of the humarswal
system. The distortions are minimized given a display maiokzt
enforces constraints on the solution. We show that the pnolaian
be solved very ef ciently by employing higher order imagats-
tics and quadratic programming. Our tone mapping technigue
adjust image or video content for optimum contrast vidipitak-
ing into account ambient illumination and display chargstes.
We discuss the differences between our method and previpus a
proaches to the tone-mapping problem.

CR Categories:  1.3.3 [Computer Graphics]: Picture/lmage
Generation—Display algorithms; 1.4.2 [Image Processimgl a
Computer Vision]: Enhancement—Greyscale manipulatibars
ening and deblurring

Keywords:  high dynamic range, tone mapping, image repro-

duction, visual perception, optimization, display-adantviewing
conditions

1 Introduction

Reproducing natural and arti cial scenes on display devioka
limited dynamic range (contrast) is a challenging problenplio-

tography, cinematography, printing and visualization. f&p the
best results are achieved when each image is manually edjast
the target display. This, however, is a tedious task thanofe-
quires expert skills. The question arises whether the maujast-
ments can be replaced with a computational algorithm. Weesdd
this question by demonstrating that the image reprodudtsks
can be formulated as an optimization problem, in which thet be
tradeoff between preserving contrast in all ranges of a-tmade
is found. Such optimization is driven by a perceptual metnit
weights contrast distortions according to their visilgiind impor-
tance.

Tone-mapping should not only ensure that the resulting pdees
are in the range 0-255, but also that the actual tones shoampan
ticular display of certain capabilities will convey deslienage con-
tent. This is especially important with the recent develepts in
the display technologies (LCD, LCoS, PDP, DLP, OLED, e-pape
backlight modulation [Seetzen et al. 2004], rear-prog@gtiand the
variety of applications in which they are employed (homegatn-
ment, mobile displays, electronic books, cockpit displays.). All
these display devices can differ dramatically in their pbaght-
ness, contrast (dynamic range) and black level, and cangehan
their characteristic with the viewing conditions (sunligis. of-
ce light). Therefore, it cannot be expected that the samagen
shown on different devices will produce the desirable apreze.
Tone-mapping with no knowledge of the target display is rfotls

de ned problem, similarly as gamut mapping with no knowlea
the target gamut.

We propose a tone-mapping operator that produces the lsast d
torted image, in terms of visible contrast distortions, egivthe
characteristic of a particular display device. The disboig are
weighted using the human visual system (HVS) model, which ac
counts for all major effects, including luminance maskispatial
contrast sensitivity and contrast masking (Section 3.4xhSone-
mapping operator is naturally formulated as an optimizefimb-
lem (Section 3), where the error function is weighted by thésH
model and constraints are dictated by the display limiteti(Sec-
tion 3.3). We demonstrate that the problem can be solvedefery
ciently if the error function is based on higher order imaiggistics



(Section 4.1) and the non-linear optimization problem wuced
to the medium-size quadratic programing task (Section. 4/8)
straightforward extension of our method ensures tempaiaéic
ence and makes it suitable for video sequences (Section I%.
performance of our technique is validated in several lesdied
scenarios of tone reproduction when the viewing conditiand
display capabilities vary (Sections 6.1 and 6.2). Our expental
study shows that images that are adaptively tone-mappeltlito i
mination conditions are preferred in terms of contrastadpction
(Section 6.3). Finally, the method is compared with othereto
mapping operators (Section 6.4).

_|

2 Previous Work

The problem of tone-reproduction was already recognizeelanly
painters, who struggled with the limited contrast rangevailable
pigments. Since the pigments did not offer much contrastifok
colors, Leonardo da Vinci tended to use midrange colorslfaba
jects, so that he could achieve the desired contrast amstiepth-
from-shading effect even if the actual brightness levelsewnds-
torted [Livingstone 2002, p. 115]. Livingstone in her bo@002,
pp. 109-125] gives a good overview of other techniques thegra
used to overcome the limited dynamic range. Much later when t
Im-based photography was invented, the rst practitioners of this
new technique found that capturing enormous dynamic rarfige o
luminance in the real world on a chemically limited negativas
dif cult. Film manufactures tried to reduce this problem tgsign-
ing the Im stocks and the print development systems thaegav
desired S-shaped tone curve with slightly enhanced cdrfabsut
15%) in the middle range and gradually compressed higldight
shadows [Hunt 2004, Ch. 6]. To overcome the limitations @f th
print, photographers also locally modi ed image exposuitthe
dodging and burning technique [Adams 1981].

The introduction of digital photography and image proaegsgjave
much more possibilities for image reproduction. One of thesm
notable early algorithms employed for image rendering vhees t
retinex [Land and McCann 1971], inspired by the theories of light-
ness perception. The problem of limited color gamut has lesen
tensively studied in the context of color printing, requitin a range

of gamut-mappingalgorithms [Morovic and Luo 2001]. Since col-
ors change their appearance with viewing conditions, cipring

an image involves reproducing itolor appearance Although
color appearance is a complex phenomenon, it can be prddigte
computational models, such as CIECAMO02 [Moroney et al. 2002
or iCAM [Kuang et al. 2007]. When automatic algorithms are
not suf cient and high quality results are required, magpiones
and colors must be performed manually by a skilled artisis T
the case of cinematographic movie post-processing procelsd
color-grading.

Computer graphics techniques, capable of rendering rogitrast
scenes, shifted focus from color to luminance as the maiiitign
factor of display devices. A recent book [Reinhard et al Z@ves

a good review of a number @bne mapping operators (TMOs)
intended to map high dynamic range (HDR) images to standafd d
plays. More recent work on tone mapping shows a trend towards
user-assisted image reproduction [Lischinski et al. 2086}ized
rendering [Bae et al. 2006] and nding other means than lamae

to extend image contrast [Smith et al. 2006]. A large numbfer o
the proposed operators and no proven method to validate itihem
spired work on theissubjective comparison[Ledda et al. 2005].
Recently, the problem of image reproduction has gradudifyesl
towards displays, as they are equipped with more advancagem
processing and display algorithms, which not only enhaheerv
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signal, but also adapt rendering to viewing conditions (@mtight

sensor), save power (backlight dimming)p-scale color gamut
[Muijs et al. 2006] anddlynamic range[Meylan et al. 2006; Rem-
pel et al. 2007].

3 Tone mapping as the minimum visible
distortion problem

The original goal of the tone mapping problem, as formuldted
Tumblin and Rushmeier [1991], is to reproduce a scene on-a dis
play, so that the brightness sensation of a displayed insaggual
or closely matches the real-world brightness sensatioa.pEnfect
match between the original and its rendering on a display @ i
hard-copy format is almost never possible, as an output umedi
is hardly ever bright enough, offers suf cient dynamic rar(gon-
trast) and color gamut. Therefore, the rendering on an ddgxice
is a tradeoff between preserving certain image featurdseatast
of the others. For example, high contrast and brightness aha
age can often be preserved only at the cost of clipping (stitay)
certain amount of pixels in bright or in dark regions. Theickamf
which features are more important should be driven by aqarti
lar application, for which an appropriate metric could bsigeed,
possibly involving some aspects of the visual perceptiomese
considerations lead us to a general tone mapping framewioidg,
trated in Figure 2, which is formulated as an optimizatioobpem.

Having an original image as input, which can be in HDR or any
scene-referred high quality format, we want to generatesplaly-
adapted image that would be the best possible renderingafign
inal scene. We assume that this goal is achieved if the respain
the HVS for an image shown on the displ&jisp, is as close as
possible to the response evoked by the original scRgg;. Both
responses can almost never be the same as a display can only sh
limited dynamic range and color gamut. Also the viewing dend
tions, such as ambient light or luminance adaptation, difééween
the original scene and its rendering, making the match evanre m
dif cult. The solution of the optimization problem is a sefttone
mapping parameters that minimizes the difference betviRgg
andRyjsp. Figure 2 contains also a processing block for image en-
hancement, as many applications require reproducing isntgs
are sharper and more colorful than the originals. The diapladel
introduces physical constraints on devices' color and hance re-
production.

The framework shares some similarities with the TMO oritiina
proposed by Tumblin and Rushmeier over 15 years ago [1991,
Fig. 2b], and in the latter work of Pattanaik et al. [2000]. eTh
difference is that these approaches asstqig = Rorig and then



invert the HVS and display models to compute a tone mapped im-
age. If we follow this approach and compute the desired alysioi-
minance that would evoke the same sensation as a real werhe sc
(Ryisp= Rorig), we can end up with an image that is too bright or has
too much contrast for a given display. In such situation, éf ap-

ply the limitations of a display and clamp luminance valwes get
Raisp Signi cantly different fromRyrig, which is unlikely the global
minimum of our optimization problem. Furthermore, our feam
work can be used with arbitrary HVS and display models, while
previous approaches required the models to be invertiblereM
differences are discussed in Section 6.4.

The problem formulation above has been used before in the con
text of digital halftoning for printing [Pappas et al. 2003t it

The recent studies [Yoshida et al. 2006] show that contrast e
hancement as high as 100% can be desired if a display offers a
suf cient dynamic range, however actual strength of theasde-
ment strongly depends on a subjective preference. To aweid o
enhancement, we follow a common practice in producing révec
prints for the consumer market and enhance the contrasteséa r
ence image by 15% [Hunt 2004, p. 5% 1:15, as discussed in
Section 4.2).

3.3 Display Model

The display model primarily accounts for the limited capitibs

has not been employed to derive a tone mapping operator. The©f @ display device, such as maximum brightness, dynamigeran

major dif culty lies in the fact that even simpli ed modelsf @
display, the HVS and a tone mapping operator lead to a complex
non-linear optimization problem, which may exhibit locahima,

or be too complex to solve in reasonable time. In the follgsab-
sections we will present a combination of such models, whigh

suf ciently complete to realize the goals outlined aboved at the
same time lead to a standard optimization problem, whichbean
solved ef ciently.

3.1 Tone Mapping

To make the problem solvable by reducing degrees of freedom o
the optimized system, a tone mapping operator with a set of ad
justable parameters must be introduced. To retain maximexa
ibility, we employ a piece-wise linear tone-curve. Althduthe
high contrast scenes seem to require local, detail-enhgrgera-
tors, we demonstrate that a well designed tone-curve catupeo
good results even for such scenes. Akyiz et al. [2007] alsom

the importance of a global tone-curve by showing that theltes

of sophisticated TMO are no better than the best single expos

In this study we do not consider the color appearance isass,
we did not nd the color appearance models robust enoughdor o
purpose. Such models cope well with uniform color elds, how
ever they usually do not consider the in uence of spatialihance
modulation on color appearance, which we can observe wimen to
mapping high contrast images. To retain color informatimmnf

the reference image, we employ the desaturated colombamhnce
ratios [Schlick 1994]:

1)

whereL is the luminanceR the trichromatic valuel.%is the tone-
mapped luma and?is the tone-mapped color channel. For our
resultss= 0:6.

3.2 Image Enhancement

Image enhancement modi es the original image to improvejits
pearance. Such enhancement is a common practice in many imag
ing products, such as cameras and advanced TV displaysopiepe
tend to prefer images that are sharper, have higher coatrdshore
saturated colors than the original scenes. Image enhamntésod-
ten used for stylization, for example higher contrast igiusegive
desired harsh look, soft focus for making actors appear geumor
color shift to create a surrealistic mood. Colors can beredt¢o
be closer to so-callethemory colorswhich are the colors that we
remember seeing rather than the colors that can be measuttea i
actual scene [Bodrogi and Tarczali 2002], which are usualtye
colorful than the colors of the original scene.

(contrast ratio). These are affected by the technical aspEca
display, as well as viewing conditions, such as ambientt light
is re ected from a screen. Such re ected light elevates hanice
of the darkest pixels shown on a display, thus reducing avil
dynamic range.

Most of the displays, both CRT and LCD, can be modelled wiéh th
formula:

La(L9 = (LYY (Lmax Lblack+ Lblack* Lrefi 2

wherelg is displayed luminance or radiance (as measured coming
from the display surface),is the pixel value (0-1)gis a display
gamma (usually close to 2.2)max is the peak display luminance
(about 10@d=n? for of ce displays, and about 506d=n for LCD

TV). Lpiack is the display black level, which is the luminance of the
black pixel displayed in a perfectly dark room (usually frOrt to

0:8 cd=n? for LCD displays).Le| is ambient light re ected from

a display surface and it can be approximated in case of nussygl
screens with:

®)

whereEgmpis ambient illuminance given itux andk is the re ec-
tivity for a display panel (about 1% for LCD displays, larder
CRT displays). Although the model from Equation 2 is usuaty-
ployed separately for each trichromatic primary (red, grdxue),
we use this model for luminance values only since the cokaras
are not in the scope of this work yet.

k
Lrefi = EEamb

3.4 Human Visual System Model

The model of the human visual system (HVS) processes input lu
minance and chrominance data to produce the estimatednsspo
Such estimate should scale image features relative to sil-

ity or importance. There are many choices of such modelgimgn
from the mean square difference, to complex appearancelsiode
We decided to employ a model that estimates perceived ntra
distortions, as contrast is one of the most important fadtoat af-
fect overall image quality [Cadik et al. 2006]. In fact mosttee vi-
sual models, employed to estimate perceived image difterfiru-

bin and Pica 1991; Daly 1993] or to drive a tone mapping operat
[Pattanaik et al. 1998], operate on image contrast.

To estimate the response of the HVS to a contrast stimulusisee
a classical transducer function introduced by Wilson [19@&@ich

is a function of contradtv = DL=L and sensitivitys: R= T(W; S).
The resulting valu® is a hypothetical HVS response given in IND
(Just Noticeable Difference) units. The original formigahe sup-
plementary materials. Figure 3 shows two desirable prigsedf
the transducer function: a) the contrast is attenuatedibtdle de-
tection threshold, which prevents invisible noise fromnigecon-
sidered as important and thus preserved by a tone mappeh)and
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Figure 3: A contrast transducer function from [Wilson 198The Figure 4: The conditional probability density functiogy for the
vertical lines show the detection thresholds and constduse in- Memorial churchimage, the rst two contrast pyramid levels.
dicate at which conditions they can be expected-(spatial fre-

quency,L, — adapting luminances - sensitivity). The inset shows

a compressive character of the transducer function for atget 4.1 Conditional contrast probability

contrast range.

Computing a response of the visual system on the entire image
which can easily exceed several mega-pixels, is a provetytiex-

the contrast above the detection thl’eshold.is rStIy enbdmnd pensive Step’ especia”y that a numerical solver for Ou'“'njpa_
then compressed, since the visual system is the most serfsiti  tion problem (refer to Figure 2) needs to execute it several h
the contrast changes near the threshold and less sensitiveef  dred times. However, our particular problem allows us to then
contrast differences at high contrast levels (facilitatmd contrast visual model on a custom-designed higher order image ttatis
masking). which summarizes a common behavior of multiple pixels. @Qu i

age statistic can be understood as a conditional histogfaror
trast values@)) that depends on logarithmic luminance of the local
background|(+ 1) and a pyramid levdl. Such a statistic let us pre-
S= CSH(r;LaVg); 4) dict how many pixels will be affected by a particular tone miag
operation.

The sensitivityS is the inverse of the detection threshold and is
modelled with the Contrast Sensitivity Function (CSF):

wherer is the frequency given in cycles per degregis the adapt- We divide the dynamic range of an input imajgéto N bins of
ing I_uminance, gi_ven_irtnd:m2 andvy is the vi_ewing distance. The equal size and denote centers of these bing-as-n. TheN is
luminance masking is modelled by assuming local adaptaion  selected so that the difference between bins is about @jy(imits,
thatL, is equal to local background _Iumlnan_ce. We use in our sys- there are on average about 30 bins). Then, for ¢édhHevel of the
tem the CSF from [Daly 1993], which we include in the supple- | apjacian pyramid and for eadtth bin, we compute the histogram
mentary materials. of all contrast values5|, whose corresponding local background

The models above let us nd the response of the visual systeeng lj+1 belon_g_s to thé-th bir_1._ The co_IIection _of such histograms gives
a contrast valusV. To nd a set of contrast values in a complex ~US & conditional probability density function:

image, we employ the Laplacian pyramid. First, we computsa | d d d d
arithm of image luminance values,= logo(L). Then, we use Gmi=P md = G<md+—=ij%x = le1<x+ =
an ef cient algorithm to compute the Gaussian pyramid [Bart o 2 2 2 2
Adelson 1983]| for the imagel. The contrast in the logarithmic ) ) ) (6)
ratio units for thd-th frequency band is then equal®= I} lj+1, whered = x+1 X is the distance between bin centers, amd
wherel; is the original image and largéwalues indicate coarser M;:; L1 M. The use of contrast bins that have the same size
levels of the Gaussian pyramid. The pyramid is contractetoup ~ 2S thex; bins simpli es ourfurth_er computations. The valueMfis

the band that has its medium frequency lower than 3 cycles per chosen such tha#l d < 0:7, which gives a good trade-off between
visual degree [cpd]. The sensitivity for the luminance gats of the number of bins and _t_he maximum contrast that is _cath'red i
frequency lower than 3 cpd drops rapidly and therefore treseh the structure. The con(_jltlonal pr_oba_blllty density funatifor the _
little in uence on our contrast metric. The formulas for cputing Memorial churchimage is shown in Figure 4. The marked density
the medium frequency of a band are included in the supplement valut_acs; 1.1 represents the relative count of the contrast values of
materials. Since the Laplacian pyramid represents cdrasathe spatial frequency 15 cycles per degree, of the background log-
logarithmic ratiosG and the transducer function was modelled for uminance xs and the contrast magnitude d.

Weber contrasiV, we need to convert between these units using the

formula:

w=10%9 1 (5) 4.2 Obijective function

Our tone curve is a piece-wise linear function with the nodes
4 E cient solution the points ¥;,yi), as showr_1_in Figure 5,_\_Nhere the valugsare
the same as for the conditional probability density functicom
Equation 6. The constraints on feasible tone curves can lse mo
In this section we explain how the optimization problem c&n b  conveniently speci ed, if instead of actual values, we @peron
ef ciently solved for the display and the HVS models intregd in differencesd; = yj+1 y; fori= 1:N 1. Then our goal is to nd
the previous section. a visual error due to a tone curve givenXyd;, minimum Ly(0)
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Figure 5: Example of a piece-wise linear tone curve and the no
tation used to specify it. Four contrast samples are showthé&
node(x7;y7). The samples are multiples dfin an input image,
and the sums di, in a tone-mapped image.

and maximumlLy(1) logarithmic luminance of a display (refer to
Equation 2).

The minimum contrast distortion can be expected if the tameec
has the slope close to 1, and thus the contrast responsés fanid-
inal and displayed images are the closest to each other. tiowe
sider for each tone leva] contrast magnitudes that are multiples of
d, our goal is to minimize all squared differences betweerctre
trast response given by the tone curve, and the contrasinespf
the original image:

" #,

N1 M
agmin=38 § & T(ad d%) T(ed dS) cm
dindy 1 | izl mE M K2 f k2 f
mé 0
(7)
such that d O for i=1:N 1
aN.'d Lg(1) Lg(0) for i=1:N 1
(8)
wheref = i+ m;:;;i 1form< Oandf =i;:;i+m 1form Ois

the range of differencedy that form a contrast magnitude between
tone levelx; andxm. The constane is the constant enhancement
factor, which multiples the reference image contrast asudised
in Section 3.2. The rst constraint ensures that the toneetras

4.3 Fast quadratic solver

Equation 7 represents a non-linear optimization problemiclv
cannot be ef ciently solved using standard methods. We kaw-
ever, reduce it to a standard problem, if we approximate the n
linear transducer functioh with a linear scaling constant. The left
transducer term from Equation 7 can be written in a matriation

as:
T(AdS) KAd 9)

whered is a column vector ofly;::;dy 1, A is 0=1 matrix with

N 1 columns, where each royrepresents one term of the three
sums (oved, i andm) from Equation 7 and\j = 1 fork2 f. K

is a diagonal matrix that contains the scaling factors agpprating
the non-linear transducer:

T(A )} S)
[Ad];

To avoid singularitiesKj; = 0 for [A d]j = 0 (response for no con-
trast). Since the right transducer term in Equation 7 doéedeyend

on the vectod, it can be precomputed and stored as a column vec-
tor B. Then, the objective function from Equation 7 can be written
in the matrix notation as:

Kjj = (10)

[KAd B]'"C[KAd B]= (11)

dTATKTCKAd 2BTCKAd +BTCB

whereC is a diagonal matrix with the density function valugsg, .
Equation 11 represents a quadratic programming problertheof
dimensionalityN 1, which, given thalN 30, can be solved very
ef ciently using the standard method [Gill et al. 1981]. IGtihe
solution is valid only for the scaling factoks and not for the trans-
ducer functionT. To nd the result for the transducer functidn
we solve the quadratic problem iteratively, each time caingu
new scaling factoK and using the result from the previous it-
eration. For our transducer function, the optimizationalisucon-
verges Dd; < 0:1 d) in 3-7 iterations.

The problem can be ill de ned if some luminance levelsre not
linked with other luminance levels by any contrast in an imag
(ci.; = 0). To make such a problem solvable, the corresponding

non negative slope and the second that we do not exceed the dis columns should be eliminated from the matéiand rows from the

play dynamic range.T is the transducer function, introduced in
Section 3.4.

Due to the difference in viewing conditions, the sensiiviian
be in fact different for a displayed image and a referencegama

(%6 S). For example, we often want to see images, as if our eye

were adapted to high luminance levels and thus very seashile
can achieve this if we assume that the luminance of adaptajio
1000 cd=n? (or any large value) and thu& = CSK(r;;100Qd).
However, when an image is displayed, the HVS is much less-sens
tive for darker pixels shown on a display, and the sensjteguals

to § = CSH(r,;10%;d), where 18 is the display luminance for

the toned. This step adds dependence of the display model on the

result of the optimization problem by enforcing larger cast on
darker displays to compensate for the loss of sensitivity.

Multiplication by a probability density function;.,y let us relate
the error to the amount of contrast values of particular geaknd
luminance i), contrast magnitudenf) and spatial frequencyt)(in

an image. This gives a major performance improvement, ag-mul
ple contrast instances in an image are summarized in one Téren
use of the probability density function makes also the ojatition
problem independent of the image size, thus making it sigitallso
for high resolution images.

vectord. Since the matriA” KT C K A (after removing columns)
is positive de nite, the quadratic program has a global mizer,
which is unique.

4.4 Final tone curve and inverse display model

In the last two steps, we recover the nal position of the tooeve
nodes:

i1 N 1
Vi = Ymin+ é. de+ a (Ymax  Ymin é, dy) 12)
k=1 k=1
where Ymin = l0g10(Lg(0)) is the minimum and Yy, =

log10(Lg(1)) maximum luminance emitted from a display. The
last term shifts overall image brightness according to #etofr

a 2< 0;1>, in case the displayed image dynamic range is lower
then the dynamic range of a display (e.g. when displayingdgw
namic range images on an HDR display). Weaet 1 to display
possibly bright images, but the coef cieat can be also related to
the scene brightness to distinguish between low-key aritkey
scenes. Finally, display luminance values¥(1@re transformed to
pixel values using the inverse of Equation 2 (inverse dispiadel).
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4.5 Timings

The non-optimized matlab implementation requires on aeeta7

seconds on 2.6GHz CPU to tone-map a 1M-pixel image. More

than half of that time is spent on computing the probabilgysity
function (Equation 6), which is dif cult to program ef cidty in
matlab. The quadratic programming solver accounts for 8#yof
that time.

5 Extension to video

Our method should not be applied to a video sequence directly

since a tone-curve can change rapidly between consecraives§,
which can result in annoying ickering. It might be temptitg
add an additional cost term to the objective function (Eiqua?)

to penalize temporal changes in the tone curve, but suctoagipr
would not guarantee that the changes are not happeningathst
the nodes of the tone-curve can be Itered in the time domaire
peak sensitivity of the HVS for temporal changes dependshen t
spatial frequency and varies fron0:5to 4 Hz, as shown in Fig-
ure 6 top-left. To ensure that the frame-to-frame changestoie-
curve are not salient, we do not allow for temporal variatiabove
0:5 Hz. We apply a windowed linear-phase FIR digital Iter teeth
node coordinatey;, assuming thak; coordinates are the same for
all frames. The lter is low-pass and has a cutoff frequentp.6
Hz. Figure 6 bottom shows the result of the Itering for thennel
sequence, which is included in the supplementary video.

6 Results

In this section we demonstrate the display-adaptive cépabiof

our tone-mapping method and validate them in a subjectiveyst
Then we compare our technique with other popular methodk. Al
low-dynamic range images shown in the results has been tedve
to the linear trichromatic values assuming the sRGB colacsp

Dark room Bright office Outdoors

Figure 8: TheMemorial churchimages tone-mapped for three dif-
ferent ambient illumination conditions. As ambient lightieases,
the images gets brighter to avoid dark tones, which are ttst afo
fected by the screen re ections. For the outdoors illunmiovatarger
part of the bright pixels is clipped (saturated) and imag#rast is
increased. Note that these images are input to the displhygan
not depict actually displayed images.

6.1 Mobile display in the sunlight

A cell phone display is very hard to read in full sunlight, esially

if the display is transmissive (modulated transparenathar than
transre ective (modulated by both transparency and rewyl).
This common situation, in which the same mobile display &da
three different illumination conditions, ranging from akleoom to
outdoors on a sunny day, is simulated and shown in Figure & Th
top row shows how the effective dynamic range of a displag get
compressed due to screen re ections, making lower tonesgadil
most indistinguishable. Our tone mapping attempts to corsgie
for this by increasing the contrast of lower mid-tones (tbedr
part of the dashed-blue curves gets steeper with brightéieann
light). As the dynamic range of the display gets lower, angena
is reproduced at lower contrast (compare solid-green tanees).
The tone-curve is also determined by image content andiitardic
range. A high dynamic range image, such asTiezin the fourth
row, is reproduced at lower contrast than the low dynamigean
Mantisimage in the third row (compare the tangents with the green
dash-dot lines). Note that images shown in the gure giveyanl
general impression how the images may look on a display,fayd t
do not represent tone-mapped images. An example of thel aetua
sult of tone mapping, and how it differs for different amhiéght
conditions, is shown in Figure 8.

6.2 Display technologies

The diversity of the display technologies makes it very diifit to
predict how the image will look to the user when it is displdye
on a random device. The display adaptive tone-mapping cam co
pensate for the differences in display characteristic atuitian-
ally make the best possible use of the available displayrashand
brightness. Figure 9 shows images displayed using thredytot
different display technologies: a hypothetical color @gadisplay,
based on the actual speci cations of e-paper; a typical LGH d
play in a dim room; and a high-brightness HDR display, alsa in
dim room. The e-paper display offers the worse contrastchvén-
forces the use of very particular tone curves. The contreatpart
of mid-high tones is almost completely attened for tiéapa val-
leyimage and the e-paper display (1st column and 3rd row), since
the contrast values in this range convey the least useforimtion
(large contrast between the sky and the valley). Note thst -
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Figure 7: Images tone-mapped for a mobile display undeewifft illumination conditions. The top row describes thsptiiy model

parameters and its luminance response in each scenarioraem, bright of ce, outdoors). Each plot in the rows beloantains two tone
curves that map image log luminance factor to either pixeleg(blue) or display log luminance levels (green). Théhedsted green line
represents slope=1 (no contrast change). The light-blue df@w image histogram. The images depict simulated impgeasance on a
display, which however does not convey actual contrastighbress due to print limitations. Please refer to the smpphtary materials for
the full resolution images and more examples.

tening does not overlap with the gap in the image histogramit, a  The average score (the number of times the image was sélésted
would be the case for the histogram equalization technigineg computed for both scenarios and summarized in the tablevbelo
our method operates on contrast rather than pixel values HOR Dark room (20 lux) | Sunlight (1600 Iux)

display, on the other hand, can employ more regular toneesurv — —

with profound contrast boost in lower mid-tones to compensar DAT-20  DAT-1600  original | DAT-1600  DAT-20  original
lower sensitivity for dark pixel values. 1.56 0.99 0.46 1.96 0.90 0.14

where DAT-20 and DAT-1600 denotes display adaptive tone-
mapping for 20 lux and 1600 lux conditions. Tieé test on the

6.3 Experimental validation Kendall coef cient of agreement [Kendall and Babington-Smith
1940] indicated good consistency between participants atbr
In the following experiment we validate our claim that theplay image pairs, except one pair for the 20 lux scenario. Theipielt
adaptive tone-mapping can improve overall image contradeu comparison test indicated a statistically signi cant dittnce in
varying ambient illumination. The experiment involved arpaise overall scores [f = 0:05), although for some image pairs the
comparison between an original standard dynamic rangesinthag difference between the second and the third ranked methed wa
result of our method at ambient illumination of 20 lux (dacom), not signi cant. The results show that the images generatagu
and at 1600 lux (simulated sunlight). The images were djggla our method were preferred to the original images, most igba
on the self-calibrating Barco Coronis 3MP display, whichsvsat because of better tone-scale allocation, which gave shegpelts.

to the maximum luminancemax= 440 cd=n? andg= 2:2. For The ranking of the DAT-20 and DAT-1600 images matched the
the 20 lux scenario the lights in a room were dimmed. For tf@16  ambient light level for which they were generated, whichgrsis

lux scenario we directed two photographic lights (K5600eieBug that the display adaptive tone-mapping can improve therasnt
800W) on the display, so that the light re ected from the screvas images shown on displays in bright environments.

possibly uniform (the setup is shown in two small insets ig-Fi
ure 1). We measured the display response for both scenaribs a
used it as a display model to generate images using our method
Nine participants, who were naive about the purpose of tpermx
ment, took part. Each participant was asked the quest@irobse

an image which has better overall contrast, looks sharpet s The purpose of this comparison is not ranking operatorses#ach
veals more details before comparing 6 scenes3 method combi- operator has its own goals and merits, but rather showirfgrdif
nations 3 repetitions = 54 pairs. ences in the underlying approaches. We choose for the compar

6.4 Comparison with other methods
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Figure 9: Images tone-mapped for different display teabgiels. The notation is the same as in Figure 7

son three popular global methods: thieotographic TMO (only
global algorithm) [Reinhard et al. 2002] using the impletation
from the DVD attached to the book [Reinhard et al. 2005],Hise
togram adjustment TMO [Ward Larson et al. 1997] using the im-
plementation from the Radiance package [Larson and She#esp
1998], and thevisual adaptation TMO [Pattanaik et al. 2000] us-
ing the implementation from thgfstmopackage [pfstmo ]. Three

contrast scenes, but rather for simulating contrast Vitibin dif-
ferent states of luminance adaptation.

The example of the visual adaptation operator indicatesrher
difference between our approach and most of the methodsitirat
ploy a HVS model. These methods usually aim at producing @pag
that are fully or partly processed by a HVS model, and acctamt

images that we discuss below are shown in Figure 10 and the re-Such visual effects as loss of acuity at low light, visuatejaatura-

maining images are included in the supplementary materials

Both the histogram adjustment and our method can nely ddjus
tone-curve to image content, for example by compressinglyoo
represented mid-tones, as in the imdéstol bridge (1st row).
Such non-trivial tone-curve results in better contrasbw &nd high
tones than a pre-determined sigmoidal tone curve. The sigho

tion of the photoreceptors, or local adaptation [Pattaat#t. 1998;
Thomspon et al. 2002]. As discussed in Section 3, these migtho
compute visual response, which is then converted back téuthe
minance units using inverse models. In our approach we pmdu
the results that are as close to the original (or enhanceayenas
possible. Therefore, the HVS model is employed to penaited
tions, rather than to simulate perceptual effects. Theedltfferent

tone-curve used in the photographic TMO on the other hand re- @PProaches are not contradictory, and in fact a simulafigmecper-

sults in better global contrast and is more consistent vahtypi-

cal tone scale used in the photography. The next two low-tyma
range images (2nd and 3rd row) demonstrate how a low freguenc
background can affect the histogram adjustment TMO. Sihee t
off-focus background plane occupies the larger portiomes$é im-
ages, the histogram adjustment TMO allocates for the bligbk-
ground tones a larger portion of the dynamic range, but cesgas
darker tones, making the groom gure and goose's head tok. dar
The display adaptive TMO s less affected by the low-freqyen
background, which does not contain much contrast infolonati

The visual adaptation TMO (last column) is an example ofiiypta
different approach to the tone-mapping problem. The goahisf
method is a possibly accurate simulation of the HVS adaptati
processes and its limitations, including limited range e pho-
toreceptor response. The method faithfully preservesnaigcene
contrast but in a very small window of the scene dynamic ramgke
clips all tones that fall outside this window. Thereforeg thethod
is not intended for producing visually attractive imagesnirhigh

ceptual effects could be a part of teehancementlock from the
conceptual diagram in Figure 2.

7 Conclusions

The paper introduces the technique for reproducing soefieered
images on displays of limited contrast by minimizing visildis-
tortions. The method can nd a compromise between con igtin
goals, such as preserving contrast and clipping the dagkesthe
brightest tones. The distortions are penalized using th& lddh-
trast perception model. The display model predicts dispiayi-
nance response and imposes luminance limitations on the-rep
duced image. The algorithm leads to a unique, well de ned-sol
tion, with no subjective parameters.

Many recent studies on tone-mapping undertake the dif tagk
of producing images that will be subjectively preferred. &veid
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this challenging problem from the area of computationattests

ics by hiding it in theimage enhancemerstep. Although many
attempts to model subjective preference or quality of insdugeve
been made [Keelan 2002], there exist no reliable modelstbald
measure subjective image preference. For this reason wetdo n
claim an operator that produces the best looking imagesofadth

in our opinion in many cases it does), but rather the opetatair
objectively solves the problem of reproducing large dyrarange

on a displays of low contrast with the least visible contdistor-
tions.

In this paper we also propose the concept of a tone-mappasel¢
coupled with a display device, which renders images optohinr
a particular display and under the existing viewing colwoditi (am-
bient light). For example, a mobile phone should changeeits r
dering algorithm when the backlight of its transre ectivisglay is
switched off to save power. Similarly, a TV display shouldustl
the display algorithm when light in the room is lit (simplerdhing
due to ambient illumination is already performed in some T8 d
plays).

In the future work we would like to address color issues amdllo
tone-mapping operations (e.g. sharpening). Our initialiss show
promising results, although some fundamental problemgse&e
be solved before these extensions are possible. For exaihige
still not clear when a strong sharpening is perceived asritakr-
tifact and when in can be considered as a desirable contoast b
(Cornsweet illusion), although some research on this pratthas
been done [Krawczyk et al. 2007].

Another extension of the algorithm can take advantage afien
of interest (ROI) information. The ROl information is alteavail-
able in modern cameras in the form of face detection algmsth
Weighing ROI by the distance from the frame center or empigyi
attention models [Le Meur et al. 2006] can be another ch@ceh
ROI weighting could be used to increase importance of pvasgr
contrast in certain parts of a scene, which can be includetien
conditional probability density function (Equation 4).
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