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Abstract

In this document we provide specific details and further results of our method, in particular for the user study.
Please notice that Table 3 is reproduced here from the main manuscript for the sake of the reading convenience,
and Fig. 1 and Figs. 7, 8 represent the full versions of Fig. 1 and Fig. 8, respectively, in the main paper. To
accelerate the progress in visual metrics research, we make the subjective experimental data gathered in scope of
this study publicly available (http://www.mpi-inf.mpg.de/resources/hdr/norm/).

1. Synthetic Image Acquisition

We generated a set of 24 synthetic artifact images with
references, which are shown in Fig. 1. The scene and the
rendering parameters of each image are given in Table 1.
However, only the parameters relevant to the artifact type
are provided in the table. For the Lightcuts rendering algo-
rithm [WFA*05] we used the proposed default parameters
(see [WFA*05]) with automatic VPL clamping (1% of the
total result and at most 1500 VPLs per pixel).

2. Classification Details

We use the C-library 1ibsvm 3.0 [CL11] for support
vector classification, and ANN 1.1.2 [MA10] (Approxi-
mate nearest neighbor) for (approximate) k-nearest neighbor
searching. The test and training images were generated using
several global illumination rendering softwares and exported
to OpenEXR [Ope] HDR-image files. Rendered images and
material buffers were stored in 16 bit RGB format whereas
depth buffers use 32 bit per pixel.

During the training phase we do not compute features for
every pixel in the images but for a uniformly sampled set
of pixels in the image. However, since usually fewer pixels
are labeled as artifacts we sample the artifact labels denser
than the remaining pixels. To counter-balance this unequal
sampling we have to re-weight the posterior probability of
the k-nn prediction results by the ratio of the label sampling-
densities. In the k-nearest neighbor search we use the L; dis-
tance norm, which produced better results than the L, norm
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Img. Scene Renderer Settings (Artifact/Ref.
#1 Disney 1GI (PT) 1M VPLs (43K spp)
#2 Kitchen IGI (PT) 1M VPLs (380K spp)
#3 Tab IGI (PT) IM VPLs (97K spp)
#4 Bar IGI (PT) 1M VPLs (200K spp)
#5 Sponza GL (GL) Shadowmap: 1K X 1K (4K X 4K)
#6 Sponza Trees GL (GL) Shadowmap (PCF): 1K X 1K (4K X 4K)
#7 Sponza Trees GL (GL) Shadowmap (PCF): 1K X 1K (4K X 4K)
#3 Sponza Trees GL (GL) Shadowmap: 1K X 1K (4K X 4K)
#9 Apartment LC(LC) 100K VPLs (2M VPLs)
#10 Sponza Trees IGI (LC) 60K VPLs (2M VPLs)
#11 Apartment IGI (LC) 40K VPLs (2M VPLs)
#12 Sibenik GL (GL) Shadowmap: 1K X 1K (4K X 4K)
#13 Icido LC (LC) 100K VPLs (1M VPLs)
#14 Fairy GL (GL) Shadowmap: 1K X 1K (4K X 4K)
#15 Sibenik GL (GL) Shadowmap: 1K X 1K (4K X 4K)
#16 Fairy GL (GL) Shadowmap (PCF): 1K X 1K (4K X 4K)
#17 Box IGI (PT) 1M VPLs (60K spp)
#18 Apartment LC (LC) 200K VPLs (2M VPLs)
#19 Sibenik GL (GL) Shadowmap: 1K X 1K (4K X 4K)
#20 Conference LC (LC) 200K VPLs (2M VPLs)
#21 Fairy GL (GL) Shadowmap: 512 X 512 (4K X 4K)
#22 Sibenik GL (GL) Shadowmap: 1K X 1K (4K X 4K)
#23 Apartment LC (LO) 200K VPLs (2M VPLs)
#24 Fairy GL (GL) Shadowmap: 512 X 512 (4K X 4K)

Table 1: The scene identifier and rendering parameters of
our image data set shown in Fig. 1 for the artifacts rendering
and reference rendering algorithm (shown in parenthesis).
GL stands for the OpenGL based deferred renderer based
on shadow maps with percentage closer filtering (PCF) and
screen-space ambient occlusion. IGI is an instant global il-
lumination renderer, which supports glossy VPLs. The refer-
ence solutions are computed either by pathtracing (PT) with
a constant number of samples per pixel (spp) or by the light-
cuts algorithm (LC) [WFA*05].
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Figure 1: The set of images used for our tests consisting
of images exhibiting VPL clamping bias artifacts (C), glossy
VPL noise (G), and shadow map aliasing (S). The corre-
sponding scene and rendering settings are given in Table 1.

for both tasks, the classification and the inpainting, probably
because a few outliers in the feature vectors are not dominat-
ing the final result.

3. Inpainting Details

The main difficulty in the inpainting step is to find artifact-
free image blocks that fit the local image configuration. Here
we give a more detailed description of our automatic proce-
dure.

First, we remove the material-dependent signal from the
color image and obtain HDR lighting as already discussed
in the main paper. Next, the resulting HDR lighting image is
gamma corrected (with y = 2.2), scaled to LDR (we use the
inverse of the 95th-percentile of all HDR luminance pixels as
scale factor), and converted to YCbCr color space. We also
construct a Gaussian pyramid for the lighting image.

We assume that chroma is less affected by artifacts and fo-
cus only on the more important luminance during inpainting.
However, to remove chroma noise, the two chroma channels
are filtered with a joint-bilateral filter, which is described in
the main paper. Then, the initially detected artifact-pixels are
sampled uniformly (liO samples per pixel) and small square
blocks of constant size (w X w, w := 16 pixels) are extracted
from the depth, normal and color buffer around each sam-
pled pixel. After rectification based on the depth and normal
block (transformation to texture space), a local feature de-
scriptor is constructed, which is used as an index to query a
database for the k-nearest neighbors (k-nn). This database is
initially constructed from our training image pairs using the

Figure 2: Visualization of the inpainting steps (from top-left
to bottom-right): original (exaggerated) artifact image for
the scene #1, rectified splatting footprints (1 nearest neigh-
bor), the corresponding Gaussian splat weights, the refined
and normalized result (10X more splats), the blended result,
and the reference image. Note the strong chromatic noise in
this example.

same patch extraction procedure and contains tens of thou-
sands of rectified reference lighting patches together with
the artifact descriptor index. However, in order to achieve a
larger variation in the lighting patches, we randomly rotate
each rectified patch during database construction (for that
the patches are generated with w* = /2 % w larger size and
cropped after rotation).

As descriptor we use the downsampled luminance (8 x 8)
of the rectified artifact patch multiplied with a Gaussian en-
velope to penalize off-center pixels. In order to deal with
large-scale artifacts we employ a multi-scale approach dur-
ing the k-nn search. We extract rectified image patches with
constant size w from multiple levels of the Gaussian pyra-
mid (e.g., first 2 levels) of the LDR lighting image. The k-
nearest retrieved reference patches are first upsampled (bicu-
bic) to the corresponding scale of the search descriptor, then
cropped to our patch resolution w, and blended according
to their k-nn distance norm (L1). This linear combination of
patches is warped to image space using the computed tex-
ture parametrization and splatted into the luminance image
with weights computed from a radial Gaussian window that
is warped via the same texture parametrization (see Fig. 2,
top-right).

The whole sampling and splatting process is repeated un-
til each pixel under the artifact label mask has a weight larger
than a minimum threshold (we use 0.5). Next, the luminance
image is normalized by dividing by the accumulated splat
weights and chrominance is added from the prefiltered orig-
inal image. Remaining cracks are filled using a push-pull ap-
proach and the result is modulated with the material buffer.
Finally, the image is blended with the original image as de-
scribed in the main paper. In Figs. 2 and 3 we show a failure
case and a good example, respectively.
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Figure 3: Inpainting in a vivid textured scene (from top-left
to bottom-right): original artifact image, the extracted light-
ing image, the inpainted splats from 3 nearest neighbors, the
reference, with extracted lighting, and the inpainting result
with textures blended with the original image.

4. Human Visual System Details

In this section we describe implementation details of the hu-
man visual system (HVS) model used in the perceptual nor-
malization step (Section 8 of the main manuscript). Princi-
pally, we take advantage of the observation that the rendering
artifacts we consider are of medium to high frequency, and
we can thus approximate the reference image I,y using the
distorted image I, after the inpainting correction (Section
7 of the main manuscript).

Our HVS model operates as follows: given an image (I,
1), we first compute a 6-level Laplacian Pyramid of image
luminance L. Then, the Wilson’s transducer [Wil80] function
T is applied at each pyramid level L; as follows:

3201 [(1+(SL)®) 3 —1]

Ti(L.S) = ]
KLsS) = 205500 (3,433 + ST )0% M

The transducer function additionally takes a HVS sensitivity
parameter S as input that is computed as:

S = CSF (Pt Ladapt ) @)

where CSF denotes the Contrast Sensitivity Function dis-
cussed in [Dal93] and described below. The spatial fre-
quency Py depends on the angular resolution of the in-
put image in pixels per visual degree units (n,,4), and
is given by np,q /2k, where k = 1 for the highest fre-
quency band [MKRH11]. The local luminance adaptation
map Lygqp is approximated by the low-pass residue of the
Laplacian Pyramid.

The Contrast Sensitivity Function (CSF) accounts for sen-
sitivity changes due to the luminance adaptation and spatial
frequency of the image:
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The parameters are:

p — spatial frequency in cycles per visual degree,
L, — light adaptation level in cd /m?,

0 — orientation (6 = 1),

2 — stimulus size in deg2 (i2 =1),

d — distance in meters,

¢ — eccentricity (¢ = 0),

€ — constant (¢ = 0.9),

P — absolute peak sensitivity (P = 250).

Given the transducer responses Tkref (for (I.f)) and de‘“
(for (1;5)) at each pyramid level k, the differences of HVS
responses are combined using a Minkowski summation with

exponent 2:
. (1/e)
] . (5)

Finally, the perceptually weighted response R is masked
by the original binary distortion map NoRM as follows:

K
R= [Z )Tkref — T
k

NoRM pere. = R-NoRM. (©6)

5. User Study Details

In pure image classification providing the labels is relatively
easy. The user sets a discrete label for each image. In our ap-
proach labels are continuous over the entire image and each
pixel must be labeled, which is a tedious task prone to er-
rors. However, providing good labels significantly affects the
performance of the classification. Therefore in the following
section we describe the design, procedure and results of a
perceptual user study that we conducted to gather subjective
labellings of artifacts in rendered images.

There were several motivations for the study: on one hand
we needed the subjective data (labels) for training the clas-
sifier and to provide the guidance for inpainting, on the
other hand we used part of the acquired data to validate the
proposed no-reference metric. Furthermore, the performed
study was an interesting probe to the perception of render-
ing artifacts on its own — to our best knowledge this was the
first attempt to subjectively label locations of visual artifacts
caused by various rendering techniques both in with- and
without- the reference setups. Finally, results of the study are
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Figure 4: User interface of the custom scribbling applica-
tion used in the user study (with-the-reference version).

valuable for the evaluation of existing full-reference metrics,
which were usually not validated for detection of rendering
artifacts, as we show below.

5.1. Experimental Design

The evaluated images were displayed on a characterized and
calibrated LCD display. The calibration was performed us-
ing X-Rite il Display Pro colorimeter (to D65, 120 cd/ n127
colorimetric characterization by means of measured ICC
profiles). The experimentation room was neutrally painted,
darkened (measured light level: 2 lux), and observers sat
approximately 60 cm from the display. The total of 20 ob-
servers took part in our experiments. They were computer
graphics students and researchers, proficient in computer
graphics, but naive to the purpose of the experiment. We
involved both male and female observers between the ages
of 21 to 38, and all of them reported to have normal, or
corrected-to-normal vision.

5.2. Experimental Procedure

In the experiment we were presenting selected images to
users (see Fig. 5), who were asked to mark the regions they
perceived as artifacts. For the purpose of the study we im-
plemented a custom scribbling application, see Fig. 4. Us-
ing this application, we performed two experiments: in the
first experiment (with-the-reference), an image exhibiting
rendering artifacts (distorted image) was presented along
with the artifact-free (reference) image; in the second ex-
periment (without-the-reference), subjects saw only the dis-
torted image. Each subject was introduced to the problem
before the experiment as follows: in with-the-reference ex-
periment, observers were asked to mark those regions in the
distorted image, where they saw the difference to the ref-
erence image shown beside. For without-the-reference ex-
periment, observers were instructed to label all the areas in
the image that they found disturbing, while they were en-
couraged to concentrate on the lighting artifacts only. The
sequence of images and the type of the experiment (with-
or without-the-reference) were randomized, but for a given
observer the type of experiment remained constant. Specif-
ically, the half of the subjects performed the with-reference
experiment, the other half did the no-reference part. The

whole experiment took on average 25 minutes per subject.
According to the post-test discussions with our subjects, the
no-reference experiment was slightly more demanding than
the with-reference one.

Image subj. HDR- SSIM NoRM NoRM
# no-ref. VDP2 perc.
1 0.903 0.725 0.674 0.628 0.662
2 0.908 0.579 0.538 0.558 0.590
3 0.828 0.778 0.643 0.682 0.727
4 0.913 0.495 0.469 0.298 0.436
S 0.769 0.542 0.602 0.677 0.748
6 0.772 0.669 0.742 0.638 0.767
7 0.857 0.390 0.374 0.383 0.479
8 0.805 0.618 0.692 0.607 0.657
9 0.510 0.418 0.231 0.416 0.320
10 0.186 0.134 0.637 0.450 0.470
Average 0.745 0.535 0.560 0.534 0.586

Table 3: Correlations of subjective responses in with-
the-reference experiment with subjective responses in no-
reference experiment and with the predictions of HDR-
VDP2, SSIM, NoRM and NoRM after the perceptual nor-
malization. The last row shows the average correlations over
the test set. The best correlations (excluding the no-reference
subjective experiment) for each stimulus are printed in bold.

5.3. Study Results and Discussion

Results of the study are summarized in Figs. 7 and 8.
In the first and second rows we show the input reference
and distorted stimuli (#1-10), respectively. Images 1-4 ex-
hibit glossy VPL artifacts [Kel97], images 5-8 suffer from
shadow map discretization [RSC87], and images 9-10 show
clamping bias artifacts [Kel97]. All the stimuli were tone
mapped for the presentation purposes (images 1-4 using
logarithm-based global tone reproduction curve [DMACO03],
and the rest by means of photographic tone mapping opera-
tor [RSSFO02]). Third and fourth rows show average subjec-
tive with-the-reference and no-reference experimental dis-
tortion maps, respectively. The maps were obtained by av-
eraging over all observers in each study. This way we can
compare the outcome of the artifact perception experiment
in the presence and absence of the reference.

Interestingly, the visual inspection of distortion maps
reveals apparent agreement between the subjective exper-
iments. This is corroborated by the numerical analysis,
where the correlation between the average distortion maps
of the with-the-reference and no-reference experiments is
markedly high (second column in Table 3). The exceptions
are images 9 and 10, where the correlation is clearly weak.
This is caused by rather low perceptual strength of clamping
bias artifacts. Our subjects had apparently troubles to mark
artifact regions here and some of them even left those im-
ages intact as artifact-free cases (happened in both experi-
ments, see standard deviation images Table 6). This is also
reflected in low maximal values in average distortion maps
(see Table 2). In any case, sensitive subjects in the with-the-
reference experiment were guided by the reference image

(© 2011 The Author(s)
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Figure 5: The test set consists of 2 X 10 rendered images. Top row: reference images, bottom row: images containing rendering

artifacts.

Tmage # | subjects with-ref. subjects no-ref. HDR-VDP2

SSIM NoRM NoRM perc.

[min, max]; avg; std [min, max]; avg; std

[min, max]; avg; std

[min, max]; avg; std [min, max]; avg; std [min, max]; avg; std

[0.000, 1.000]; 0.065; 0.164 | [0.000, 1.000]; 0.074; 0.167 | [0.000, 1.000]; 0.048; 0.170 | [0.000, 1.000]; 0.056; 0.125 | [0.000, 1.000]; 0.130; 0.296 | [0.000, 1.000]; 0.072; 0.175

[0.000, 1.000]; 0.160; 0.241 | [0.000, 1.000]; 0.169; 0.260 | [0.000, 1.000]; 0.189; 0.320 | [0.000, 1.000]; 0.143; 0.210 | [0.000, 1.000]; 0.208; 0.345 | [0.000, 1.000]; 0.134; 0.246

[0.000, 1.000]; 0.041; 0.148 | [0.000, 0.900]; 0.074; 0.166 | [0.000, 1.000]; 0.052; 0.185 | [0.000, 1.000]; 0.044; 0.117 | [0.000, 1.000]; 0.091;0.265 | [0.000, 1.000]; 0.090; 0.263

[0.000, 1.000]; 0.067; 0.160 | [0.000, 1.000]; 0.084; 0.196 | [0.000, 1.000]; 0.134; 0.254 | [0.000, 1.000]; 0.094; 0.175 | [0.000, 1.000]; 0.227; 0.354 | [0.000, 1.000]; 0.127; 0.214

[0.000, 1.000]; 0.041; 0.145 | [0.000, 0.700]; 0.065; 0.119 | [0.000, 1.000]; 0.113;0.258 | [0.000, 1.000]; 0.036; 0.139 | [0.000, 1.000]; 0.058; 0.207 | [0.000, 1.000]; 0.053; 0.203

[0.000, 0.800]; 0.046; 0.134 | [0.000, 0.500]; 0.047; 0.084 | [0.000, 1.000J; 0.115; 0.254 | [0.000, 1.000]; 0.079; 0.209 | [0.000, 1.000]; 0.050; 0.196 | [0.000, 1.000]; 0.060; 0.224

[0.000, 1.000]; 0.043; 0.136 | [0.000, 0.800]; 0.039; 0.108 | [0.000, 1.000]; 0.173; 0.304 | [0.000, 0.999]; 0.089; 0.190 | [0.000, 1.000]; 0.046; 0.168 | [0.000, 1.000]; 0.055; 0.196

[0.000, 0.900]; 0.083; 0.173 | [0.000, 0.700]; 0.060; 0.112 | [0.000, 1.000]; 0.300; 0.383 | [0.000, 1.000]; 0.119; 0.254 | [0.000, 1.000]; 0.074; 0.239 | [0.000, 1.000]; 0.094; 0.281

ol ool || w| & w| o] —

[0.000, 0.300]; 0.008; 0.034 | [0.000, 0.600]; 0.039; 0.081 | [0.000, 1.000]; 0.045; 0.131

[0.000, 1.000]; 0.033; 0.088 | [0.000, 1.000]; 0.072; 0.219 | [0.000, 1.000]; 0.053; 0.177

o

[0.000, 0.500]; 0.010; 0.045 | [0.000, 0.300]; 0.021; 0.042 | [0.000, 1.000]; 0.465; 0.420 | [0.000, 0.998]; 0.043; 0.104 | [0.000, 1.000]; 0.053; 0.184 | [0.000, 1.000]; 0.055; 0.200

Table 2: Descriptive statistics of the distortion maps (depicted in Fig. 7 and Fig. 8) for each input image. Used abbreaviations:
min=minimal value, max=maximal value, avg=average value, std=standard deviation, of a distortion map for particular image
(1-10). (Maps in subjective experiments were obtained by averaging over all observers).

which resulted in reasonable distortion maps. On the other
hand, average subjective no-reference distortions for images
9 and 10 seem to be more random. For this reason, we use
average with-the-reference subjective experiment results as
a reference in the following evaluation of objective metrics.

Average subjective distortion maps (i.e. the ‘ground
truth’) enable us to qualitatively evaluate predictions of
the proposed no-reference metric NoRM, as well as the
predictions of other state-of-the art metrics. We are not
aware of any no-reference metric capable of providing
distortion maps, i.e. the locations of artifacts. Therefore,
we compare our predictions to the results of widely ac-
cepted full-reference metrics HDR-VDP2 [MKRHI11] and
SSIM [WBS*04], although they are often not appropriate for
capturing the quality of rendered 3D scenes [RRP0OO,RRO1].
Please note that full-reference metrics have the obvious ad-
vantage of knowing both the distorted and reference images.
Our technique inputs the distorted image only, making the
prediction of artifact locations and visibility much harder
task. On the other hand, we make use of the knowledge of
the scene depth and diffuse material albedo.

The predictions of HDR-VDP2, SSIM and NoRM are
shown in rows 5, 6 and 7 of Figs. 7 and 8. Similarly to
the analysis above, we show correlations of prediction maps
with the subjective experimental results in Table 3 (columns
3, 4, 5). We run all the metrics with the default param-
eter settings to make the comparison fair, however better
results may be achieved in some cases after manual pa-
rameter tweaking. Specifically, for HDR-VDP2 we make

(© 2011 The Author(s)
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use of the probability map output (Pap), which was cali-
brated for stimuli close to the visibility threshold. As some
of our images show quite supra-threshold distortions, the
response of HDR-VDP2 saturates. This is especially visi-
ble for large low-frequency supra-threshold differences, that
are actually perceptually much less influential than as pre-
dicted by HDR-VDP2 (see e.g. image #10). On the other
hand, HDR-VDP2’s predictions are deliberately conserva-
tive so if there is a perceivable visible difference, though
tiny, it should be reported. Apart from several ringing arti-
facts (probably due to the steerable pyramid decomposition),
the metric performs well in this conservative sense.

In case of SSIM, we utilize the version of the SSIM
index with automatic downsampling. The resulting SSIM
distortion map is weighted according to recommenda-
tions [WBS*04] as follows: SSIMyys = maX(O,SSIMmap)47
and finally upsampled to the original image stimulus size
(which is the reason of ‘smooth’ appearance of SSIM distor-
tion maps). Some of the SSIM predicted artifacts are exag-
gerated (e.g. the shadow mapping artifacts masked by leafs
of the tree in the image #7), probably due to absence of
a high-level visual masking model, but in general the pre-
dictions of SSIM are considerably close to the subjective
ground truth.

Distortion maps produced by the proposed no-reference
metric NoRM are binary, meaning the presence or absence
of an artifact. However, we assume the artifacts are spatially
coherent and hence, for classification we sampled the test
image uniformly (approx. every 10-th pixel) and interpolated
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Figure 6: Standard deviations over subjects for each input image. First row: standard deviation maps for with-the-reference
experiment, second row: standard deviation maps for no-reference subjective experiment.

the result, which produced continuous values at the edges of
artifact predictions in the distortion maps. These distortion
maps sometimes tend to show also too many locations (see
e.g. the image #2), which may be correct, but the artifact
severity is in reality obviously not uniform. However, thanks
to the inpainting procedure, we are able to perform the per-
ceptual normalization step (NoRM perc.), which makes the
strength of detected artifacts substantially closer to average
subjective distortion maps. Strictly speaking, the prediction
we obtain after the perceptual normalization step is a supra-
threshold distortion map calibrated in JND (just noticeable
differences) units. To convert those values to probabilities,
we employ a mapping function similar to the one proposed
by Lubin [Lub95], where the value of 1 JND is mapped to
the probability of P = 0.5 (see also [MKRH11]). According
to Table 3, the prediction of NoRM does not correlate well
with the ground truth in particular for the image #9 (as well
as the predictions of other metrics). Peculiarly, this is the
case where also the observers (in without-the-reference ex-
periment) had troubles to find an agreement and to concisely
mark the distorted regions.

In conclusion, neither HDR-VDP2 nor SSIM were de-
signed or calibrated to predict the strength of rendering
artifacts, but the distortion maps they produce are quite
plausible. According to average correlations with measured
ground-truth distortion maps, SSIM only slightly outper-
forms HDR-VDP2 (0.56 vs 0.535). The result of our met-
ric (0.534) is qualitatively quite similar, making it competi-
tive with current state-of-the-art full-reference metrics. The
perceptual normalization step makes predictions of NoRM
even closer to the experimental ground truth, resulting in the
highest average correlation (0.586) of all the tested metrics.
However, as one may observe in Table 3, each of the tested
metrics fail for some, as well as perform the best for another
input stimulus. Accordingly, there is still the need to improve
the robustness of the metrics and a space for future research.
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Figure 7: Results of the user study: average subjective artifact strenghts, and the comparison to predictions of current state-of-
the art full reference metrics as well as the proposed no-reference technique. First row: reference images, second row: images
containing rendering artifacts, third row: average distortion maps for with-the-reference experiment, fourth row: average dis-
tortion maps for no-reference experiment, fifth row: predictions of the full-reference metric HDR-VDP2 [MKRH11], sixth row:
predictions of the full-reference metric SSIM [WBS*04], seventh row: predictions of the proposed no-reference metric NoRM,
eighth row: predictions of NoRM after the perceptual normalization, ninth row: artifact correction using inpainting.
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Figure 8: Results of the user study: average subjective artifact strenghts, and the comparison to predictions of current state-of-
the art full reference metrics as well as the proposed no-reference technique. First row: reference images, second row: images
containing rendering artifacts, third row: average distortion maps for with-the-reference experiment, fourth row: average dis-
tortion maps for no-reference experiment, fifth row: predictions of the full-reference metric HDR-VDP2 [MKRH11], sixth row:
predictions of the full-reference metric SSIM [WBS*04], seventh row: predictions of the proposed no-reference metric NoRM,
eighth row: predictions of NoRM after the perceptual normalization, ninth row: artifact correction using inpainting.
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