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Abstract
To utilize the full potential of new high dynamic range (HDR) displays, a system for the enhancement of bright
luminous objects in video sequences is proposed. The system classi�es clipped (saturated) regions as lights, re�ec-
tions or diffuse surfaces using a semi-automatic classi�er and then enhances each class of objects with respect to
its relative brightness. The enhancement algorithm can signi�cantly stretchthe contrast of clipped regions while
avoiding ampli�cation of noise and contouring. We demonstrate that the enhanced video is strongly preferred to
non-enhanced video, and it compares favorably to other methods.

Categories and Subject Descriptors(according to ACM CCS): I.4.9 [IMAGE PROCESSING AND COMPUTER
VISION]: Applications

1. Introduction

The off-the-shelf LCD or Plasma TV displays available to-
day can show much higher dynamic range (contrast), bet-
ter brightness, lower black level and more saturated colors
than their CRT predecessors. The display back-light modu-
lation techniques (2D dimming) can extend image contrast
to the limits of human eye sensitivity [SHS� 04]. However,
the available video content, such as DVD movies, cannot
take full advantage of these new capabilities. The resolution
and to some extent the dynamic range of DVD movies can
be improved by rescanning �lm negatives and color grading
them for new displays. This, however, cannot restore very
bright image features, such as light sources, explosions, or
specular highlights. They are over-saturated even for high
exposure latitude �lm stocks and are clipped in the scanned
material.

In this paper we propose a semi-automatic system for en-
hancement of bright luminous objects in video sequences, so
that video intended for low contrast (low dynamic range) dis-
plays can exploit the full potential of new high contrast dis-
plays. The enhanced video shows bright luminous objects,
such as lamps, candles, explosions, specular re�ections, as
much brighter than diffuse surfaces, resulting in a reproduc-
tion that is much closer to viewing the actual scenes. Bright
objects are important visual cues that guide our depth and
shape perception [WBNF06] and let our visual system assess

illumination and re�ectance in a scene [SDM05]. It has been
demonstrated that such enhanced reproductions are usually
preferred and regarded to be of better quality [MDS06].

2. Previous work

Figure 1: The distinction between image restoration and im-
age enhancement in the context of the LDR2HDR problem.
Most inverse tone-mapping algorithms do not attempt to re-
verse camera distortions but rather try to produce believable
images that look better than the unprocessed originals.

The problem addressed in this paper is closely related
to image restoration, image enhancement and recently pro-
posed “LDR to HDR” algorithms.

Restoration: One of the goals of image restoration tech-
niques is to reverse the distortions introduced by a camera
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system (lens + sensor + image processing). Image restora-
tion techniques are depicted on the left side of Figure1 as
an edge going from an actual image captured by a cam-
era to a radiance map, representing an original scene. A
method of restoring images affected by blur (MTF) andsen-
sor non-linearity(DlogH non-linearity of a negative) has
been already proposed in the early publication [Hun77].
Later techniques proposed using multiple images at differ-
ent exposures for a better estimate of the sensor non-linearity
[BKCP93,MN99]. A sensor response curve can also be es-
timated from a single exposure using higher-order correla-
tions in the frequency domain [Far01] or from the color
distribution at color edges [LGYS04]. Probably the most
challenging kind of distortion to restore isclipping of over-
and under-saturated image pixels due to insuf�cient dynamic
range of a sensor. This problem has been solved in the case
of 1D signals if the signal is band-pass limited and the num-
ber of missing samples is low [ASI91], or if a statistical
model of an undistorted signal is known [Olo05]. Neither
of these approaches can be easily extended to images be-
cause statistics of complex images, and especially clipped
image features, are dif�cult to model and limiting image fre-
quency content will always lead to blurred edges. The pixels
that are clipped in one or two color channels can be esti-
mated using correlation across channels [ZB04]. Inpainting
techniques [BSCB00, She03, TLQS03], although designed
to �ll-in missing pixels, are not well suited for restoration
of clipped signal since they tend to smooth out (interpolate)
missing pixels that should be much brighter than the neigh-
boring pixels used for interpolation.

Enhancement: The original radiance maps are in fact not
necessary to produce improved images for new displays.
The recently proposed inverse-tone mapping algorithms pro-
duce enhanced images of higher contrast that still look be-
lievable and visually better than non-processed images on
high-contrast displays. Such goals are usually associated
with image enhancement as shown on the right part of Fig-
ure1. The resulting images only roughly approximate origi-
nal radiance maps but the algorithms are simpler, faster and
more robust than image restoration techniques. The inverse-
tone mapping algorithms typically stretch image contrast,
adjust image brightness, enhance color saturation and �ll-
in clipped regions [BLDC06, MDS07, RTS� 07, WWZ� 07].
Contrast stretching often results in contouring (banding) ar-
tifacts, which can be reduced with spatial and temporal
dithering techniques [DF03,BLfZ07]. Filling-in clipped re-
gions can be realized by stretching tone-curve for bright
pixels [MDS07], �tting Gaussians [WWZ� 07], expanding
pixel values using low-pass estimate of the non-clipped im-
age [BLDC06] or a blurred binary mask containing clipped
pixels [RTS� 07]. Akyüz et al. [AFR� 07] investigated the
preferred presentation of LDR and HDR images on an HDR
display. They found that brighter images are in general pre-
ferred, even if their dynamic range is lower.

3. Problem analysis

Figure 2: The typical response of a �lm negative (character-
istic curve or DlogH plot). All exposure magnitudes that fall
into the saturated part of the curve have maximum density,
regardless of actual luminance levels in a scene.

The clipping of bright image features is caused by a non-
linear response of the negative �lm, often depicted as so
calledDlogH plot, shown in Figure2. Well produced movies
contain all important image features in thestraight linepart
of this curve. Saturation of important image features is usu-
ally avoided, but the �lm dynamic range is not high enough
(up to 3.3 log10 units) to register the magnitude of bright re-
�ections and direct sources of light (lamps, candles, explo-
sions, etc.). Some white diffuse surfaces are also saturated,
giving them the same density value as much brighter re�ec-
tions and light sources. Therefore, all image features above
the saturation point are �attened to a tiny range of density
values (or code values after digital scanning), losing infor-
mation about the actual luminance levels in a scene.

The goal of this work is to improve the quality of video
shown on high contrast (high dynamic range) displays by
boosting bright image features, such as light sources and
specular highlights. We want to work with professionally
produced video content, such as movies intended for DVD
distribution, which could be captured with several different
cameras, composed with computer generated material and
subsequently processed. Assumptions about a camera MTF
or color distribution are impractical for such edited content.
The method should improve overall subjective video qual-
ity but does not aim at restoring the original radiance map.
Such restoration is a heavily under-determined problem, re-
quiring many assumptions that can not be made for general
video content. Restoration techniques also do not guarantee
improved quality and can even result in visually less attrac-
tive results, when for example image noise is pronounced
and becomes clearly visible.

In this paper we do not consider other enhancements, as-
sociated with the “LDR2HDR” task, such as the reversal
of tone-curve or contrast stretching. For that purpose our
approach can be combined with existing methods [DF04,
BLDC06, RTS� 07]. We also do not address the problem of
restoring details in the under-exposured regions, as they may
lead to increased noise visibility and are therefore not desir-
able.
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4. Enhancement of clipped video

Our system strives to achieve the same results as a digital
processing expert manually enhancing a movie sequence,
but with much less manual labor. Such an expert can inter-
pret a scene and determine that a lamp is brighter than its
re�ection and the re�ection is still brighter than a white dif-
fuse surface. Similarly, as an expert would do, we classify
clipped regions into three categories:diffuse— bright dif-
fuse objects (usually white) that can become partly saturated,
re�ection — specular re�ections on shiny, highly re�ective
surfaces,lights – direct sources of light, such as lamps, can-
dles, explosions, the sun, and sometimes even window panes
if they are much brighter than the �lmed interior. These three
categories differ in absolute luminance levels as illustrated
in Figure2. Having such a classi�cation, we enhancelights
andre�ections. We do not modify diffuse surfaces because
of two reasons: (a) due to their complex structure they would
be very dif�cult to reconstruct and any failures in reconstruc-
tion would lead to visible artifacts; (b) if diffuse surfaces are
saturated in the source material, that was most probably the
intention of a �lm maker and they should remain saturated.

Figure 3: Data �ow diagram of the video enhancement sys-
tem.

Figure3 shows a data �ow of our enhancement system.
The source video is �rst preprocessed to avoid delays in the
user assisted part of the system. In the preprocessing stage
we compute a dense motion �ow, detect clipped regions and
compute their feature vectors, which will be used for the
classi�cation. In the user assisted stage, the clipped regions
are �rst classi�ed automatically. If the previous frame is
available, we use motion �ow to match regions from the pre-
vious frame and reuse their classi�cation. If clipped regions
cannot be tracked over time, which is the case for newly

appearing objects or scene cuts, an automated classi�er at-
tempts to classify them based on their precomputed feature
vectors. Then, the result of such classi�cation is shown to the
user, who can accept the automatic classi�cation or modify
it. The user input is used to update the knowledge database
and train the online classi�er after each completed frame. In
the last step, all regions classi�ed aslights or re�ectionsare
enhanced and user can see a preview of the enhanced frame.

4.1. Detection of clipped regions

Figure 4: Screenshot of our sketch based interface for semi-
automatic classi�cation.

Before we can classify clipped regions, we need to �nd
the pixels that belong to them. We consider pixels as part of
the clipped region if they exceed a certain threshold along
with neighboring pixels that are part of the saturated ob-
ject. A simple thresholding is not a reliable estimator of
clipped regions since the source video is often heavily dis-
torted by noise and image processing. For this reason we
mark clipped pixels using a �ood �ll algorithm, where a sin-
gle seed (for a single region) constitutes of connected pixels
that have at least one channel saturated (value> t0; t0 = 230
for DVD content) and are bright (luma> t1, t1 = 222 for
our prototype). To reduce the in�uence of noise, we take the
luma from the image �ltered with the bilateral �lter [TM98]
(ss = 2, s r = 25). The stopping condition for the �ood �ll
is a value of luma smaller than the prede�ned thresholdt2
(t2 = 219 for our prototype).

4.2. Motion tracking

Motion tracking of clipped regions allows us to reuse the
classi�cation from a previous frame. To estimate the posi-
tion of a clipped region in the previous frame, we average
the motion vectors (found using [Bou00]) for the pixels that
surround the clipped region. We exclude the motion vectors
stemming from the inside of a clipped region as these are
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unreliable due to clipping, excessive noise and lack of fea-
tures that could be matched. Then, we translate the region
by the averaged motion vector. We assume that the clipped
regions in the current and previous frame belong to the same
object if 70% of the pixels overlap (after translation) and the
difference in size does not exceed 30% of the area of object.

4.3. Classi�cation

Although the classi�cation of clipped regions intolights, re-
�ections anddiffusesurfaces is trivial for a human operator
who can interpret the scene content, it is a challenging task
for an automated classi�er. Unlike other typical classi�ca-
tion objects such as faces, clipped regions do not contain a
common structure, and it is not possible to create a database
of known objects. Based on the statistics of 2,000 manu-
ally classi�ed regions (our training set) we designed over
20 features, which included 1st- and 2nd-order image statis-
tics (mean, median, skewness and kurtosis for the luma dis-
tribution in clipped regions), geometric features (size, sym-
metry, shape) and neighborhood characteristics (luma gradi-
ents, contrast, smoothness of neighboring pixels). Each fea-
ture was tested individually in terms of classi�cation perfor-
mance and additionally selected pairs of features were tested
to check for possible correlations. The features that resulted
in the classi�cation performance close to random guess were
excluded. The eight remaining and best performing features
(Zi , i = 1::8) were:

Mean luma of a frame: Dark scenes are likely to contain
lights and bright specularre�ections. Bright scenes on the
other hand are usually more likely to include overexposed
textures.

Similarity to disk andmajor axis ratio : Lights usually
feature regular shapes and they are round or slightly oval.
Specularhighlights are less regular and can be elongated.
The least regular aretextures, which can be found in any
shape. To account for shape, we compute two statistics:Sim-
ilarity to disk is a ratio between the perimeter of a disk hav-
ing the same �eld as the clipped region to the perimeter of
the clipped region; andmajor axis ratio , which is the ra-
tio of the maximum and the minimum eigenvalue found by
computing a PCA of the pixel coordinates for the pixels that
belong to a clipped region.

Luma standard deviation: Re�ectionstend to contain
higher contrast details than �attexturesand strongly clipped
lights. As a measure of this phenomenon we compute the
standard deviation of luma in a clipped region.

Median luma of a regionandskewness: The luma distri-
bution in a clipped region is also discriminative for the three
classes. Diffuse surfaces contain more dark pixels than lights
and re�ections, therefore themedian luma of a clipped re-
gion is shifted towards smaller values for diffuse surfaces
and theskewnessof the distribution is larger.

Slope and offset account for the surrounding of the
clipped area. The medians of the equidistant pixels to the
clipped area form a pro�le of the surrounding, which we ap-
proximate with a straight line. Theslopeand theoffset of
that line are the last two features.

As a preprocessing step we center the individual features
and rescale them to have unit variance, so that no feature
dominates the other. The chosen features are very good pre-
dictors inside a scene (from one scene cut to the next scene
cut). Unfortunately, the generalization across scenes is very
dif�cult.

We have divided the classi�cation procedure into a two-
stage process. First, we detect scene cuts by computing cor-
relation of luma values with the luma values in the previ-
ous frame. If the absolute correlation is less than a threshold
(0:3), the frame is regarded as a scene cut and using temporal
information for that frame is not advisable. Therefore, in the
�rst stage we train a support vector machine (SVM) using a

Gaussian kernelk(z;z0) = e� gkz� z0k2
on the training set. All

parameters are chosen by cross validation. Due to the dif�-
culty of the task, we achieve a relatively high error of 46:0%
on an independent test set, which is still better than random
guessing (66.6% for evenly distributed classes and a 3-class
problem). However, as can be seen in Table1, the total num-
ber of regions in scene cuts is only a tiny portion of the total
number of all regions which have to be classi�ed. Since the
user is asked to correct all errors of the classi�er, the large
number of initial errors does not propagate into the motion
tracking system or the second stage of the classi�er.

In the second stage, after a scene cut frame we classify
only regions if they cannot be related to a region of the pre-
vious frame by the motion tracking system described in Sec-
tion 4.2. For this purpose we need a classi�er which is adap-
tive to the scene, works in an online fashion without costly
retraining and can make use of the region features as well
as spatial and temporal information. A simple yet ef�cient
method which has all these three properties is the nearest
neighbor (NN) classi�er. In the speci�c case a region is clas-
si�ed with the category of the nearest neighbor in the set of
all regions which have occurred in the scene up to the current
frame using a weighted Euclidean metric,

d2((z;x;t); (z0;x0; t0)) = 50kz� z0k2 + kx� x0k2 + 5(t � t0)2;

wherez are the region features,x are the coordinates in the
image andt is the frame number. The weighting factors were
adjusted on the training set. Unlike the SVM, the nearest-
neighbor classi�er can be dynamically extended with newly
classi�ed feature vectors each frame at almost no cost. Since
the classi�er is dynamic and time-dependent, the 8 selected
features are much more robust than for the off-line SVM
classi�er. They are used to group together common objects
(for example perfectly round lights in one scene and elon-
gated lights in another scene), so that the user needs to clas-
sify a single region from that group to propagate this knowl-
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edge to the other regions in the same scene. On our test set of
regions which were either new in the scene or could not be
identi�ed using the motion tracking system the NN-classi�er
achieved a good error rate of only 10:0%. Table1 shows that
the overall classi�er of the SVM for scene cuts and the NN-
classi�er inside scene has an error rate of only 12:6% on all
regions which had to be classi�ed on the test set.

Classi�er Total Number #Errors Percentage
SVM (scene cuts) 526 242 46.0%

NN (within a scene) 6638 661 10.0%
All 7164 903 12.6%

Table 1: The number of regions that require classi�cation
for both classi�ers and their classi�cation errors.

In order to correct potential errors of our two-step clas-
si�cation procedure, the classi�cation results are presented
to the user (see the user interface in Figure4). The current
frame is shown in gray-scale and the classi�ed clipped re-
gions are color-coded. Since the regions that are tracked over
time are almost always correctly classi�ed, they are marked
with desaturated colors and cannot be edited unless edit-
ing them is activated by the user. This removes clutter from
the screen and requires fewer user corrections. If there are
any misclassi�ed regions, a user can click, stroke or encircle
them while holding the key combination corresponding to a
particular class. Hitting the space key proceeds to the next
frame. The frames in which all regions can be tracked over
time or that do not contain clipped regions are presented only
as a preview and do not need user correction.

4.4. Enhancement
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Figure 5: A comparison of our enhancement method with
other approaches, for a light (two upper rows) and a spec-
ular highlight (two bottom rows). The plots show a cross-
section across the center of each image.

Although we experimented with several methods for en-
hancing or reconstructing clipped regions, we found most of

them unsuitable because of artifacts, lack of temporal coher-
ence or unconvincing results. The results of these methods
for a light source and specular highlight are shown in Fig-
ure5. Fitting smooth functions orinpainting [TLQS03] re-
sults in �attened pro�les, which do not give much brightness
boost to the clipped regions. Maintaining temporal coher-
ence is also problematic for these methods. The extrapola-
tion techniques, such as2D Taylor series expansion, are not
robust because the surrounding pixels used to estimate par-
tial derivatives are often affected by the scene content that is
not the part of a clipped region. The resulting reconstruction
contains structures in the center of the clipped region, which
do not match the appearance of the actual light source or
specular highlight. The method of Rempel et al. [RTS� 07]
(LDR2HDR) is strongly affected by the size of clipped re-
gion, making larger objects brighter than smaller objects.
Linear contrast stretching [MDS07] (HDRTMO ) is fast and
straightforward but it reveals contouring artifacts and strong
noise near the saturation point. The last two methods are also
discussed in more detail in Section5.2.
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Figure 6: Enhancement of clipped regions with an adaptive
tone curve. a) Initial image and b) its luma pro�le. c) His-
togram of partial derivatives. d) Tone curve derived from
the inverted histogram. e) Enhanced region and f) its pro-
�le. Dashed lines denote t2 — the minimum luma level for
clipped regions.

In our approach we use an adaptive non-linear tone-curve
to boost clipped areas without amplifying noise. We illus-
trate our approach on an example of a lamp shown in Fig-
ure6. The fewest artifacts can be expected when large gra-
dients are stretched and small gradients are left intact or
moderately enhanced. This is because large gradients are un-
likely to represent noise, but also the human visual system is
less sensitive to changes of large contrast values (contrast
masking) and �nally, large gradients often represent object
boundaries, where contrast change is the least objectionable.
To stretch large gradients, we employ a per-pixel tone-curve
that stretches these tone-values, for which the fewest small
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gradients are likely to be affected. In order to �nd such a
tone curve, we accumulate within a histogram-like structure
the information for all partial derivatives (computed as for-
ward differences) within a clipped region and for all video
frames that contain that region (from motion tracking data).
For each partial derivativei, whose end-points areai andbi ,
andai6= bi , we add to our derivative-histogram structure,H,
the cost equaljai � bi j

� 1 in the range fromai + 1 to bi . The
histogram is afterwards normalized so that maxf H[�]g = 1.
Figure7 shows the derivative-histogram after adding three
partial derivatives. It indicates that the tone-scale between
a2 + 1, b2 should be stretched the least, and then between
a3 + 1, b1. We can achieve this, if we apply a technique
similar to histogram equalization on the inverted derivative-
histogram:

TC[b] = k
b

å
j= 2

(1� H[ j]) + t2; (1)

whereTC[�] is the desired tone-curve,t2 is the lowest luma
value for a clipped region (see Section4.1) andk is the scal-
ing factor that ensures that the resulting tone-curve does not
exceed the maximum boost valuem:

k = ( m� t2)=
N

å
j= 1

(1� H[ j]); (2)

whereN is the total number of bins. An example of a tone-
curve is shown in Figure6d. The parametermis set to 150%
of the maximum luma of the original content forlights and
to 125% forre�ections. These values were selected to pro-
duce visually attractive results, although they do not need to
be physically plausible. As a �nal step we make sure that
our tone curve does not compress contrast. This is achieved
whenk (1� H[ j]) > 1 for eachj. As in [WLRP97], we it-
eratively update the histogram by lowering bin values and
computing a new value ofk so that this condition is met up
to a certain tolerance threshold. Figure6 illustrates an exam-
ple of enhancing a light.

Figure 7: The histogram of partial derivatives after adding
three derivatives.

Adaptive tone curve reduces noise ampli�cation but it
cannot completely prevent it, and it also cannot avoid con-
touring. To minimize possible artifacts, the tone-curve is
applied to the luma values �ltered with the bilateral �lter
(ss = 2, s r = 12), as shown in Figure8. The bilateral �lter
not only removes noise, but also interpolates between dis-
crete luma values, thus adding bit-depth precision that pre-
vents contouring. The difference between the �ltered region
and the original values is added back after contrast stretching
to avoid blurring.

Figure 8: Enhancement is performed on a �ltered image to
prevent contouring and noise ampli�cation.

To restore color, we alter each color channel relative to the
luma modi�cations:

Cnew= Cold �
Lnew

Lold
(3)

whereC is a color channel (red, green or blue - gamma cor-
rected) andL is luma. Such an approach to color correction
prevents color shifts, which are possible when each chan-
nel is processed separately. Although the use of linear (not
gamma-corrected) color spaces would be preferred in case
of HDR restoration, the goal of our method is enhancement
and not physical accuracy, therefore it is more convenient to
operate in gamma-corrected and approximately perceptually
linearized space.

5. Results and validation

Several results of our enhancement compared to the original
frames are shown in Figure9. To validate our method, we
�rst consider the usability of the user-assisted part of our
system, then we compare our results with other methods and
�nally we report the result of a subjective evaluation.

5.1. User interface ergonomics

Work intensive human interaction is a common practice in
�lm enhancement, such as colorization of black and white
movies, since the quality of the resulting material cannot be
compromised by the failures of an automatic algorithm. The
costs of movie post-production and enhancement are often
counted in man-months of manual work, which often require
artistic skills. Modern stroke-based interfaces can signi�-
cantly reduce this effort [LLW04]. Our method also offers
an ef�cient stroke-based interface and additionally includes
semi-automated classi�cation, which can further reduce the
number of required strokes.

We processed 2077 frames of a movie sequence, while
gathering statistics from the user interface. The sequence
was selected to contain a large number of lights and re�ec-
tions. There were 11069 clipped regions that had to be la-
belled. In overall, using motion tracking (Section4.2) 75%
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Figure 9: Video frames before and after our enhancement. The contrast of the images has been compressed (linear scaling in
the logarithmic luminance domain) to match that of a print.

of the regions could be labelled, leaving 25% of the regions
for classi�cation. Due to the low error rate of our classi�ers
(Table1 in Section4.3) only 2.9% of all regions required a
manual correction by the user. For this particular video se-
quence about 20 minutes of work were required to process
a minute of a movie. The processing time can be expected
to be shorter for sequences with smaller numbers of lights
and overall manual effort for a 100-minute movie should not
exceed 4-5 man-days of work.

5.2. Comparison with other methods

We compared our method with LDR2HDR [RTS� 07],
which is the only algorithm that is suitable for video, and
HDRTMO [MDS07], which is conceptually the most sim-
ilar to our approach, although does not guarantee time-
coherence necessary for video. We exclude from this com-
parison the inverse tone mapping method [BLDC06], since it
cannot enhance clipped regions in video sequences, and the
HDR hallucination [WWZ� 07], which is intended for still
images only.

In the LDR2HDR method the contrast of a low-dynamic
range image is linearly stretched and the brightness of
clipped regions is enhanced with a smooth approximation.
To compute the smooth brightness enhancement, a binary

mask of clipped pixels is blurred with a large Gaussian �lter
and then rescaled to the �xed range and used as a multiplier
of luminance values. To prevent blurring across sharp con-
trast edges, the brightness enhancement map is limited by a
mask that is found using the �ood �ll algorithm that stops
on large image gradients. We implemented the LDR2HDR
method as closely as possible in Matlab based on the details
given in the original paper [RTS� 07] and after correspon-
dence with the authors.

The LDR2HDR algorithm produces very plausible results
and is capable of fully automatic, real-time execution on the
GPU. Our three points of criticism are the lack of classi�-
cation, which results in enhancement of objects that should
not be enhanced; the inconsistencies in the brightness en-
hancement map; and temporal �ickering. The �rst problem
is visible in Figure10 center-right, where a white shirt and
a part of the wall have been enhanced. The inconsistencies
in the brightness enhancement map are caused by a single
binary saturation mask that is blurred with a large kernel,
so that the actual brightness of enhanced object will depend
on the object size, shape and its location with respect to the
other objects within a frame. This problem is visible in Fig-
ure 10 top-right, where the smaller lamps are darker than
the larger explosion and the details far from the center of
the explosion are gradually becoming darker. The last major
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HDRTMO                                                                                               Ours                                                                                               LDR2HDR

Figure 10: Our results compared to the HDRTMO and LDR2HDR methods.

problem is the �ickering that can be observed in video se-
quences (refer to sequences 1, 6 and 9 in the supplementary
video). The �ickering is due to a) pixels having their value
close to 230 (hard threshold used for brightness enhance-
ment), which are once boosted, once left unchanged; and b)
growing or shrinking the regions selected by the �ood �ll
algorithm that stops when it encounters large gradients. In
our method we avoid these problems by using more conser-
vative conditions on the regions regarded as clipped, and a
smooth tone-scale enhancement function, which does not af-
fect much the pixels that are close to the luma threshold (t2)
and at the boundary of clipped regions. Most of the �ick-
ering in the LDR2HDR method is visible on diffuse sur-
faces, which are classi�ed as such by our method and left
unchanged.

The HDRTMO method attempts to �nd specular high-
lights in an image and then linearly stretches their luma val-
ues. The specular highlights are found under the assumption
that they are small and bright. The maximum value in the
low-pass �ltered image estimates the luma of white diffuse
surfaces, above which the pixels are classi�ed as specular.
Since some specular pixels can have luma values lower than
the diffuse white, the original map is expanded using mor-
phological operators until the values reach another threshold,
found as the maximum value of a coarsely low-pass �ltered

image. In our tests we used the original implementation of
the algorithm provided by the authors.

The HDRTMO algorithm is fully automatic and compu-
tationally inexpensive, although in its original version not
suitable for video. We found that it gives excellent results
for dark images containing small highlights or light sources.
However, the automatic classi�cation fails for images that
contain large objects or are bright. This is because large ob-
jects do not meet the initial assumptions, and bright scenes
often contain diffuse surfaces that are equally bright as lights
or specular re�ections. Since the distinction between diffuse
and specular objects is made solely based on the luma level,
the algorithm cannot differentiate between them. This is the
reason why no object has been enhanced in Figure10 top-
left, and more objects than desired (shirt, wall, door) have
been enhanced in the center-left image. Moreover, the linear
luma scaling used in the algorithm leads to ampli�cation of
noise, which is high in saturated regions.

We argue that automated classi�cation can never be fool-
proof and the errors in classi�cation lead to distracting dis-
tortions that cannot be tolerated for high quality content.
Lack of classi�cation, on the other hand, enhances features
that should not be enhanced. The semi-automatic classi�ca-
tion proposed in this paper requires a low amount of user
interaction, but provides results of highest quality.
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5.3. Experimental validation

The enhanced frames shown in Figure9 may look convinc-
ing, but they do not prove that the enhanced video is gen-
erally preferred to the original video and to the LDR2HDR
method. To validate this claim, we conducted a subjective
paired comparison experiment. 14 participants took part in
the experiment, all were naive about its purpose. Enhanced
and non-enhanced video was shown sequentially in random
order to a participant, who had to choose the one that he or
she preferred. Each participant ranked this way 9 scenes� 3
combinations of scene pairs (original video vs. our method;
LDR2HDR vs. our method; and original vs. LDR2HDR),
shown on a bright LCD display (Barco Coronis Color 3MP
Diagnostic Luminance) capable of the the maximum lumi-
nance of 650cd=m2. We allocated the dynamic range from
1–200cd=m2 for the original content and the range from
200-650cd=m2 for enhanced features. The viewing condi-
tions were close to the ITU-T Rec. P.910 recommendations.

# Ranking Scores u c2 z
1 ours original ldr2hdr 1.50 0.86 0.64 0.14 8.29 1.00

2 ours original ldr2hdr 1.71 0.71 0.57 0.30 14.86 0.93

3 ours ldr2hdr original 1.50 1.29 0.21 0.38 17.71 0.93

4 ours original ldr2hdr 1.29 0.93 0.79 -0.01 2.57 0.93

5 ours ldr2hdr original 1.43 1.07 0.50 0.17 9.71 0.93

6 ours original ldr2hdr 1.50 0.93 0.57 0.17 9.71 0.64

7 ours ldr2hdr original 1.71 0.79 0.50 0.32 15.43 0.93

8 ldr2hdr ours original 1.21 1.07 0.71 -0.00 2.86 0.71

9 ours original ldr2hdr 1.64 1.14 0.21 0.44 20.00 1.00

Table 2: Quality ranking for the 9 tested scenes. The hori-
zontal lines under the method names indicate no statistically
signi�cant difference (multiple comparison test). Scores are
given in the same order as the method ranking.

We analyzed the data using a similar approach as in
[LCTS05]. For each scene we computed averaged scores
(the number of times the method was preferred), the Kendall
coef�cient of agreementu (how consistent are the scores be-
tween participants),c2 test on the coef�cientu, and the co-
ef�cient of consistencyz (presence of circular triads in the
ranking data). Then, we performed the multiple comparison
test to see if the difference in scores is statistically signi�-
cant (p = 0:05). The results of this analysis are summarized
in Table2. The scene 4 and 8 did not pass thec2 test, indi-
cating that the participants did not agree on the ranking. For
the remaining scenes, our method was either ranked signi�-
cantly better (3 scenes) or better but with no statistically sig-
ni�cant difference to the original scene (3 scenes) or to the
LDR2HDR method (1 scene). The surprisingly bad ranking
of the LDR2HDR method (in most cases the quality statisti-
cally equivalent to the original video) can be attributed to the

temporal �ickering artifacts, discussed in Section5.2. The
overall ranking for all scenes is:

our method ldr2hdr original
1.48 0.79 0.72

which indicates that our method was preferred to both the
original scenes and the LDR2HDR method and the differ-
ence in preference was statistically signi�cant. All the scenes
used in this experiment are included in the supplementary
video.

6. Discussion

It is disputable, whether better results can be achieved by
enhancing bright image features, or by using the additional
dynamic range to stretch overall contrast or brightness. The
choice can in fact depend on image content, viewing condi-
tions (bright or dark room), and to some extend on subjec-
tive preference. Enhancing bright image features was found
advantageous for darker scenes, which would look unreal-
istic when displayed too bright [MDS06]. It also modi�es
smaller part of an image, thus reducing the chance of pro-
ducing artifacts (for example amplifying noise). The other
study [AFR� 07] found that brighter images are preferred
even if they have lower dynamic range, though the study did
not report results separately for day-light and night scenes.
The thorough study of these considerations is, however, out
of scope of this paper.

7. Conclusions

The goal of this study is to improve the subjective quality of
video shown on high-contrast displays by enhancing bright
video features. We investigated several alternatives methods,
from which we choose that which is suitable for video and
does not compromise quality of the source content by intro-
ducing artifacts.

Unlike other approaches, we do not treat all clipped re-
gions the same way. Instead we distinguish between po-
tential brightness differences in clipped regions. The semi-
automatic classi�er guarantees almost ideal classi�cation
with minimum manual effort. Naive enhancement of clipped
regions usually leads to pronounced noise and contouring
artifacts. The proposed enhancement algorithm is robust to
these problems.

In future work we would like to study the preference for
displaying enhanced content on displays of high, but limited
dynamic range. For example, it is desirable to know how
much dynamic range should be allocated for the enhanced
features and how much for the original content. We found the
1:2 division of the dynamic range satisfactory in most cases,
but this ratio should be con�rmed in a subjective study.
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